Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression
Abstract
1. Introduction
2. Support Vector Regression
3. Sparrow Search Algorithm
4. Improved Sparrow Search Algorithm
4.1. Discoverer Position Update Strategy
4.2. Scouter Position Update Strategy
- (1)
- Gaussian mutation
- (2)
- Cauchy mutation
- (3)
- Gravity coefficient
4.3. ISSA Flow
- (1)
- Determine the training data set .
- (2)
- Set the main parameters such as P, M, B, , , .
- (3)
- Set the initial positions of the sparrows, evaluate their fitness levels, and update and .
- (4)
- (5)
- Update the positions and re-evaluate the fitness of the subsequent generation of sparrows. and update and .
- (6)
- If the iteration limit is reached, stop the process and output the optimal solution. If not, proceed back to step (4).
5. SOH Prediction Model Based on ISSA-SVR
5.1. Experimental Data
5.2. Feature Extraction
5.3. Evaluation Criterion
5.4. Prediction Model
6. Experiments and Analysis
6.1. Model Performance Comparison
6.2. Dependence of ISSA-SVR on Feature Set
6.3. Universality Validation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- He, Z.; Gao, M.; Wang, C.; Wang, L.; Liu, Y. Adaptive state of charge estimation for Li-ion batteries based on an unscented Kalman filter with an enhanced battery model. Energies 2013, 6, 4134–4151. [Google Scholar] [CrossRef]
- Chen, C.; Pecht, M. Prognostics of lithium-ion batteries using model-based and data-driven methods. In Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), Beijing, China, 23–25 May 2012; pp. 1–6. [Google Scholar]
- Qu, X.; Song, Y.; Liu, D.; Cui, X.; Peng, Y. Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model. Microelectron. Reliab. 2020, 114, 113857. [Google Scholar] [CrossRef]
- Ge, M.; Liu, Y.; Jiang, X.; Liu, J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement 2021, 174, 109057. [Google Scholar] [CrossRef]
- Saha, B.; Goebel, K.; Poll, S.; Christophersen, J. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans. Instrum. Meas. 2008, 58, 291–296. [Google Scholar] [CrossRef]
- Zhou, D.; Zheng, W.; Chen, S.; Fu, P.; Wang, T. Research on State of Health Prediction Model for Lithium Batteries Based on Actual Diverse Data. Energy 2021, 230, 120851. [Google Scholar] [CrossRef]
- Li, J.; Lai, Q.; Wang, L.; Lyu, C.; Wang, H. A method for SOC estimation based on simplified mechanistic model for LiFePO4 battery. Energy 2016, 114, 1266–1276. [Google Scholar] [CrossRef]
- Baghdadi, I.; Briat, O.; Delétage, J.Y.; Gyan, P.; Vinassa, J.M. Lithium battery aging model based on Dakin’s degradation approach. J. Power Sources 2016, 325, 273–285. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Peng, B. Online Estimation and Error Analysis of both SOC and SOH of Lithium-ion Battery based on DEKF Method. Energy Procedia 2019, 158, 3008–3013. [Google Scholar] [CrossRef]
- Shen, H.; Li, X.; Chen, L.; Xun, H.; Chen, W. Estimation of state of charge of lithium battery based on parameter identification of fractional order model. J. Phys. Conf. Ser. 2021, 1774, 012049. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for forecasting battery state of health. J. Power Sources 2017, 357, 209–219. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, B.; Wang, X.; Liu, Y.; Fu, Y. Estimation of the state of charge of lithium batteries based on adaptive unscented Kalman filter algorithm. Electronics 2020, 9, 1425. [Google Scholar] [CrossRef]
- Oji, T.; Zhou, Y.; Ci, S.; Kang, F.; Chen, X.; Liu, X. Data-driven methods for battery soh estimation: Survey and a critical analysis. IEEE Access 2021, 9, 126903–126916. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, K.; Yu, X.; Wang, Y. State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR. Electrochim. Acta 2022, 428, 140940. [Google Scholar] [CrossRef]
- Lin, M.; Yan, C.; Meng, J.; Wang, W.; Wu, J. Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression. Energy 2022, 250, 123829. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Y.; Lu, S.; Wang, J.; Zhang, X. Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony. IEEE Trans. Veh. Technol. 2019, 68, 9543–9553. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Zhao, K.; Wang, L.; Wang, K. State of health estimation of lithium-ion battery based on improved ant lion optimization and support vector regression. J. Energy Storage 2022, 50, 104215. [Google Scholar] [CrossRef]
- Qin, T.; Zeng, S.; Guo, J. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model. Microelectron. Reliab. 2015, 55, 1280–1284. [Google Scholar] [CrossRef]
Optimize | Setting Parameters |
---|---|
GA-SVR | M = 300, V = 2, B = [100, 100], P = 20, = 0.9, = 0.1, = 0.5 |
GWO-SVR | M = 300, V = 2, B = [100, 100], P = 15 |
SSA-SVR | M = 300, V = 2, B = [100, 100], P = 20, = 0.7, ST = 0.6 |
ISSA-SVR | M = 300, V = 2, B = [100, 100], P = 20, = 0.7, , |
Optimizer | SSA-SVR | ISSA-SVR | GWO-SVR | GA-SVR |
---|---|---|---|---|
MAE | 0.12 | 0.08 | 0.13 | 0.09 |
MAPE (%) | 0.17 | 0.11 | 0.18 | 0.12 |
MSE | 0.03 | 0.02 | 0.03 | 0.04 |
RMSE | 0.17 | 0.14 | 0.17 | 0.20 |
Proportion | 50% | 60% | 70% |
---|---|---|---|
MAE | 0.13 | 0.10 | 0.09 |
MAPE (%) | 0.11 | 0.08 | 0.07 |
MSE | 0.03 | 0.03 | 0.02 |
RMSE | 0.17 | 0.17 | 0.14 |
Optimizer | SSA-SVR | ISSA-SVR | SSA-SVR | ISSA-SVR | SSA-SVR | ISSA-SVR |
---|---|---|---|---|---|---|
Battery | B0006 | B0007 | B0018 | |||
MAE | 0.23 | 0.16 | 0.18 | 0.11 | 0.22 | 0.15 |
MAPE (%) | 0.40 | 0.31 | 0.26 | 0.15 | 0.37 | 0.28 |
MSE | 0.29 | 0.09 | 0.28 | 0.05 | 0.29 | 0.07 |
RMSE | 0.53 | 0.30 | 0.52 | 0.22 | 0.54 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, D.; Zhu, X.; Zhang, W.; Zheng, J. Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression. Energies 2024, 17, 5671. https://doi.org/10.3390/en17225671
Yin D, Zhu X, Zhang W, Zheng J. Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression. Energies. 2024; 17(22):5671. https://doi.org/10.3390/en17225671
Chicago/Turabian StyleYin, Deyang, Xiao Zhu, Wanjie Zhang, and Jianfeng Zheng. 2024. "Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression" Energies 17, no. 22: 5671. https://doi.org/10.3390/en17225671
APA StyleYin, D., Zhu, X., Zhang, W., & Zheng, J. (2024). Health State Prediction of Lithium-Ion Battery Based on Improved Sparrow Search Algorithm and Support Vector Regression. Energies, 17(22), 5671. https://doi.org/10.3390/en17225671