Exploring Porous Media for Compressed Air Energy Storage: Benefits, Challenges, and Technological Insights
Abstract
:1. Introduction
2. CAESA Site Criteria
3. CAES Characteristics and Examples
3.1. CAES Characteristics
3.1.1. Advantages and Cost-Effectiveness
3.1.2. Technological Comparative Analysis and Innovative Challenge
3.1.3. Environmental Impact and Technological Innovation
3.2. CAES Examples
4. CAES Numerical Modeling Progress
4.1. Base CAES Modeling and Parameter Analysis
4.2. Coupled Process and System Integration
5. CAESA Economics
6. Synthesis of Key Findings and Implications
6.1. Technological and Environmental Implications
6.2. Challenges in Applications and Modeling
6.3. Potential Geotechnical and Environmental Issues
6.4. Exploring Compressed Carbon Dioxide Energy Storage
6.5. Future of CAES
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A-CAES | Adiabatic compressed air energy storage |
ATES | Aquifer thermal energy storage |
BPA | Bonneville Power Administration |
CAES | Compressed air energy storage |
CAESA | Compressed air energy storage in aquifers |
CCESA | Compressed carbon dioxide energy storage in the aquifer |
D-CAES | Diabatic compressed air energy storage |
DOE | Department of Energy |
EPRI | Electric Power Research Institute |
FRP | Fiber-reinforced plastic |
iCAES | Isothermal compressed air energy storage |
I-CAES | Isothermal compressed air energy storage |
ISEPA | Iowa Stored Energy Park Project Agency |
LCOS | Levelized cost of storage |
LTES | Latent thermal energy storage |
PHS | Pumped hydro storage |
PM-CAES | Porous media compressed air energy storage |
PNNL | Pacific Northwest National Laboratory |
UPSH | Underground pumped storage hydropower |
References
- Data and Statistics. Available online: https://www.iea.org/data-and-statistics (accessed on 3 August 2024).
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Mallapragada, D.S.; Sepulveda, N.A.; Jenkins, J.D. Long-Run System Value of Battery Energy Storage in Future Grids with Increasing Wind and Solar Generation. Appl. Energy 2020, 275, 115390. [Google Scholar] [CrossRef]
- Iweh, C.D.; Gyamfi, S.; Tanyi, E.; Effah-Donyina, E. Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits. Energies 2021, 14, 5375. [Google Scholar] [CrossRef]
- Prajapati, V.K.; Mahajan, V. Reliability Assessment and Congestion Management of Power System with Energy Storage System and Uncertain Renewable Resources. Energy 2021, 215, 119134. [Google Scholar] [CrossRef]
- Yin, J.; Molini, A.; Porporato, A. Impacts of Solar Intermittency on Future Photovoltaic Reliability. Nat. Commun. 2020, 11, 4781. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.S.; Ma, T.; Jurasz, J.; Amin, M.Y. Solar and Wind Power Generation Systems with Pumped Hydro Storage: Review and Future Perspectives. Renew. Energy 2020, 148, 176–192. [Google Scholar] [CrossRef]
- Shabani, M.; Dahlquist, E.; Wallin, F.; Yan, J. Techno-Economic Comparison of Optimal Design of Renewable-Battery Storage and Renewable Micro Pumped Hydro Storage Power Supply Systems: A Case Study in Sweden. Appl. Energy 2020, 279, 115830. [Google Scholar] [CrossRef]
- Hossain, E.; Faruque, H.M.R.; Sunny, M.S.H.; Mohammad, N.; Nawar, N. A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects. Energies 2020, 13, 3651. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Psarros, G.N.; Papathanassiou, S.A. Electricity Storage Requirements to Support the Transition towards High Renewable Penetration Levels—Application to the Greek Power System. J. Energy Storage 2022, 55, 105748. [Google Scholar] [CrossRef]
- Nemeth, T.; Schröer, P.; Kuipers, M.; Sauer, D.U. Lithium Titanate Oxide Battery Cells for High-Power Automotive Applications—Electro-Thermal Properties, Aging Behavior and Cost Considerations. J. Energy Storage 2020, 31, 101656. [Google Scholar] [CrossRef]
- Xia, X.; Li, P. A Review of the Life Cycle Assessment of Electric Vehicles: Considering the Influence of Batteries. Sci. Total Environ. 2022, 814, 152870. [Google Scholar] [CrossRef]
- Christensen, P.A.; Anderson, P.A.; Harper, G.D.J.; Lambert, S.M.; Mrozik, W.; Rajaeifar, M.A.; Wise, M.S.; Heidrich, O. Risk Management over the Life Cycle of Lithium-Ion Batteries in Electric Vehicles. Renew. Sustain. Energy Rev. 2021, 148, 111240. [Google Scholar] [CrossRef]
- Nikolaos, P.C.; Marios, F.; Dimitris, K. A Review of Pumped Hydro Storage Systems. Energies 2023, 16, 4516. [Google Scholar] [CrossRef]
- Makhdoomi, S.; Askarzadeh, A. Daily Performance Optimization of a Grid-Connected Hybrid System Composed of Photovoltaic and Pumped Hydro Storage (PV/PHS). Renew. Energy 2020, 159, 272–285. [Google Scholar] [CrossRef]
- Hunt, J.D.; Lagore, B.; Brandão, R.; Diuana, F.A.; Quaranta, E.; de Miranda, M.; Lacorte, A.; Barbosa, P.S.; de Freitas, M.A.V.; Zakeri, B.; et al. Mapping the Potential for Pumped Storage Using Existing Lower Reservoirs. J. Energy Storage 2023, 73, 109047. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, Y.; Zhao, W. A TODIM-Based Approach for Environmental Impact Assessment of Pumped Hydro Energy Storage Plant. J. Clean. Prod. 2020, 248, 119265. [Google Scholar] [CrossRef]
- Li, Y.; Sun, R.; Li, Y.; Hu, B.; Dong, J. An Enhanced Role Understanding of Geothermal Energy on Compressed Air Energy Storage in Aquifers Considering the Underground Processes. J. Energy Storage 2021, 44, 103483. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Li, Y.; Luo, X.; Liu, Y.; Zhang, G.; Tang, D.; Liu, Y. Full Cycle Modeling of Inter-Seasonal Compressed Air Energy Storage in Aquifers. Energy 2023, 263, 125987. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Pan, L. Porous Media Compressed-Air Energy Storage (PM-CAES): Theory and Simulation of the Coupled Wellbore–Reservoir System. Transp. Porous Media 2013, 97, 201–221. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.; Liu, J.; Hou, Z.; Xie, Y.; Shi, X. An Overview of Underground Energy Storage in Porous Media and Development in China. Gas Sci. Eng. 2023, 117, 205079. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Lee, D.; Ryu, S.; Kim, S. Microfluidic Study on the Two-Phase Fluid Flow in Porous Media during Repetitive Drainage-Imbibition Cycles and Implications to the CAES Operation. Transp. Porous Media 2020, 131, 449–472. [Google Scholar] [CrossRef]
- Mouli-Castillo, J.; Wilkinson, M.; Mignard, D.; McDermott, C.; Haszeldine, R.S.; Shipton, Z.K. Inter-Seasonal Compressed-Air Energy Storage Using Saline Aquifers. Nat. Energy 2019, 4, 131–139. [Google Scholar] [CrossRef]
- Jankowski, M.; Pałac, A.; Sornek, K.; Goryl, W.; Żołądek, M.; Homa, M.; Filipowicz, M. Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review. Energies 2024, 17, 2064. [Google Scholar] [CrossRef]
- Menéndez, J.; Loredo, J. Advances in Underground Energy Storage for Renewable Energy Sources. Appl. Sci. 2021, 11, 5142. [Google Scholar] [CrossRef]
- Giramonti, A.J.; Lessard, R.D.; Blecher, W.A.; Smith, E.B. Conceptual Design of Compressed Air Energy Storage Electric Power Systems. Appl. Energy 1978, 4, 231–249. [Google Scholar] [CrossRef]
- Allen, R.D.; Doherty, T.J.; Erikson, R.L.; Wiles, L.E. Factors Affecting Storage of Compressed Air in Porous-Rock Reservoirs; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 1983. [Google Scholar]
- Succar, S.; Williams, R.H. Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power; Princeton Energy Systems Analysis Group: Princeton, NJ, USA, 2008. [Google Scholar]
- Pei, P.; Korom, S.F.; Ling, K.; He, J.; Gil, A. Thermodynamic Impact of Aquifer Permeability on the Performance of a Compressed Air Energy Storage Plant. Energy Convers. Manag. 2015, 97, 340–350. [Google Scholar] [CrossRef]
- Aghahosseini, A.; Breyer, C. Assessment of Geological Resource Potential for Compressed Air Energy Storage in Global Electricity Supply. Energy Convers. Manag. 2018, 169, 161–173. [Google Scholar] [CrossRef]
- Sopher, D.; Juhlin, C.; Levendal, T.; Erlström, M.; Nilsson, K.; Da Silva Soares, J.P. Evaluation of the Subsurface Compressed Air Energy Storage (CAES) Potential on Gotland, Sweden. Environ. Earth Sci. 2019, 78, 197. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Zhang, K.; Cai, Z.; Ma, T.; Maggi, F.; Gan, Y.; El-Zein, A.; Pan, Z.; Shen, L. The Promise and Challenges of Utility-Scale Compressed Air Energy Storage in Aquifers. Appl. Energy 2021, 286, 116513. [Google Scholar] [CrossRef]
- Evans, D.; Parkes, D.; Dooner, M.; Williamson, P.; Williams, J.; Busby, J.; He, W.; Wang, J.; Garvey, S. Salt Cavern Exergy Storage Capacity Potential of UK Massively Bedded Halites, Using Compressed Air Energy Storage (CAES). Appl. Sci. 2021, 11, 4728. [Google Scholar] [CrossRef]
- Li, H.; Ma, H.; Liu, J.; Zhu, S.; Zhao, K.; Zheng, Z.; Zeng, Z.; Yang, C. Large-Scale CAES in Bedded Rock Salt: A Case Study in Jiangsu Province, China. Energy 2023, 281, 128271. [Google Scholar] [CrossRef]
- King, M.; Jain, A.; Bhakar, R.; Mathur, J.; Wang, J. Overview of Current Compressed Air Energy Storage Projects and Analysis of the Potential Underground Storage Capacity in India and the UK. Renew. Sustain. Energy Rev. 2021, 139, 110705. [Google Scholar] [CrossRef]
- Zhao, K.; Ma, H.; Li, H.; Yang, C.; Li, P.; Liu, Y.; Li, H.; Zeng, Z.; Wang, X. Stability Analysis of CAES Salt Caverns Using a Creep-Fatigue Model in Yunying Salt District, China. J. Energy Storage 2023, 62, 106856. [Google Scholar] [CrossRef]
- Ma, Y.; Rao, Q.; Huang, D.; Yi, W.; He, Y. A New Theoretical Model of Local Air-Leakage Seepage Field for the Compressed Air Energy Storage Lined Cavern. J. Energy Storage 2022, 49, 104160. [Google Scholar] [CrossRef]
- Harati, S.; Rezaei Gomari, S.; Ramegowda, M.; Pak, T. Multi-Criteria Site Selection Workflow for Geological Storage of Hydrogen in Depleted Gas Fields: A Case for the UK. Int. J. Hydrogen Energy 2024, 51, 143–157. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of Multi-Criteria Decision Making to Sustainable Energy planning—A Review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Wu, D.; Wang, J.G.; Hu, B.; Yang, S.-Q. A Coupled Thermo-Hydro-Mechanical Model for Evaluating Air Leakage from an Unlined Compressed Air Energy Storage Cavern. Renew. Energy 2020, 146, 907–920. [Google Scholar] [CrossRef]
- Wang, B.; Bauer, S. Compressed Air Energy Storage in Porous Formations: A Feasibility and Deliverability Study. Pet. Geosci. 2017, 23, 306–314. [Google Scholar] [CrossRef]
- Kitsikoudis, V.; Archambeau, P.; Dewals, B.; Pujades, E.; Orban, P.; Dassargues, A.; Pirotton, M.; Erpicum, S. Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics. Energies 2020, 13, 3512. [Google Scholar] [CrossRef]
- Pujades, E.; Orban, P.; Archambeau, P.; Kitsikoudis, V.; Erpicum, S.; Dassargues, A. Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow. Energies 2020, 13, 2353. [Google Scholar] [CrossRef]
- Menéndez, J.; Loredo, J. Numerical Modelling of Water Subsurface Reservoirs during the Operation Phase in Underground Pumped Storage Hydropower Plants. In Proceedings of the 2019 International Conference on Power, Energy and Electrical Engineering (PEEE 2019), London, UK, 19–21 December 2019; Volume 152, p. 02001. [Google Scholar]
- Worku, M.Y. Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review. Sustainability 2022, 14, 5985. [Google Scholar] [CrossRef]
- Allen, R.D.; Doherty, T.J.; Kannberg, L.D. Summary of Selected Compressed Air Energy Storage Studies; Office of Scientific and Technical Information (OSTI): Oak Ridge, TN, USA, 1985.
- Sandia National Laboratories. Lessons from Iowa: Development of a 270 Megawatt Compressed Air Energy Storage Project in Midwest Independent System Operator. Available online: https://www.tdworld.com/grid-innovations/distribution/article/20961512/lessons-from-iowa-development-of-a-270-megawatt-compressed-air-energy-storage-project-in-midwest-independent-system-operator (accessed on 3 July 2024).
- Skaros, S. Investigation on the Energy Consumption in the Built Environment of Gotland. Master’s Thesis, School of Architecture and the Built Environment, Stockholm, Sweden, 2020. [Google Scholar]
- Li, Y.; Wang, H.; Wang, J.; Hu, L.; Wu, X.; Yang, Y.; Gai, P.; Liu, Y.; Li, Y. The Underground Performance Analysis of Compressed Air Energy Storage in Aquifers through Field Testing. Appl. Energy 2024, 366, 123329. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Z.; Li, C.; He, Q.; Ma, Y.; Guo, C. Numerical Investigation of Cycle Performance in Compressed Air Energy Storage in Aquifers. Appl. Energy 2020, 269, 115044. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Liu, Y. Numerical Study on the Impacts of Layered Heterogeneity on the Underground Process in Compressed Air Energy Storage in Aquifers. J. Energy Storage 2022, 46, 103837. [Google Scholar] [CrossRef]
- de Prado, L.Á.; Menéndez, J.; Bernardo-Sánchez, A.; Galdo, M.; Loredo, J.; Fernández-Oro, J.M. Thermodynamic Analysis of Compressed Air Energy Storage (CAES) Reservoirs in Abandoned Mines Using Different Sealing Layers. Appl. Sci. 2021, 11, 2573. [Google Scholar] [CrossRef]
- Zhang, J.; Hosseini Zadeh, A.; Kim, S. Geomechanical and Energy Analysis on the Small- and Medium-Scale CAES in Salt Domes. Energy 2021, 221, 119861. [Google Scholar] [CrossRef]
- Opolot, M.; Zhao, C.; Liu, M.; Mancin, S.; Bruno, F.; Hooman, K. A Review of High Temperature (≥500 °C) Latent Heat Thermal Energy Storage. Renew. Sustain. Energy Rev. 2022, 160, 112293. [Google Scholar] [CrossRef]
- Khuda, M.A.; Yan, L.; Sarunac, N.; Romero, C. Design, Analysis, and Testing of a Prototype-Scale Latent Heat Thermal Energy Storage (LTES) System. J. Energy Storage 2024, 89, 111796. [Google Scholar] [CrossRef]
- Pfeiffer, W.T.; Witte, F.; Tuschy, I.; Bauer, S. Coupled Power Plant and Geostorage Simulations of Porous Media Compressed Air Energy Storage (PM-CAES). Energy Convers. Manage. 2021, 249, 114849. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, K.; Pan, L.; Cai, Z.; Li, C.; Li, Y. Numerical Investigation of a Joint Approach to Thermal Energy Storage and Compressed Air Energy Storage in Aquifers. Appl. Energy 2017, 203, 948–958. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Li, R.; Sun, H.; Zhang, Y.; Ling, L. Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system. Energy 2023, 280, 128134. [Google Scholar] [CrossRef]
- Jülch, V. Comparison of Electricity Storage Options Using Levelized Cost of Storage (LCOS) Method. Appl. Energy 2016, 183, 1594–1606. [Google Scholar] [CrossRef]
- Tafone, A.; Ding, Y.; Li, Y.; Xie, C.; Romagnoli, A. Levelised Cost of Storage (LCOS) Analysis of Liquid Air Energy Storage System Integrated with Organic Rankine Cycle. Energy 2020, 198, 117275. [Google Scholar] [CrossRef]
- Martínez de León, C.; Ríos, C.; Molina, P.; Brey, J.J. Levelized Cost of Storage (LCOS) for a Hydrogen System. Int. J. Hydrogen Energy 2024, 52, 1274–1284. [Google Scholar] [CrossRef]
- Krishna, A.; Shenoy, R.; Jha, B.; Liu, Z.; Paul, D.L.; Ershaghi, I. Repurposing Idle Oil and Gas Wells for Large-Scale Subsurface Energy Storage in Saline Aquifers. In Proceedings of the SPE Western Regional Meeting, Bakersfield, CA, USA, 26–28 April 2022. [Google Scholar]
- Rehak, M.; Warburton, D.; Daneshvarnejad, N.; Ershaghi, I. The Integrity of Idle and Abandoned Wells in California. In Proceedings of the SPE Western Regional Meeting, Palo Alto, CA, USA, 16–18 April 2024. [Google Scholar]
- Ehlers, H. Quantifying the Problem and Risks of Poorly Abandoned Oil and Gas Wells in Ventura County, California; Illinois State University: Normal, IL, USA, 2022. [Google Scholar]
- Nabil, I.; Dawood, M.K.; Nabil, T. Review of Energy Storage Technologies for Compressed-air Energy Storage. Am. J. Mod. Energy 2021, 4, 51–60. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, X.; Jia, W.; Li, H.; Yang, X. Justification of CO2 as the Working Fluid for a Compressed Gas Energy Storage System: A Thermodynamic and Economic Study. J. Energy Storage 2020, 27, 101132. [Google Scholar] [CrossRef]
- Guzy, A.; Malinowska, A.A. State of the Art and Recent Advancements in the Modelling of Land Subsidence Induced by Groundwater Withdrawal. Water 2020, 12, 2051. [Google Scholar] [CrossRef]
- Uliasz-Misiak, B.; Misiak, J. Underground Gas Storage in Saline Aquifers: Geological Aspects. Energies 2024, 17, 1666. [Google Scholar] [CrossRef]
- Bauer, S.; Dahmke, A.; Kolditz, O. Subsurface Energy Storage: Geological Storage of Renewable Energy—Capacities, Induced Effects and Implications. Environ. Earth Sci. 2017, 76, 695. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Tang, D.; Li, Y.; Zhang, G.; Liu, Y. A Comparison of Compressed Carbon Dioxide Energy Storage and Compressed Air Energy Storage in Aquifers Using Numerical Methods. Renew. Energy 2022, 187, 1130–1153. [Google Scholar] [CrossRef]
- Technology Strategy Assessment. Available online: https://www.energy.gov/sites/default/files/2023-09/8_Technology%20Strategy%20Assessment%20-%208%20Compressed%20Air%20Energy%20Storage%20_508.pdf (accessed on 3 August 2024).
Score | Score Interpretation | Permeability (mD) | Porosity (%) | Total Reservoir Volume (VR/VS) | Total Closure Rating (h/H) | Depth to Top of Reservoir (m) | Reservoir Pressure (MPa) | Type of Reservoir | Residual Hydrocarbons (%) | Cap Rock Leakage | Cap Rock Permeability (mD) | Cap Rock Threshold Pressure (MPa) | Cap Rock Thickness (m) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Unusable | <100 | <7 | <0.5 | <0.5 | <137 or >760 | <1.3 or >6.9 | Highly discontinuous | >5% | Leakage evident | >10−5 | 2.1–5.5 | <6 |
2 | Marginal | 100–200 | 7–10 | 0.5–0.8 or >3.0 | 0.5–0.75 | 140–170 | 1.3–1.5 | Moderately vugular limestone and dolomite | 1–5% | No data available | <10−5 | >5.5 | >6 |
3 | OK | 200–300 | 10–13 | 0.8–1.0 or 1.2–3.0 | 0.75–0.95 | 170–260 or 670–760 | 1.5–2.3 or 6.1–6.9 | Reefs, highly vugular limestone, and dolomite | <1% | Pumping tests show no leakage | |||
4 | Good | 300–500 | 13–16 | 1.0–1.2 | 0.95–1.0 | 260–430 or 550–670 | 2.3–3.9 or 5.0–6.1 | Channel sandstones | |||||
5 | Excellent | >500 | >16 | 430–550 | 3.9–5.0 | Blanket sands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Su, J. Exploring Porous Media for Compressed Air Energy Storage: Benefits, Challenges, and Technological Insights. Energies 2024, 17, 4459. https://doi.org/10.3390/en17174459
Jia B, Su J. Exploring Porous Media for Compressed Air Energy Storage: Benefits, Challenges, and Technological Insights. Energies. 2024; 17(17):4459. https://doi.org/10.3390/en17174459
Chicago/Turabian StyleJia, Bao, and Jianzheng Su. 2024. "Exploring Porous Media for Compressed Air Energy Storage: Benefits, Challenges, and Technological Insights" Energies 17, no. 17: 4459. https://doi.org/10.3390/en17174459
APA StyleJia, B., & Su, J. (2024). Exploring Porous Media for Compressed Air Energy Storage: Benefits, Challenges, and Technological Insights. Energies, 17(17), 4459. https://doi.org/10.3390/en17174459