The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Chen, G.; Chen, S.; Ahmad, N.; Azam, M.; Zheng, Z.; Su, Z.; Cathelinaud, M.; Ma, H.; Chen, Z.; et al. Carrier transport enhancement mechanism in highly efficient antimony selenide thin-film solar cell. Adv. Funct. Mater. 2023, 33, 2213941. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L.; Li, X. Distributed localization in dynamic networks via complex laplacian. Automatica 2023, 151, 110915. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Han, G.; Zhang, S.; Boix, P.P.; Wong, L.H.; Sun, L.; Lien, S.Y. Towards high efficiency thin film solar cells. Prog. Mater. Sci. 2017, 87, 246–291. [Google Scholar] [CrossRef]
- Fang, X.; Xie, L. Distributed Formation Maneuver Control Using Complex Laplacian. IEEE Trans. Autom. Control. 2023, 69, 1850–1857. [Google Scholar] [CrossRef]
- Pal, K.; Singh, P.; Bhaduri, A.; Thapa, K.B. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: A review. Sol. Energy Mater. Sol. Cells 2019, 196, 138–156. [Google Scholar] [CrossRef]
- Britt, J.; Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 1993, 62, 2851–2852. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Doumit, N.; Soro, K.; Ozocak, A.; Batut, N.; Schellmanns, A.; Saintaime, E.; Ntsoenzok, E. Boosting the efficiency of CZTS/Si tandem solar cells using In2O3 layer in CZTS top cell. Adv. Theory Simul. 2021, 4, 2100099. [Google Scholar] [CrossRef]
- Shi, Z.; Jayatissa, A.H. Perovskites-based solar cells: A review of recent progress, materials and processing methods. Materials 2018, 11, 729. [Google Scholar] [CrossRef]
- Barbato, M.; Artegiani, E.; Bertoncello, M.; Meneghini, M.; Trivellin, N.; Mantoan, E.; Romeo, A.; Mura, G.; Ortolani, L.; Zanoni, E.; et al. CdTe solar cells: Technology, operation and reliability. Phys. D Appl. Phys. 2021, 54, 333002. [Google Scholar] [CrossRef]
- Gonzalez-Pedro, V.; Juarez-Perez, E.J.; Arsyad, W.S.; Barea, E.M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888–893. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.B.; Li, K.; Chen, C.; Deng, H.X.; Gao, L.; Zhao, Y.; Jiang, F.; Li, L.; Huang, F.; et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2017, 2, 17046. [Google Scholar] [CrossRef]
- Duan, Z.; Liang, X.; Feng, Y.; Ma, H.; Liang, B.; Wang, Y.; Luo, S.; Wang, S.; Schropp, R.E.I.; Mai, Y.; et al. Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Adv. Mater. 2022, 34, 2202969. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.C.; Mandal, T.N.; Yang, W.S.; Lee, Y.H.; Im, S.H.; Noh, J.H.; Seok, S.I. Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor. Angew. Chem. 2014, 126, 1353–1357. [Google Scholar] [CrossRef]
- Tao, J.; Hu, X.; Xue, J.; Wang, Y.; Weng, G.; Chen, S.; Zhu, Z.; Chu, J. Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells. Sol. Energy Mater. Sol. Cells 2019, 197, 1–6. [Google Scholar] [CrossRef]
- Lin, J.; Chen, G.; Ahmad, N.; Ishaq, M.; Chen, S.; Su, Z.; Fan, P.; Zhang, Y.; Liang, G. Back contact interfacial modification mechanism in highly-efficient antimony selenide thin-film solar cells. J. Energy Chem. 2023, 80, 256–264. [Google Scholar] [CrossRef]
- Phillips, L.J.; Savory, C.N.; Hutter, O.S.; Yates, P.J.; Shiel, H.; Mariotti, S.; Bowen, L.; Birkett, M.; Durose, K.; Major, J.D. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: Performance limits and high VOC. IEEE J. Photov. 2018, 9, 544–551. [Google Scholar] [CrossRef]
- Razykov, T.M.; Shukurov, A.X.; Atabayev, O.K.; Kuchkarov, K.M.; Ergashev, B.; Mavlonov, A.A. Growth and characterization of Sb2Se3 thin films for solar cells. Sol. Energy 2018, 173, 225–228. [Google Scholar] [CrossRef]
- Zeng, Y.; Sun, K.; Huang, J.; Nielsen, M.P.; Ji, F.; Sha, C.; Yuan, S.; Zhang, X.; Yan, C.; Liu, X.; et al. Quasi-vertically-orientated antimony sulfide inorganic thin-film solar cells achieved by vapor transport deposition. ACS Appl. Mater. Interfaces 2020, 12, 22825–22834. [Google Scholar] [CrossRef]
- AvGarcía, R.G.A.; Cerdán-Pasarán, A.; Madrigal, A.F.; Mathews, N.R. Antimony Selenide Thin Films by Electrodeposition: Influence of Deposition Conditions and Post-Deposition Thermal Treatment on Physical and Photoelectrochemical Properties. Phys. Status Solidi (A) 2022, 219, 2200185. [Google Scholar]
- Brito, D.; Anacleto, P.; Pérez-Rodríguez, A.; Fonseca, J.; Santos, P.; Alves, M.; Cavalli, A.; Sharma, D.; Claro, M.S.; Nicoara, N.; et al. Antimony Selenide Solar Cells Fabricated by Hybrid Reactive Magnetron Sputtering. Nanomaterials 2023, 13, 2257. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.J.; Tang, R.; Chen, S.; Zheng, Z.H.; Su, Z.H.; Ma, H.L.; Zhang, X.H.; Fan, P.; Liang, G.X. Crystal growth promotion and defect passivation by hydrothermal and selenized deposition for substrate-structured antimony selenosulfide solar cells. ACS Appl. Mater. Interfaces 2022, 14, 31986–31997. [Google Scholar] [CrossRef] [PubMed]
- Eensalu, J.S.; Tonsuaadu, K.; Acik, I.O.; Krunks, M. Sb2S3 thin films by ultrasonic spray pyrolysis of antimony ethyl xanthate. Mater. Sci. Semicond. Process. 2022, 137, 106209. [Google Scholar] [CrossRef]
- Wang, X.; Tang, R.; Yin, Y.; Ju, H.; Zhu, C.; Chen, T. Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells. Sol. Energy Mater. Sol. Cells 2019, 189, 5–10. [Google Scholar] [CrossRef]
- Paudel, N.R.; Grice, C.R.; Xiao, C.; Yan, Y. High temperature CSS processed CdTe solar cells on commercial SnO2: F/SnO2 coated soda-lime glass substrates. J. Mater. Sci. Mater. Electron. 2015, 26, 4708–4715. [Google Scholar] [CrossRef]
- Lin, J.; Mahmood, A.; Chen, G.; Ahmad, N.; Chen, M.; Fan, P.; Chen, S.; Tang, R.; Liang, G. Crystallographic orientation control and defect passivation for high-efficient antimony selenide thin-film solar cells. Mater. Today Phys. 2022, 27, 100772. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, M.; Song, K.; Bin, L.; Wang, Y.; Liu, R.; Gong, X.; Zhang, D.; Cao, L.; Chen, S. A highly [001]-textured Sb2Se3 photocathode for efficient photoelectrochemical water reduction. Nanoscale 2019, 11, 22871–22879. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Li, G.; Liu, H.; Zhang, H.; Guo, J.; Chen, J.; Shen, K.; San, X.; Yu, W. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 2019, 10, 125. [Google Scholar] [CrossRef]
- Singh, Y.; Maurya, K.K.; Singh, V.N. A review on properties, applications, and deposition techniques of antimony selenide. Sol. Energy Mater. Sol. Cells 2021, 230, 111223. [Google Scholar]
- Wang, W.; Cao, Z.; Wu, L.; Liu, F.; Ao, J.; Zhang, Y. Remarkable Sb2Se3 solar cell with a carbon electrode by tailoring film growth during the VTD process. ACS Appl. Energy Mater. 2021, 4, 13335–13346. [Google Scholar] [CrossRef]
- Tao, R.; Tan, T.; Zhang, H.; Meng, Q.; Zha, G. Sb2Se3 solar cells fabricated via close-space sublimation. J. Vac. Sci. Technol. B 2021, 39, 052203. [Google Scholar] [CrossRef]
- Rijal, S.; Li, D.B.; Awni, R.A.; Bista, S.S.; Song, Z.; Yan, Y. Influence of post-selenization temperature on the performance of substrate-type Sb2Se3 solar cells. ACS Appl. Energy Mater. 2021, 4, 4313–4318. [Google Scholar] [CrossRef]
- Fan, P.; Chen, G.J.; Chen, S.; Zheng, Z.H.; Azam, M.; Ahmad, N.; Su, Z.H.; Liang, G.H.; Zhang, X.-H.; Chen, Z.G. Quasi-vertically oriented Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV prepared via close-space sublimation and selenization. ACS Appl. Mater. Interfaces 2021, 13, 46671–46680. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xin-Yun, Z.; Han-Bo, C.; Wang, C.G.; Zhang, X.T.; Hou, B.D.; Shen, M.R.; Jing, Z. Simulation and optimal design of antimony selenide thin film solar cells. Acta Phys. Sin. 2018, 67, 247301. [Google Scholar]
- Memari, A.; Javadian Sarraf, M.; Seyyed Mahdavi Chabok, S.J.; Motevalizadeh, L. Comprehensive guidance for optimizing the colloidal quantum dot (CQD) Perovskite solar cells: Experiment and simulation. Sci. Rep. 2023, 13, 16675. [Google Scholar] [CrossRef] [PubMed]
- Barthwal, S.; Gupta, R.; Kumar, A.; Ramesh, K.; Pathak, S.; Karak, S. Band offset engineering in antimony sulfide (Sb2S3) solar cells, using SCAPS simulation: A route toward PCE > 10%. Optik 2023, 282, 170868. [Google Scholar] [CrossRef]
- Teimouri, R.; Keshtmand, R.; Mehrvarz, S.; Ghasemi, F.; Mahjoory, A.; Kolahdouz, M.; Taghavinia, N. Enhancing Planar Perovskite Solar Cell Performance by SnO2 Interface Treatment Using Urea as an Additive: A Comparative Study of Simple, Low-Temperature Approaches. ACS Appl. Electron. Mater. 2023, 5, 6014–6025. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Abouelatta, M.; Alanazi, A.; Al-Dhlan, K.A.; Almurayziq, T.S. Numerical analysis of hole transport layer-free antimony selenide solar cells: Possible routes for efficiency promotion. Opt. Mater. 2022, 129, 112473. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorashi, S.M.B. Simulation of perovskite solar cell with P3HT hole-transporting materials. J. Nanophotonics 2017, 11, 032510. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Y.; Lu, S.; Li, K.; Yang, B.; Chen, W.; Wang, K.; Li, D.; Deng, H.; Yi, F.; et al. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Adv. Energy Mater. 2017, 7, 1700866. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Gao, L.; Nam, D.; Li, D.; Li, K.; Zhao, Y.; Ge, C.; Cheong, H.; Liu, H.; et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2017, 2, 2125–2132. [Google Scholar] [CrossRef]
- Wen, X.; Chen, C.; Lu, S.; Li, K.; Kondrotas, R.; Zhao, Y.; Chen, W.; Gao, L.; Wang, C.; Zhang, J.; et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 2018, 9, 2179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, H.; Zhang, X.; Chi, K.; Cai, Y.; Cao, Y.; Pang, J. Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: Morphology, carrier transport and photovoltaic performance. J. Alloys Compd. 2021, 862, 158703. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Abbas, M.; Fu, C.; Su, Z.; Tang, R.; Chen, S.; Fan, P.; Liang, G. Tellurium doping inducing defect passivation for highly effective antimony selenide thin film solar cell. Nanomaterials 2023, 13, 1240. [Google Scholar] [CrossRef]
- Karade, V.C.; Jang, J.S.; Kumbhar, D.; Rao, M.; Pawar, P.S.; Kim, S.; Gour, K.S.; Park, J.; Heo, J.; Dongale, T.D.; et al. Combating open circuit voltage loss in Sb2Se3 solar cell with an application of SnS as a back surface field layer. Sol. Energy 2022, 233, 435–445. [Google Scholar] [CrossRef]
Parameter | SnO2 | Sb2Se3 | P3HT |
---|---|---|---|
Thickness (nm) | 50 | 500 | 50 |
Relative permittivity (εr) | 9 | 10 | 10 |
Electron affinity, Χ (eV) | 4.5 | 4.04 | 4 |
Electron mobility, μn (cm2/Vs) | 0.2 | 4 | 0.006 |
Hole mobility, μp (cm2/Vs) | 0.2 | 0.1 | 0.006 |
Na (1/cm3) | 0 | 1 × 1013 | 5 × 1019 |
Nd (1/cm3) | 1 × 1018 | 0 | 0 |
Nt (1/cm3) | 1 × 1018 | 2 × 1016 | 1 × 1017 |
Eg (eV) | 3.6 | 1.2 | 3.2 |
Density of state of the conduction band, Nc (1/cm3) | 2.2 × 1018 | 2.2 × 1018 | 1.0 × 1021 |
Density of state of the valence band, Nv (l/cm3) | 1.8 × 1019 | 1.8 × 1019 | 2.0 × 1020 |
Deposition Time (s) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Rs (Ω) | Rsh (Ω) |
---|---|---|---|---|---|---|
40 | 0.284 | 20.05 | 47.43 | 2.704 | 79.56 | 2379.4 |
50 | 0.318 | 22.01 | 54.19 | 3.794 | 63.55 | 4465.1 |
60 | 0.352 | 26.79 | 53.76 | 5.067 | 54.72 | 4556.2 |
70 | 0.295 | 23.51 | 44.00 | 3.047 | 81.85 | 829.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, S. The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells. Energies 2024, 17, 1937. https://doi.org/10.3390/en17081937
Zhang J, Li S. The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells. Energies. 2024; 17(8):1937. https://doi.org/10.3390/en17081937
Chicago/Turabian StyleZhang, Jie, and Shanze Li. 2024. "The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells" Energies 17, no. 8: 1937. https://doi.org/10.3390/en17081937
APA StyleZhang, J., & Li, S. (2024). The Effect of Deposition Time Optimization on the Photovoltaic Performance of Sb2Se3 Thin-Film Solar Cells. Energies, 17(8), 1937. https://doi.org/10.3390/en17081937