Dynamic Comprehensive Evaluation of a 660 MW Ultra-Supercritical Coal-Fired Unit Based on Improved Criteria Importance through Inter-Criteria Correlation and Entropy Weight Method
Abstract
:1. Introduction
2. The Construction of Index System
2.1. Principle of Index System Construction
2.2. Index System of Coal-Fired Units
3. Methods
3.1. Improve CRITIC Method
3.2. Entropy Weight Method
3.3. Combinatorial Weighting
3.4. Aggregation Operator
3.4.1. TOWA Operator
3.4.2. TOWGA Operator
3.4.3. TOWA-TOWGA Hybrid Model
3.5. Determination of Time Weight
4. Results and Discussion
4.1. Unit Introduction
4.2. Determination of Combinatorial Weights
4.3. Determination of Comprehensive Evaluation Results
5. Conclusions
- This paper proposes a dynamic comprehensive evaluation model based on ICRITIC-EWM. The model aims to make the static weights of each evaluation index more objective, enabling efficient and accurate determination of the static weight parameters of coal-fired units.
- Based on the actual running data of the power plant and the power plant performance assessment model in this paper, we analyze the five comprehensive performances of the object power plant. Figure 4 and Table 4 show the different factors that affect the performance level of a power plant. These include the air leakage rate of the air preheater, condenser temperature, desulfurization power consumption rate, circulating pump power consumption rate, SO2 concentration, dust emission concentration, ammonia escape rate, and AGC response time. It is important for the operator of the power plant to consider these factors when aiming to improve the plant’s performance.
- This paper proposes a dynamic comprehensive evaluation model based on the improved CTITIC-EWM to address the issue of comprehensive performance evaluation of ultra-supercritical coal-fired units under variable load. The revised method adjusts the weight of evaluation indicators, resulting in a 6.2% increase in the index with less weight and a 0.22% decrease in the index with more weight. This model demonstrates improved accuracy, reliability, and applicability, providing a more effective method for researching and practically applying multi-index evaluation problems.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, S.; Zhuo, J.; Meng, S. Clean coal technologies in China: Current status and future perspectives. Engineering 2016, 2, 447–459. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Lyu, J. Eliminating Outdated Capacity to Promote Energy Conservation in China’s Coal-Fired Power Industry. Engineering 2019, 5, 194–196. [Google Scholar] [CrossRef]
- Tontu, M.; Sahin, B.; Bilgili, M. Analysis and performance assessment of coal-fired based integrated energy system for multigeneration. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 6131–6149. [Google Scholar] [CrossRef]
- Farfan, J.; Breyer, C. Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. J. Clean. Prod. 2017, 141, 370–384. [Google Scholar] [CrossRef]
- Zhang, X.; He, N. Study on Classification and Applicability of Comprehensive Evaluation Methods. Stat. Decis. 2022, 8, 31–36. [Google Scholar]
- Ma, T.; Li, M.J.; Xue, X.D. Study of Peak-load regulation characteristics of a 1000MWe S-CO2 Coal-fired power plant and a comprehensive evaluation method for dynamic performance. Appl. Therm. Eng. Des. Process. Equip. Econ. 2023, 221, 119892. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P. An integrated analysis of air pollution from US coal-fired power plants. Geosci. Front. 2023, 14, 101498. [Google Scholar] [CrossRef]
- Tabassum, A.; Basak, R.; Shao, W. Exploring the relationship between land use land cover and land surface temperature: A case study in Bangladesh and the policy implications for the Global South. J. Geovisualizat. Spat. Anal. 2023, 7, 25. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P. NO2 emissions from oil refineries in the Mississippi Delta. Geosci. Front. 2023, 898, 165569. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yan, X.Y.; Qi, H.R.; Kang, Y.L. An evaluation method of a roof photovoltaic access distribution network based on the weight of FAHP-improvement CRITIC combination. Power Syst. Prot. Control 2023, 51, 97–108. [Google Scholar]
- Wang, Z.J.; Chen, W.; Zhu, X.X. Comprehensive Evaluation Method for Thermal Power Unit Flexibility Based on Data-driven and its Application. Mod. Electr. Power 2023. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, H.; Miao, Z. Life-Cycle Carbon Emissions (LCCE) of Buildings: Implications, Calculations, and Reductionss. Engineering 2024. [CrossRef]
- Wang, S. Near-zero air pollutant emission technologies and applications for clean coal-fired power. Engineering 2020, 6, 1408–1422. [Google Scholar] [CrossRef]
- Abulude, F.O.; Abulude, I.A.; Oluwagbayide, S.D. Air Quality Index: A case of 1-day monitoring in 253 Nigerian urban and suburban towns. J. Geovisualizat. Spat. Anal. 2022, 6, 5. [Google Scholar] [CrossRef]
- Ma, L.; Wang, R.; Fan, J. Index and evaluation method of source-network-load interaction for low-carbon development of coal-fired power plants. In Proceedings of the 2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT), Shanghai, China, 16–18 December 2022; pp. 1049–1053. [Google Scholar]
- Wu, D.; Yang, Z.; Wang, N. An integrated multi-criteria decision making model and AHP weighting uncertainty analysis for sustainability assessment of coal-fired power units. Sustainability 2018, 10, 1700. [Google Scholar] [CrossRef]
- Wu, D.; Wang, N. Comprehensive evaluation of coal-fired power units using grey relational analysis and a hybrid entropy-based weighting method. Entropy 2018, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.M. Dynamic Comprehensive Evaluation Method and Its Applicatio; Science Press: Beijing, China, 2018. [Google Scholar]
- Zhou, Y.F.; Hu, W.; Min, Y. Dynamic Comprehensive Evaluation Method of Power Industry Development Level Based on Provincial Data. Autom. Electr. Power Syst. 2016, 40, 76–83. [Google Scholar]
- Guo, Y.J.; Yao, Y.; Yi, P.T. A Method and Application of Dynamic Comprehensive Evaluation. Syst. Eng.-Theory Pract. 2007, 10, 154–158. [Google Scholar] [CrossRef]
- Li, M.J.; Yuan, N.; Xu, L.M. Dynamic Evaluation Method Based on Vertical Projection Methos. Chin. J. Manag. Sci. 2020, 28, 208–219. [Google Scholar]
- Wang, D.; Fang, X.Y.; Chen, X.G. Dynamic comprehensive evaluation of power grid emergency capability based on fuzzy-two-stage super efficiency SBM. Control Deci. 2021, 36, 1333–1341. [Google Scholar]
- Zhang, Q.; Fang, Z.G. Research on the dynamic comprehensive evaluation model of multi-Source uncertain indexes based on the generalized grey incentive factors. Syst. Eng. Electron. 2019, 41, 586–593. [Google Scholar]
- Yang, S. Research on Technical and Economic Evaluation of Thermal Power Flexibility Modification Project; North China Electric Power University: Beijing, China, 2022. [Google Scholar]
- Wu, D.F. General Energy Consumption Evaluation Methods of Large Coal-Fired Power Generation Units; North China Electric Power University: Beijing, China, 2020. [Google Scholar]
- Chen, H.H.; Sun, W.F.; Zou, X.X. Evaluation method of power source reaching service term based on Fuzzy Analytical Hierar-chy Process and the Entropy Weight Method. J. Power Suppl. 2022. Available online: http://kns.cnki.net/kcms/detail/12.1420.tm.20220811.1545.002.html (accessed on 4 February 2024).
- Feldman, Y.; Gulberg, Y. An extension of the immersed boundary method based on the distributed Lagrange multiplier approach. J. Comput. Phys. 2016, 322, 248–266. [Google Scholar] [CrossRef]
- Mokhtar, M.A.; Darpe, A.K.; Gupta, K. Investigations on bending-torsional vibrations of rotor during rotor-stator rub using Lagrange multiplier method. J. Sound Vib. 2017, 401, 94–113. [Google Scholar] [CrossRef]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision makin. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Yager, R.R.; Filev, D.P. Induced Ordered Weighted Averaging Operators. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1999, 29, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.J.; Wan, Z.; Chen, J.H. Dynamic comprehensive evaluation on governance effect of regional maritime accidents. J. Saf. Environ. 2023. [CrossRef]
Significance | |
---|---|
0.1 | Great emphasis on recent data |
0.3 | Pay more attention to recent data |
0.5 | Also focus on period data |
0.7 | Pay more attention to the forward data |
0.9 | Great emphasis on forward data |
0.2, 0.4, 0.6, 0.8 | The intermediate case corresponding to the above two adjacent judgments |
Name | Unit | BMCR |
---|---|---|
Initial steam flow rate | t/h | 2030 |
Main steam pressure | MPa.g | 28.25 |
Main steam temperature | ℃ | 605 |
Feed water temperature | ℃ | 303.0 |
Reheat steam flow | t/h | 1637.22 |
Reheat steam pressure | MPa.g | 27.00 |
Reheat steam temperature | ℃ | 600 |
Exhaust gas temperature | ℃ | 130 |
Boiler efficiency | % | 94.05 |
Index | 100%THA (±2%) | 50%THA (±2%) | Variable Load (25–98%) | ||||||
---|---|---|---|---|---|---|---|---|---|
0.0080 | 0.0122 | 0.0111 | 0.0226 | 0.0254 | 0.0161 | 0.0205 | 0.0144 | 0.0099 | |
0.6344 | 0.6577 | 0.6244 | 0.6474 | 0.6134 | 0.5613 | 0.7631 | 0.7522 | 0.7143 | |
0.1462 | 0.1058 | 0.1195 | 0.1131 | 0.1376 | 0.1803 | 0.0908 | 0.0915 | 0.0943 | |
0.2113 | 0.2243 | 0.2449 | 0.2169 | 0.2236 | 0.2423 | 0.1256 | 0.1420 | 0.1816 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.2178 | 0.1807 | 0.0830 | 0.3461 | 0.3281 | 0.2949 | 0.6262 | 0.5593 | 0.6110 | |
0.1716 | 0.1429 | 0.0471 | 0.2073 | 0.1359 | 0.1073 | 0.0524 | 0.0474 | 0.0302 | |
0.1518 | 0.1213 | 0.0710 | 0.1932 | 0.1636 | 0.1493 | 0.0882 | 0.0859 | 0.0708 | |
0.0350 | 0.0256 | 0.0168 | 0.0417 | 0.0249 | 0.0240 | 0.0781 | 0.0662 | 0.0632 | |
0.4237 | 0.5295 | 0.7821 | 0.2117 | 0.3475 | 0.4244 | 0.1552 | 0.2412 | 0.2248 | |
0.0976 | 0.0713 | 0.0870 | 0.0472 | 0.0231 | 0.0264 | 0.1275 | 0.1198 | 0.1096 | |
0.0292 | 0.0240 | 0.2759 | 0.0282 | 0.6038 | 0.5370 | 0.2553 | 0.3535 | 0.4052 | |
0.1199 | 0.0725 | 0.0982 | 0.2486 | 0.0969 | 0.0953 | 0.1034 | 0.0862 | 0.0782 | |
0.2855 | 0.2772 | 0.2270 | 0.3037 | 0.1224 | 0.1547 | 0.2230 | 0.1937 | 0.1885 | |
0.4677 | 0.5551 | 0.3119 | 0.3723 | 0.1537 | 0.1866 | 0.2908 | 0.2468 | 0.2185 | |
0.1166 | 0.1037 | 0.1366 | 0.2312 | 0.1556 | 0.1950 | 0.1580 | 0.1775 | 0.1903 | |
0.4714 | 0.4768 | 0.3200 | 0.2962 | 0.3261 | 0.2028 | 0.4656 | 0.3767 | 0.2849 | |
0.1274 | 0.2200 | 0.2714 | 0.0740 | 0.1633 | 0.1767 | 0.0983 | 0.1230 | 0.1615 | |
0.2846 | 0.1995 | 0.2720 | 0.3986 | 0.3550 | 0.4255 | 0.2780 | 0.3228 | 0.3634 | |
0.0715 | 0.2632 | 0.1142 | 0.2029 | 0.2231 | 0.1665 | 0.1055 | 0.1226 | 0.1252 | |
0.8677 | 0.6324 | 0.7506 | 0.5780 | 0.6750 | 0.6754 | 0.7611 | 0.7779 | 0.7718 | |
0.0280 | 0.0375 | 0.0718 | 0.0921 | 0.0392 | 0.0613 | 0.0452 | 0.0359 | 0.0384 | |
0.0328 | 0.0669 | 0.0635 | 0.1270 | 0.0628 | 0.0968 | 0.0882 | 0.0635 | 0.0646 |
Index | 90%THA (±2%) | 50%THA (±2%) | Variable Load (25–98%) | ||||||
---|---|---|---|---|---|---|---|---|---|
0.0094 | 0.0063 | 0.0094 | 0.0124 | 0.0130 | 0.0142 | 0.0126 | 0.0071 | 0.0073 | |
0.5838 | 0.6621 | 0.5509 | 0.4771 | 0.5025 | 0.5046 | 0.8002 | 0.7027 | 0.6911 | |
0.1255 | 0.1180 | 0.1371 | 0.1695 | 0.1651 | 0.1645 | 0.0701 | 0.0813 | 0.0848 | |
0.2813 | 0.2135 | 0.3026 | 0.3410 | 0.3194 | 0.3167 | 0.1170 | 0.2089 | 0.2169 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.1477 | 0.1583 | 0.1712 | 0.2646 | 0.1734 | 0.2239 | 0.5009 | 0.4394 | 0.4787 | |
0.0388 | 0.1104 | 0.0909 | 0.0519 | 0.0640 | 0.0488 | 0.0365 | 0.0485 | 0.0332 | |
0.1113 | 0.1569 | 0.1253 | 0.1448 | 0.1203 | 0.1415 | 0.0920 | 0.0957 | 0.0921 | |
0.0183 | 0.0174 | 0.0229 | 0.0216 | 0.0285 | 0.0276 | 0.0717 | 0.0432 | 0.0495 | |
0.6839 | 0.5571 | 0.5897 | 0.5171 | 0.6138 | 0.5582 | 0.2988 | 0.3732 | 0.3464 | |
0.0920 | 0.1074 | 0.0135 | 0.0501 | 0.0741 | 0.0054 | 0.1269 | 0.0853 | 0.0138 | |
0.2497 | 0.1461 | 0.3647 | 0.4825 | 0.2762 | 0.4340 | 0.2992 | 0.3067 | 0.4155 | |
0.1117 | 0.1728 | 0.3859 | 0.1700 | 0.2238 | 0.4969 | 0.0704 | 0.1087 | 0.4496 | |
0.2487 | 0.3178 | 0.1110 | 0.0833 | 0.1474 | 0.0298 | 0.1841 | 0.2189 | 0.0549 | |
0.2979 | 0.2558 | 0.1249 | 0.2142 | 0.2785 | 0.0340 | 0.3194 | 0.2803 | 0.0662 | |
0.1127 | 0.0819 | 0.0767 | 0.1517 | 0.1315 | 0.1628 | 0.1354 | 0.1211 | 0.2295 | |
0.3424 | 0.3073 | 0.3340 | 0.2378 | 0.1697 | 0.2359 | 0.3122 | 0.2631 | 0.2521 | |
0.3108 | 0.4462 | 0.3592 | 0.2205 | 0.3837 | 0.2845 | 0.2837 | 0.3846 | 0.2985 | |
0.2342 | 0.1647 | 0.2300 | 0.3900 | 0.3151 | 0.3168 | 0.2687 | 0.2312 | 0.2199 | |
0.1622 | 0.2897 | 0.1186 | 0.2748 | 0.1181 | 0.0921 | 0.1380 | 0.0795 | 0.0795 | |
0.7328 | 0.5992 | 0.6849 | 0.6139 | 0.7710 | 0.7752 | 0.7646 | 0.7977 | 0.8362 | |
0.0522 | 0.0420 | 0.0965 | 0.0445 | 0.0331 | 0.0411 | 0.0295 | 0.0294 | 0.0211 | |
0.0528 | 0.0691 | 0.1001 | 0.0669 | 0.0777 | 0.0915 | 0.0680 | 0.0935 | 0.0632 |
Index | Winter | Summer | ||||
---|---|---|---|---|---|---|
100%THA (±2%) | 50%THA (±2%) | Variable Load (25–98%) | 90%THA (±2%) | 50%THA (±2%) | Variable Load (25–98%) | |
0.0110 | 0.0198 | 0.0126 | 0.0083 | 0.0136 | 0.0079 | |
0.6367 | 0.5897 | 0.7333 | 0.5913 | 0.5002 | 0.7091 | |
0.1182 | 0.1560 | 0.0929 | 0.1290 | 0.1654 | 0.0816 | |
0.2334 | 0.2326 | 0.1601 | 0.2684 | 0.3208 | 0.1991 | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.1279 | 0.3125 | 0.5955 | 0.1637 | 0.2114 | 0.4683 | |
0.0883 | 0.1285 | 0.0383 | 0.0885 | 0.0541 | 0.0384 | |
0.0962 | 0.1596 | 0.0780 | 0.1335 | 0.1347 | 0.0933 | |
0.0217 | 0.0264 | 0.0661 | 0.0204 | 0.0270 | 0.0500 | |
0.6415 | 0.3661 | 0.2200 | 0.5908 | 0.5708 | 0.3486 | |
0.0829 | 0.0277 | 0.1153 | 0.0450 | 0.0258 | 0.0434 | |
0.1248 | 0.4342 | 0.3660 | 0.2661 | 0.3832 | 0.3616 | |
0.0918 | 0.1126 | 0.0840 | 0.2643 | 0.3462 | 0.2521 | |
0.2508 | 0.1602 | 0.1947 | 0.1869 | 0.0672 | 0.1145 | |
0.4063 | 0.1961 | 0.2370 | 0.1849 | 0.1136 | 0.1517 | |
0.1225 | 0.1859 | 0.1816 | 0.0829 | 0.1505 | 0.1768 | |
0.3887 | 0.2531 | 0.3367 | 0.3261 | 0.2128 | 0.2634 | |
0.2319 | 0.1559 | 0.1391 | 0.3802 | 0.3064 | 0.3239 | |
0.2481 | 0.3978 | 0.3378 | 0.2075 | 0.3256 | 0.2299 | |
0.1499 | 0.1893 | 0.1216 | 0.1740 | 0.1204 | 0.0864 | |
0.7248 | 0.6618 | 0.7724 | 0.6619 | 0.7512 | 0.8136 | |
0.0528 | 0.0569 | 0.0384 | 0.0699 | 0.0388 | 0.0248 | |
0.0599 | 0.0882 | 0.0672 | 0.0823 | 0.0834 | 0.0733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Ma, X.; Cheng, Z.; Kari, T. Dynamic Comprehensive Evaluation of a 660 MW Ultra-Supercritical Coal-Fired Unit Based on Improved Criteria Importance through Inter-Criteria Correlation and Entropy Weight Method. Energies 2024, 17, 1765. https://doi.org/10.3390/en17071765
Yuan H, Ma X, Cheng Z, Kari T. Dynamic Comprehensive Evaluation of a 660 MW Ultra-Supercritical Coal-Fired Unit Based on Improved Criteria Importance through Inter-Criteria Correlation and Entropy Weight Method. Energies. 2024; 17(7):1765. https://doi.org/10.3390/en17071765
Chicago/Turabian StyleYuan, Haotian, Xiaojing Ma, Zening Cheng, and Tusongjiang Kari. 2024. "Dynamic Comprehensive Evaluation of a 660 MW Ultra-Supercritical Coal-Fired Unit Based on Improved Criteria Importance through Inter-Criteria Correlation and Entropy Weight Method" Energies 17, no. 7: 1765. https://doi.org/10.3390/en17071765
APA StyleYuan, H., Ma, X., Cheng, Z., & Kari, T. (2024). Dynamic Comprehensive Evaluation of a 660 MW Ultra-Supercritical Coal-Fired Unit Based on Improved Criteria Importance through Inter-Criteria Correlation and Entropy Weight Method. Energies, 17(7), 1765. https://doi.org/10.3390/en17071765