Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro
Abstract
:1. Introduction
1.1. Literature Review of Recent Research
1.2. Montenegro Case Study
2. Materials and Methods
2.1. Relevant Databases of Conducted Research
2.1.1. Database of Average Annual Wind Speeds
- The mean absolute bias of wind speed was 14%;
- The mean bias of wind speed was −1% [53].
2.1.2. Bathymetry Database
- Bathymetric chart from the Hydrographic Institute of the Yugoslav Navy in 1985 (HIJRM 1985);
- GEBCO-grid 2023 database.
2.2. Assessment Methodology
- Surface area of the offshore block (A);
- Total number of control points within the surface area of the offshore block (B);
- Total number of control points with average annual wind speeds less than 7 m/s within the surface area of the offshore block (C);
- Total number of control points with average annual wind speeds greater than 7 m/s within the surface area of the offshore block (D).
- The total number of control points that have mean annual wind speeds ranging from 7.0 to 7.1 m/s;
- The total number of control points that have average annual wind speeds ranging from 7.1 to 7.2 m/s;
- The total number of control points that have average annual wind speeds ranging from 7.2 to 7.3 m/s;
- The total number of control points that have average annual wind speeds ranging from 7.3 to 7.4 m/s;
- The total number of control points that have average annual wind speeds ranging from 7.4 to 7.5 m/s.
- Frequency: Value in the matrix of the total number of control points that have average annual wind speeds greater than 7 m/s, at an altitude of 150 m;
- Intensity: Value in the matrix of the total number of corrected control points per km2 block at sea.
3. Results
3.1. Offshore Montenegro Wind Potential Analysis
3.2. Bathymetric Results
3.2.1. HI-JRM 1985
3.2.2. GEBCO-Grid 2023
3.2.3. Bathymetry Results
3.3. Potential of Offshore Wind Farms
4. Discussion
5. Conclusions
- The identified sea area extends across seven offshore blocks designated by the decisions of the Government of Montenegro for the purposes of hydrocarbon exploration and production. These blocks are as follows: 4118-10, 4118-15, 4119-1, 4119-2, 4119-6, 4119-7, and 4119-11;
- It is estimated that an offshore wind farm with a total capacity of 2299.794 MW can be built on the identified area, which is 2.18 times more than the total installed production capacity of Montenegro in the year 2022;
- On the identified area up to a sea depth of 50 m, where wind farms can be built using fixed structures, there is an available potential estimated at 126.759 MW for the construction of wind farms;
- At sea depths from 50 to 60 m, the identified areas where wind farms can be constructed using jacket-fixed structures are estimated to have the potential to build wind farms with a total capacity of 138.555 MW;
- At sea depths greater than 60 m, where wind farms can only be constructed using floating structures, an estimated 2034.48 MW of floating wind farms can be installed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ESMAP—Energy Sector Management Assistance Program. Key Factors for Successful Development of Offshore Wind in Emerging Markets; ESMAP: Washington, DC, USA, 2021. [Google Scholar]
- IRENA—International Renewable Energy Agency. World Energy Transition 1.5° Pathway; IRENA: Masdar City, United Arab Emirates, 2022. [Google Scholar]
- Jia, H.; Fan, S.; Xia, M. The impact of renewable energy consumption on economic growth: Evidence from countries along the belt and road. Sustainability 2022, 15, 8644. [Google Scholar] [CrossRef]
- Herrera Anchustegui, I.; Radovich, V.S. Wind energy on the high seas: Regulatory challenges for a science fiction future. Energies 2022, 15, 9157. [Google Scholar] [CrossRef]
- Caputo, A.C.; Federici, A.; Pelagagge, P.M.; Salini, P. Scenario analysis of offshore wind-power systems under uncertainty. Sustainability 2022, 15, 16912. [Google Scholar] [CrossRef]
- United Nations. United Nations Convention on the Law of the Sea; United Nations: New York, NY, USA, 1982. [Google Scholar]
- Krivokapić, B. Međunarodno Javno Pravo Treće Dopunjeno Izdanje; Poslovni i Pravni Fakultet: Belgrade, Serbia, 2017. [Google Scholar]
- Đurišić, Ž. Vjetroelektrane; Akademska Misao: Belgrade, Serbia, 2019. [Google Scholar]
- Putria, R.M.; Cheynet, E.; Obhraia, C.; Jakobsen, J.B. Turbulence in a coastal environment: The case of Vindeby. Wind Energy Sci. 2022, 7, 1693–1710. [Google Scholar] [CrossRef]
- Díaz, H.; Serna, J.; Nieto, J.; Guedes Soares, C. Market Needs, Opportunities and Barriers for the Floating. J. Mar. Sci. Eng. 2022, 10, 934. [Google Scholar] [CrossRef]
- U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Offshore Wind Market Report: 2023 Edition; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2023.
- Evan, G.; Rinker, J.; Sethuraman, L.; Zahle, F.; Anderson, B.; Barter, G.; Abbas, N.; Meng, F.; Bortolotti, P.; Skrzypinski, W.; et al. Definition of the IEA 15-Megawatt Offshore Reference Wind; National Renewable Energy Laboratory: Golden, CO, USA, 2020.
- Wind Europe. Wind Energy in Europe—2021 Statistics and the Outlook for 2022–2026. 2022. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2021-statistics-and-the-outlook-for-2022-2026/ (accessed on 11 February 2024).
- Zhou, Y.X.; Ke, Y.; Zhu, J.; Cui, W. Sustainable operation and maintenance of offshore wind farms based on the deep wind forecasting. Sustainability 2023, 16, 333. [Google Scholar] [CrossRef]
- Telesetsky, A. Multilateral debt relief for clean ocean energy. Sustainability 2023, 15, 14702. [Google Scholar] [CrossRef]
- Chen, C.; Su, N. Global trends and characteristics of offshore wind farm research over the past three decades: A bibliometric analysis. J. Mar. Sci. Eng. 2022, 10, 1339. [Google Scholar] [CrossRef]
- Mingxin, L.; Carroll, J.; Ahmad, A.S.; Hasan, N.S.; Zolkiffly, M.Z.; Falope, G.B.; Sabil, K.M. Potential of offshore wind energy in Malaysia: An investigation into wind and bathymetry conditions and site selection. Energies 2023, 17, 65. [Google Scholar] [CrossRef]
- Perera, S.M.; Putrus, G.; Conlon, M.; Narayana, M.; Sunderland, K. Wind energy harvesting and conversion systems: A technical review. Energies 2022, 15, 9299. [Google Scholar] [CrossRef]
- Borunda, M.; Ramírez, A.; Garduno, R.; Mijarez, R. Enhancing long-term wind power forecasting by using an intelligent statistical treatment for wind resource data. Energies 2022, 16, 7915. [Google Scholar] [CrossRef]
- ESMAP—Energy Sector Management Assistance Program. Going Global Expanding Offshore Wind to Emerging Markets; ESMAP: Washington, DC, USA, 2019. [Google Scholar]
- Castro, A.O.; Muñoz Maldonado, Y.; Cordero, A.M. Feasibility analysis of offshore wind power projects in the Caribbean region of Colombia: A case study using FAHP–GIS. Sustainability 2022, 15, 16620. [Google Scholar] [CrossRef]
- Wind Europe. Floating Offshore Wind Vision Statement. Wind Europe, 2017. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/Floating-offshore-statement.pdf (accessed on 11 February 2024).
- Intecsea; NOIA; NEIA. Evaluating the Technical Feasibility of Wind Energy to Electrify Oil and Gas Production Facilities Offshore Newfoundland and Labrador, Canada. 2020. Available online: https://netzeroproject.ca/report-released-evaluating-the-technical-feasibility-of-wind-energy-to-electrify-oil-and-gas-production-facilities-offshore-newfoundland-and-labrador-canada/ (accessed on 11 February 2024).
- U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. Offshore Wind Market Report: 2022 Edition; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy: Washington, DC, USA, 2022.
- Horwath, S.; Hassrick, J.; Grismala, R.; Diller, E. Comparison of Environmental Effects from Different Offshore Wind Turbine Foundations; U.S. Department of the Interior Bureau of Ocean Energy Management, Office of Renewable Energy Programs: Washington, DC, USA, 2020.
- Chen, J.; Moo-Hyun, K. Review of recent offshore wind turbine research and optimization methodologies in their design. J. Mar. Sci. Eng. 2022, 10, 28. [Google Scholar] [CrossRef]
- Mathern, A.; Marx, S. Concrete Support Structures for Offshore Wind Turbines: Current Status, Challenges, and Future Trends. Energies 2020, 14, 1995. [Google Scholar] [CrossRef]
- Otter, A.; Murphy, J.; Pakrashi, V.; Robertson, A.; Desmond, C. A review of modelling techniques for floating offshore wind. Wind Energy 2021, 25, 831–857. [Google Scholar] [CrossRef]
- Ibrion, M.; Nejad, A.R. On a road map for technology qualification, innovation and cost reduction in floating offshore wind: Learning from Hywind and Norwegian approach. J. Phys. Conf. Ser. 2023, 2507, 012008. [Google Scholar] [CrossRef]
- Equinor. The World’s Largest Floating Offshore Wind Farm Officially Opened. 2023. Available online: https://www.equinor.com/news/20230823-hywind-tampen-officially-opened (accessed on 23 December 2023).
- Harger, A.; Carmo, L.H.; Gay Neto, A.; Simos, A.N.; Franzini, G.R.; Vieira, G.H. Modal analysis of 15 MW semi-submersible floating wind turbine: Investigation on the main influences in natural vibration. Wind 2023, 3, 548–566. [Google Scholar] [CrossRef]
- Rehman, S.; Irshad, K.; Ibrahim, N.I.; AlShaikhi, A.; Mohandes, M.A. Offshore wind power resource assessment in the Gulf of North Suez. Sustainability 2022, 15, 15257. [Google Scholar] [CrossRef]
- Onea, F.; Rusu, E.; Rusu, L. Assessment of the offshore wind energy potential in the Romanian exclusive economic zone. J. Mar. Sci. Eng. 2021, 9, 531. [Google Scholar] [CrossRef]
- Yildirir, V.; Rusu, E.; Onea, F. Wind energy assessments in the northern Romanian coastal environment based on 20 years of data coming from different sources. Sustainability 2022, 14, 4249. [Google Scholar] [CrossRef]
- Al-Hinai, A.; Charabi, Y.; Aghay Kaboli, S.H. Wind energy resource assessment across the territory of Oman: A spatial-temporal data analysis. Sustainability 2020, 13, 2862. [Google Scholar] [CrossRef]
- Das, P.; Amin, S.M.; Lipu, M.S.; Urooj, S.; Ashique, R.H.; Al Mansur, A.; Islam, M.T. Assessment of barriers to wind energy development using analytic hierarchy process. Sustainability 2023, 15, 15774. [Google Scholar] [CrossRef]
- Moltames, R.; Naghavi, M.S.; Silakhori, M.; Noorollahi, Y.; Yousefi, H.; Azizimehr, B. Multi-criteria decision methods for selecting a wind farm site using a geographic information system (GIS). Sustainability 2021, 14, 14742. [Google Scholar] [CrossRef]
- Xenitidis, K.; Ioannou, K.; Tsantopoulos, G.; Myronidis, D. On the usage of artificial neural networks for the determination of optimal wind farms allocation. Sustainability 2022, 15, 16938. [Google Scholar] [CrossRef]
- Nikolić, G.; Vujović, F.; Golijanin, J.; Šiljeg, A.; Valjarević, A. Modelling of wildfire susceptibility in different climate zones in Montenegro Using GIS-MCDA. Atmosphere 2023, 14, 929. [Google Scholar] [CrossRef]
- Punda, V.B.; Filipović, V. Protokol o privremenom režimu uz južnu granicu između dviju država (2002) s posebnim osvrtom na odluke Vlada Republike Hrvatske i Crne Gore o istraživanju i eksploataciji ugljikovodika u Jadranu. PPP 2015, 169, 73–88. [Google Scholar]
- CAU; ITI; ELARD. Izvještaj o Strateškoj Procjeni na Životnu Sredinu (SPU) za Istraživanje i Proizvodnju Ugljovodonika u Podmorju Crne Gore; Ministarstvo Ekonomije (Crna Gora): Podgorica, Montenegro, 2016. [Google Scholar]
- REGAGEN—Regulatorna Agencija za Energetiku i Komunalne Djelatnosti. Izvještaj o Stanju Energetskog Sektora Crne Gore za 2022. Godinu; REGAGEAN: Podgorica, Montenegro, 2023. [Google Scholar]
- Energy Community. Energy Community CBAM-Readiness Tracker; Energy Community Secretariat: Vienna, Austria, 2023. [Google Scholar]
- Ministarstvo Kapitalnih Investicija. Izvještaj o Realizaciji Energetskoga Bilansa za 2022. Godinu; Ministarstvo Kapitalnih Investicija: Podgorica, Montenegro, 2023. [Google Scholar]
- Zakon o Moru. („Sl. List Crne Gore“, br. 17/07 od 31.12.2007, 06/08 od 25.01.2008, 40/11 od 08.08.2011). 2007. Available online: https://epa.org.me/wp-content/uploads/2017/12/zakon-o-moru.pdf (accessed on 11 February 2024).
- Zakon o Energetici. („Sl. List Crne Gore“, br. 5/2016, 51/2017 i 82/2020). 2020. Available online: https://wapi.gov.me/download/e731d4ca-a833-4230-8a68-527ee3e72d9e?version=1.0 (accessed on 11 February 2024).
- Odluka o Određivanju Blokova za Istraživanje i Proizvodnju Ugljovodonika (“Sl. List Crne Gore“, br. 41/10). 2011. Available online: https://www.gov.me/dokumenta/8433c891-0b99-4264-b674-975bc353f38b (accessed on 11 February 2024).
- Odluka o Izmjeni Odluke o Određivanju Blokova za Istraživanje i Proizvodnju Ugljovodonika (“Sl. List Crne Gore“, br. 41/10 i 62/13). 2014. Available online: https://www.gov.me/dokumenta/4dbd844b-4c77-4915-aaf0-df036a009a32 (accessed on 11 February 2024).
- Manfra, L.; Virno Lamberti, C.; Ceracchi, S.; Giorgi, G.; Berto, D.; Lipizer, M.; Giani, M.; Bajt, O.; Fafanđel, M.; Cara, M.; et al. Challenges in harmonized environmental impact assessment (EIA), monitoring and decommissioning procedures of offshore platforms in Adriatic-Ionian (ADRION) region. Water 2020, 12, 2460. [Google Scholar] [CrossRef]
- Nikčević, J.; Škurić, M. A Contribution to the sustainable development of maritime transport in the context of blue economy: The case of Montenegro. Sustainability 2020, 13, 3079. [Google Scholar] [CrossRef]
- Larsén, X.G.; Davis, N.; Hannesdoottir, A.; Kelly, M.; Svenningsen, L.; Slot, R.; Imberger, M.; Olsen, B.T.; Floors, R. The Global Atlas for Siting Parameters project: Extreme wind, turbulence, and turbine classes. Wind Energy 2022, 25, 1841–1859. [Google Scholar] [CrossRef]
- Global Wind Atlas 3.1. Method. 2023. Available online: https://globalwindatlas.info/en/about/method (accessed on 15 January 2024).
- Davis, N.; Badger, J.; Hahmann, A.; Hansen, B.; Mortensen, N.; Kelly, M.; Larsén, X.; Olsen, B.; Floors, R.; Lizcano, G.; et al. The global wind atlas, a high-resolution dataset of climatology’s and associated web-based application. Bull. Am. Meteorol. Soc. 2023, 104, E1507–E1525. [Google Scholar] [CrossRef]
- GEBCO (General Bathymetric Chart of the Oceans). Overview. 2023. Available online: https://www.gebco.net/about_us/overview/ (accessed on 28 December 2023).
- GEBCO (General Bathymetric Chart of the Oceans). Gridded Bathymetry Data. 2023. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/#area (accessed on 18 December 2023).
- Ivošević, Š. An approach to the corrosion analysis of bulk carrier hull structure. Sci. J. Pol. Nav. Acad. 2015, 56, 23–32. [Google Scholar] [CrossRef]
Mean Annual Wind Speed at the Control Point [m/s] | <7 | 7.0–7.1 | 7.1–7.2 | 7.2–7.3 | 7.3–7.4 | 7.4–7.5 |
---|---|---|---|---|---|---|
Correction factor | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
Assessment Matrix | Frequency | |||||
---|---|---|---|---|---|---|
Intensity | Total number of control points with average annual wind speeds greater than 7 m/s | 0 | 0–300 | 300–600 | >600 | |
Total number of corrected control points per km2 block | Absolute parameter | 0 | 1 | 2 | 3 | |
0 | 0 | 0 | 0 | 0 | 0 | |
0–1 | 1 | 0 | 1 | 2 | 3 | |
1–2 | 2 | 0 | 2 | 4 | 6 | |
>2 | 3 | 0 | 3 | 6 | 9 | |
Block assessment criteria: | Value: | |||||
The block does not have the resource potential needed to build an offshore wind farm | 0 | |||||
The block has the resource potential needed to build an offshore wind farm | 1–2 | |||||
The block has a high resource potential required for the construction of an offshore wind farm | 3–4 | |||||
The block has extremely high resource potential required for the construction of an offshore wind farm | 6–9 |
Point | Longitude 1 | Latitude 1 | Point | Longitude 1 | Latitude 1 |
---|---|---|---|---|---|
1 | 19.30366 | 41.758 | 30 | 18.90953 | 41.72521 |
2 | 19.29543 | 41.74263 | 31 | 18.9315 | 41.73853 |
3 | 19.26933 | 41.73545 | 32 | 18.93494 | 41.75185 |
4 | 19.26178 | 41.72213 | 33 | 18.94318 | 41.75339 |
5 | 19.24118 | 41.71291 | 34 | 18.94592 | 41.76465 |
6 | 19.21303 | 41.70573 | 35 | 18.95897 | 41.76722 |
7 | 19.21234 | 41.6965 | 36 | 18.96069 | 41.7772 |
8 | 19.18693 | 41.68419 | 37 | 18.96652 | 41.78079 |
9 | 19.1375 | 41.67496 | 38 | 18.97476 | 41.7836 |
10 | 19.11346 | 41.66317 | 39 | 18.97751 | 41.79231 |
11 | 19.10179 | 41.6683 | 40 | 18.99536 | 41.79896 |
12 | 19.09355 | 41.65701 | 41 | 19.00703 | 41.80868 |
13 | 19.06498 | 41.65402 | 42 | 19.01665 | 41.81687 |
14 | 19.03327 | 41.63138 | 43 | 19.04068 | 41.81943 |
15 | 19.02937 | 41.63049 | 44 | 19.05716 | 41.82915 |
16 | 19.02759 | 41.63014 | 45 | 19.07089 | 41.87519 |
17 | 19.02564 | 41.62961 | 46 | 19.08463 | 41.87774 |
18 | 18.99071 | 41.62172 | 47 | 19.086 | 41.88694 |
19 | 18.96199 | 41.61525 | 48 | 19.11209 | 41.90483 |
20 | 18.92068 | 41.60576 | 49 | 19.11484 | 41.91199 |
21 | 18.89293 | 41.59938 | 50 | 19.13612 | 41.92169 |
22 | 18.87254 | 41.59468 | 51 | 19.20616 | 41.90279 |
23 | 18.83881 | 41.5985 | 52 | 19.23363 | 41.89103 |
24 | 18.82095 | 41.6139 | 53 | 19.24324 | 41.87672 |
25 | 18.82164 | 41.637 | 54 | 19.3016 | 41.83785 |
26 | 18.84705 | 41.66778 | 55 | 19.36589 | 41.83573 |
27 | 18.87589 | 41.68676 | 56 | 19.34524 | 41.80213 |
28 | 18.89099 | 41.70624 | 57 | 19.31323 | 41.76232 |
29 | 18.90335 | 41.70778 | 58 | 19.30366 | 41.758 |
Average Wind Speed (Zone) [m/s] | Total Area [km2] | Average Wind Speed (Zone) [m/s] | Total Area [km2] |
---|---|---|---|
7.0–7.1 | 295.071 | 7.3–7.4 | 104.358 |
7.1–7.2 | 174.224 | 7.4–7.5 | 71.095 |
7.2–7.3 | 121.850 | 7.0–7.5 | 766.598 |
Macro Block | Block | A 1 | B 2 | C 3 | D 4 | Macro Block | Block | A 1 | B 2 | C 3 | D 4 |
---|---|---|---|---|---|---|---|---|---|---|---|
4117 | 4 | 74.53 | 233 | 233 | 0 | 4119 | 1 | 281.15 | 863 | 578 | 285 |
5 | 268.98 | 827 | 827 | 0 | 2 | 92.82 | 293 | 160 | 133 | ||
9 | 100.93 | 295 | 295 | 0 | 6 | 308.28 | 909 | 39 | 870 | ||
10 | 270.14 | 808 | 808 | 0 | 7 | 149.55 | 444 | 71 | 373 | ||
15 | 17.34 | 59 | 59 | 0 | 11 | 35.51 | 119 | 47 | 72 | ||
4118 | 1 | 306.43 | 924 | 924 | 0 | 4217 | 30 | 22.56 | 75 | 75 | 0 |
2 | 309.83 | 924 | 924 | 0 | 4218 | 14 | 3.52 | 15 | 15 | 0 | |
3 | 306.24 | 924 | 924 | 0 | 18 | 73.77 | 214 | 214 | 0 | ||
4 | 309.53 | 952 | 952 | 0 | 19 | 91.79 | 270 | 270 | 0 | ||
5 | 303.486 | 896 | 896 | 0 | 21 | 1.42 | 4 | 4 | 0 | ||
6 | 303.79 | 891 | 891 | 0 | 22 | 112.4 | 334 | 334 | 0 | ||
7 | 307.46 | 891 | 891 | 0 | 23 | 247.57 | 743 | 743 | 0 | ||
8 | 303.81 | 891 | 891 | 0 | 24 | 273.76 | 839 | 839 | 0 | ||
9 | 306.99 | 918 | 918 | 0 | 25 | 131.12 | 387 | 387 | 0 | ||
10 | 300.43 | 864 | 585 | 279 | 26 | 213.21 | 656 | 656 | 0 | ||
11 | 175.27 | 542 | 542 | 0 | 27 | 305.29 | 924 | 924 | 0 | ||
12 | 303.09 | 915 | 915 | 0 | 28 | 302.06 | 924 | 924 | 0 | ||
13 | 281.06 | 855 | 855 | 0 | 29 | 305.14 | 952 | 952 | 0 | ||
14 | 202.25 | 629 | 629 | 0 | 30 | 299.07 | 895 | 895 | 0 | ||
15 | 116.67 | 353 | 65 | 288 | 4219 | 26 | 137.95 | 433 | 433 | 0 | |
17 | 25.17 | 66 | 66 | 0 | |||||||
18 | 3.32 | 8 | 8 | 0 |
Macro Block | Block | Total Number of Control Points with Average Annual Wind Speeds [m/s]: | |||||
---|---|---|---|---|---|---|---|
7.0–7.1 | 7.1–7.2 | 7.2–7.3 | 7.3–7.4 | 7.4–7.5 | 7.0–7.5 | ||
4118 | 10 | 245 | 34 | 0 | 0 | 0 | 279 |
4118 | 15 | 288 | 0 | 0 | 0 | 0 | 288 |
4119 | 1 | 58 | 79 | 89 | 58 | 1 | 285 |
4119 | 2 | 40 | 35 | 28 | 27 | 3 | 133 |
4119 | 6 | 137 | 309 | 162 | 114 | 148 | 870 |
4119 | 7 | 43 | 64 | 92 | 104 | 70 | 373 |
4119 | 11 | 70 | 2 | 0 | 0 | 0 | 72 |
Macro Block | Block | Total Number of Corrected Control Points | Macro Block | Block | Total Number of Corrected Control Points | |||
---|---|---|---|---|---|---|---|---|
4117 | 4 | 0 | 4119 | 1 | 328.5 | |||
5 | 0 | 2 | 151.4 | |||||
9 | 0 | 6 | 1026.7 | |||||
10 | 0 | 7 | 457 | |||||
15 | 0 | 11 | 72.2 | |||||
4118 | 1 | 0 | 4217 | 30 | 0 | |||
2 | 0 | 4218 | 14 | 0 | ||||
3 | 0 | 18 | 0 | |||||
4 | 0 | 19 | 0 | |||||
5 | 0 | 21 | 0 | |||||
6 | 0 | 22 | 0 | |||||
7 | 0 | 23 | 0 | |||||
8 | 0 | 24 | 0 | |||||
9 | 0 | 25 | 0 | |||||
10 | 282.4 | 26 | 0 | |||||
11 | 0 | 27 | 0 | |||||
12 | 0 | 28 | 0 | |||||
13 | 0 | 29 | 0 | |||||
14 | 0 | 30 | 0 | |||||
15 | 288 | 4219 | 26 | 0 | ||||
17 | 0 | |||||||
18 | 0 |
Macro Block | Block | Block Assessment | Macro Block | Block | Block Assessment |
---|---|---|---|---|---|
4117 | 4 | 0 | 4119 | 1 | 2 |
5 | 0 | 2 | 2 | ||
9 | 0 | 6 | 9 | ||
10 | 0 | 7 | 6 | ||
15 | 0 | 11 | 3 | ||
4118 | 1 | 0 | 4217 | 30 | 0 |
2 | 0 | 4218 | 14 | 0 | |
3 | 0 | 18 | 0 | ||
4 | 0 | 19 | 0 | ||
5 | 0 | 21 | 0 | ||
6 | 0 | 22 | 0 | ||
7 | 0 | 23 | 0 | ||
8 | 0 | 24 | 0 | ||
9 | 0 | 25 | 0 | ||
10 | 1 | 26 | 0 | ||
11 | 0 | 27 | 0 | ||
12 | 0 | 28 | 0 | ||
13 | 0 | 29 | 0 | ||
14 | 0 | 30 | 0 | ||
15 | 3 | 4219 | 26 | 0 | |
17 | 0 | ||||
18 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanović, M.; Ivošević, Š. Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro. Energies 2024, 17, 1852. https://doi.org/10.3390/en17081852
Bogdanović M, Ivošević Š. Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro. Energies. 2024; 17(8):1852. https://doi.org/10.3390/en17081852
Chicago/Turabian StyleBogdanović, Miloš, and Špiro Ivošević. 2024. "Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro" Energies 17, no. 8: 1852. https://doi.org/10.3390/en17081852
APA StyleBogdanović, M., & Ivošević, Š. (2024). Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro. Energies, 17(8), 1852. https://doi.org/10.3390/en17081852