The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms
Abstract
:1. Introduction
2. Methodology for Far-Wake Quantification Using SCADA Data
2.1. Wind Farm Details
2.2. SCADA Data Post-Processing
3. Flow Modelling with Openwind
4. Results
4.1. N-4 Cluster Wakes for Flow from the West
4.2. N-5 Cluster Wakes for Flow from the West
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westerhellweg, A.; Cañadillas, B.; Kinder, F.; Neumann, T. Wake measurements at alpha ventus–dependency on stability and turbulence intensity. J. Phys. Conf. Ser. 2014, 555, 12106. [Google Scholar] [CrossRef]
- van der Laan, M.P.; García-Santiago, O.; Kelly, M.; Meyer Forsting, A.; Dubreuil-Boisclair, C.; Seim, K.S.; Imberger, M.; Peña, A.; Sørensen, N.N.; Réthoré, P.E. A new RANS-based wind farm parametrization and inflow model for wind farm cluster modeling. Wind Energy Sci. Discuss. 2022, 2022, 1–38. [Google Scholar]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-Turbine and Wind-Farm Flows: A Review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Lundquist, J.K.; DuVivier, K.K.; Kaffine, D.; Tomaszewski, J.M. Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. Nat. Energy 2019, 4, 26–34. [Google Scholar] [CrossRef]
- Wu, Y.T.; Porté-Agel, F. Atmospheric turbulence effects on wind-turbine wakes: An LES study. Energies 2012, 5, 5340–5362. [Google Scholar] [CrossRef]
- Medici, D.; Ivanell, S.; Dahlberg, J.; Alfredsson, P.H. The upstream flow of a wind turbine: Blockage effect. Wind Energy 2011, 14, 691–697. [Google Scholar] [CrossRef]
- Vermeer, L.; Sørensen, J.; Crespo, A. Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 2003, 39, 467–510. [Google Scholar] [CrossRef]
- Wu, K.L.; Porté-Agel, F. Flow adjustment inside and around large finite-size wind farms. Energies 2017, 10, 2164. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Hasager, C.B. Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ. 2005, 98, 251–268. [Google Scholar] [CrossRef]
- Cañadillas, B.; Beckenbauer, M.; Trujillo, J.J.; Dörenkämper, M.; Foreman, R.; Neumann, T.; Lampert, A. Offshore wind farm cluster wakes as observed by long-range-scanning wind lidar measurements and mesoscale modeling. Wind Energy Sci. 2022, 7, 1241–1262. [Google Scholar] [CrossRef]
- Fischereit, J.; Brown, R.; Larsén, X.G.; Badger, J.; Hawkes, G. Review of mesoscale wind-farm parametrizations and their applications. Bound.-Layer Meteorol. 2022, 182, 175–224. [Google Scholar] [CrossRef]
- Openwind|Wind Farm Modeling and Layout Design Software. Available online: https://www.ul.com/software/openwind-wind-farm-modeling-and-layout-design-software (accessed on 15 November 2023).
- Wind Farm Design and Analysis Software, Windfarmer. Available online: https://www.dnv.com/software/services/windfarmer/index.html (accessed on 15 November 2023).
- The World of WAsP by DTU Wind and Energy Systems. Available online: https://www.wasp.dk/ (accessed on 16 November 2023).
- AWS Truepower. Openwind Theoretical Basis and Validation; Technical Report; AWS Truepower: Albany, NY, USA, 2010. [Google Scholar]
- Jensen, N. A Note on Wind Generator Interaction; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Ainslie, J. Calculating the flowfield in the wake of wind turbines. J. Wind. Eng. Ind. Aerodyn. 1988, 27, 213–224. [Google Scholar] [CrossRef]
- Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy 2014, 70, 116–123. [Google Scholar] [CrossRef]
- Pedersen, J.; Svensson, E.; Poulsen, L.; Nygaard, N. Turbulence Optimized Park model with Gaussian wake profile. J. Phys. Conf. Ser. 2022, 2265, 22063. [Google Scholar] [CrossRef]
- Frandsen, S. On the wind speed reduction in the center of large clusters of wind turbines. J. Wind. Eng. Ind. Aerodyn. 1992, 39, 251–265. [Google Scholar] [CrossRef]
- Emeis, S.; Frandsen, S. Reduction of horizontal wind speed in a boundary layer with obstacles. Bound.-Layer Meteorol. 1993, 64, 297–305. [Google Scholar] [CrossRef]
- Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 2006, 9, 39–53. [Google Scholar] [CrossRef]
- Frandsen, S.T.; Jørgensen, H.E.; Barthelmie, R.; Rathmann, O.; Badger, J.; Hansen, K.; Ott, S.; Rethore, P.E.; Larsen, S.E.; Jensen, L.E. The making of a second-generation wind farm efficiency model complex. Wind Energy 2009, 12, 445–458. [Google Scholar] [CrossRef]
- Brower, M.; Robinson, N. The OpenWind Deep-Array Wake Model: Development and Validation; Technical Report; AWS Truepower: Albany, NY, USA, 2012. [Google Scholar]
- Gunn, K. Improvements to the Eddy Viscosity Wind Turbine Wake Model. J. Phys. Conf. Ser. 2019, 1222, 12003. [Google Scholar] [CrossRef]
- Emeis, S. A simple analytical wind park model considering atmospheric stability. Wind Energy 2010, 13, 459–469. [Google Scholar] [CrossRef]
- Peña, A.; Rathmann, O. Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energy 2014, 17, 1269–1285. [Google Scholar] [CrossRef]
- Emeis, S. Current issues in wind energy meteorology. Meteorol. Appl. 2014, 21, 803–819. [Google Scholar] [CrossRef]
- Foreman, R.J.; Emeis, S.; Canadillas, B. Half-order stable boundary-layer parametrization without the eddy viscosity approach for use in numerical weather prediction. Bound.-Layer Meteorol. 2015, 154, 207–228. [Google Scholar] [CrossRef]
- Emeis, S.; Siedersleben, S.; Lampert, A.; Platis, A.; Bange, J.; Djath, B.; Schulz-Stellenfleth, J.; Neumann, T. Exploring the wakes of large offshore wind farms. J. Phys. Conf. Ser. 2016, 753, 092014. [Google Scholar] [CrossRef]
- Emeis, S. Analysis of Some Major Limitations of Analytical Top-Down Wind-Farm Models. Bound.-Layer Meteorol. 2023, 187, 423–435. [Google Scholar] [CrossRef]
- Fitch, A.C.; Olson, J.B.; Lundquist, J.K.; Dudhia, J.; Gupta, A.K.; Michalakes, J.; Barstad, I. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Weather. Rev. 2012, 140, 3017–3038. [Google Scholar] [CrossRef]
- Nygaard, N.G.; Steen, S.T.; Poulsen, L.; Pedersen, J.G. Modelling cluster wakes and wind farm blockage. J. Phys. Conf. Ser. 2020, 1618, 62072. [Google Scholar] [CrossRef]
- Siedersleben, S.K.; Platis, A.; Lundquist, J.K.; Lampert, A.; Bärfuss, K.; Cañadillas, B.; Djath, B.; Schulz-Stellenfleth, J.; Bange, J.; Neumann, T.; et al. Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric Flow Models with Aircraft Measurements. Meteorol. Z. 2018, 27, 401–415. [Google Scholar] [CrossRef]
- Cañadillas, B.; Foreman, R.; Barth, V.; Siedersleben, S.; Lampert, A.; Platis, A.; Djath, B.; Schulz-Stellenfleth, J.; Bange, J.; Emeis, S.; et al. Offshore wind farm wake recovery: Airborne measurements and its representation in engineering models. Wind Energy 2020, 23, 1249–1265. [Google Scholar] [CrossRef]
- Djath, B.; Schulz-Stellenfleth, J.; Cañadillas, B. Study of Coastal Effects Relevant for Offshore Wind Energy Using Spaceborne Synthetic Aperture Radar (SAR). Remote Sens. 2022, 14, 1688. [Google Scholar] [CrossRef]
- Cañadillas, B.; Foreman, R.; Steinfeld, G.; Robinson, N. Cumulative interactions between the global blockage and wake effects as observed by an engineering model and large-eddy simulations. Energies 2023, 16, 2949. [Google Scholar] [CrossRef]
- Forschungsplattformen in Nord- und Ostsee Nr. 1,2,3. Available online: https://www.fino-offshore.de/de/index.html (accessed on 21 November 2023).
- Doekemeijer, B.M.; Simley, E.; Fleming, P. Comparison of the Gaussian wind farm model with historical data of three offshore wind farms. Energies 2022, 15, 1964. [Google Scholar] [CrossRef]
- Rodrigo, J.S.; Cantero, E.; García, B.; Borbón, F.; Irigoyen, U.; Lozano, S.; Fernande, P.; Chávez, R. Atmospheric stability assessment for the characterization of offshore wind conditions. J. Phys. Conf. Ser. 2015, 625, 12044. [Google Scholar] [CrossRef]
- von Brandis, A.; Centurelli, G.; Schmidt, J.; Vollmer, L.; Djath, B.; Dörenkämper, M. An investigation of spatial wind direction variability and its consideration in engineering models. Wind Energy Sci. 2023, 8, 589–606. [Google Scholar] [CrossRef]
- Branlard, E.; Gaunaa, M. Cylindrical vortex wake model: Right cylinder. Wind Energy 2015, 18, 1973–1987. [Google Scholar] [CrossRef]
- Troldborg, N.; Meyer Forsting, A. A simple model of the wind turbine induction zone derived from numerical simulations. Wind Energy 2017, 20, 2011–2020. [Google Scholar] [CrossRef]
- Gribben, B.J.; Hawkes, G.S. A Potential Flow Model for Wind Turbine Induction and Wind Farm Blockage; Technical Report; Frazer-Nash Consultancy: Leatherhead, UK, 2019. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Emeis, S. Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Nygaard, N.G.; Hansen, S.D. Wake effects between two neighbouring wind farms. J. Phys. Conf. Ser. 2016, 753, 32020. [Google Scholar] [CrossRef]
- Cañadillas, B.; Wang, S.; Ahlert, Y.; Djath, B.; Barekzai, M.; Foreman, R.; Lampert, A. Coastal horizontal wind speed gradients in the North Sea based on observations and ERA5 reanalysis data. Meteorol. Z. 2023, 32, 207–228. [Google Scholar] [CrossRef]
Wind Farm Name | ABW | NSO | MSO | DAT | SAB |
---|---|---|---|---|---|
Turbine type-Rotor diameter [m] | SWT-3.6-120 | Re12660-126 | SWT-3.6-120 | SWT-3.6-120 | SWT-4.0-130 |
Hub height [m] | 90 | 95 | 89 | 88 | 95 |
Turbine capacity [MW] | 3.6 | 6.2 | 3.6 | 3.6 | 4.0 |
Wind farm capacity [MW] | 288 | 295 | 288 | 288 | 288 |
Number of turbines | 80 | 48 | 80 | 80 | 72 |
Data period | 2015–2021 | 2015–2021 | N/A | 2018–2020 | 2018–2020 |
Stability Model: | DAWM [24] | ASM [37] |
---|---|---|
Openwind version: | 01.09.01.4973 | (internal use) |
Purpose: | Internal Wakes | Far Wakes |
Cluster: | N-4 | N-5 |
Turbine wake model: | EV [17] | EV [17] |
Induction model: | Rankine Half-Body | ASM |
Stability: | L in DAWM from WRF | L in ASM from WRF |
Turbine Roughness [m]: | 1.16 | - |
Parameter [m]: | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foreman, R.J.; Cañadillas, B.; Robinson, N. The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms. Energies 2024, 17, 488. https://doi.org/10.3390/en17020488
Foreman RJ, Cañadillas B, Robinson N. The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms. Energies. 2024; 17(2):488. https://doi.org/10.3390/en17020488
Chicago/Turabian StyleForeman, Richard J., Beatriz Cañadillas, and Nick Robinson. 2024. "The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms" Energies 17, no. 2: 488. https://doi.org/10.3390/en17020488
APA StyleForeman, R. J., Cañadillas, B., & Robinson, N. (2024). The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms. Energies, 17(2), 488. https://doi.org/10.3390/en17020488