Variability and Sensitivity of Models Used to Estimate Photovoltaic Production
Abstract
:1. Introduction
# | Papers | Equations | Primary Reference 1 |
---|---|---|---|
1 | [24,29] | : [30,31] : [32] | |
2 | [3,15,27,33,34,35] | : [30,31] : [18] | |
3 | [25] | : [30,31] : [36] | |
4 | [22] | : [37] : [23] | |
5 | [2,3,21,38] | : [37] : [23] | |
6 | [26] | : [39] : - 2 |
2. Methodology
2.1. Determination of the Models
2.2. Meteorological Data
2.3. Calculation of Photovoltaic Production ()
2.4. Variability Analysis
2.5. Sensitivity Analysis
3. Results and Discussions
3.1. Variability of the Models
3.2. Sensitivity Analysis
3.2.1. Sensitivity to Change in
3.2.2. Sensitivity to Change in
3.3. Overview
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feron, S.; Cordero, R.R.; Labbe, F. Rural electrification efforts based on off-grid photovoltaic systems in the Andean region: Comparative assessment of their sustainability. Sustainability 2017, 9, 1825. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Damiani, A.; Jackson, R.B. Climate change extremes and photovoltaic power output. Nat. Sustain. 2021, 4, 270–276. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montavez, J.P.; Lopez-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Deque, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef]
- Kafka, J.L.; Miller, M.A. A climatology of solar irradiance and its controls across the United States: Implications for solar panel orientation. Renew. Energy 2019, 135, 897–907. [Google Scholar] [CrossRef]
- Zuluaga, C.F.; Avila-Diaz, A.; Justino, F.B.; Martins, F.R.; Ceron, W.L. The climate change perspective of photovoltaic power potential in Brazil. Renew. Energy 2022, 193, 1019–1031. [Google Scholar] [CrossRef]
- Zhang, J.; You, Q.; Ullah, S. Changes in photovoltaic potential over China in a warmer future. Environ. Res. Lett. 2022, 17, 114032. [Google Scholar] [CrossRef]
- Niu, J.; Qin, W.; Wang, L.; Zhang, M.; Wu, J.; Zhang, Y. Climate change impact on photovoltaic power potential in China based on CMIP6 models. Sci. Total Environ. 2023, 858, 159776. [Google Scholar] [CrossRef]
- Ha, S.; Zhou, Z.; Im, E.; Lee, Y. Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles. Renew. Energy 2023, 206, 324–335. [Google Scholar] [CrossRef]
- Klise, G.T.; Stein, J.S. Models Used to Assess the Performance of Photovoltaic Systems; Sandia National Laboratories (SNL): Albuquerque, NM, USA, 2009. [Google Scholar]
- Djamila, M.; Ernest, R. Modeling of solar irradiance and cells. In Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control; Springer-Verlag London Ltd.: London, UK, 2012; pp. 31–87. [Google Scholar]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Zondag, H.A. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 2008, 12, 891–959. [Google Scholar] [CrossRef]
- Evans, D.L. Simplified method for predicting photovoltaic array output. Sol. Energy 1981, 27, 555–560. [Google Scholar] [CrossRef]
- Tonui, J.K.; Tripanagnostopoulos, Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy 2008, 82, 1–12. [Google Scholar] [CrossRef]
- Crook, J.A.; Jone, L.A.; Forster, P.M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Energy Thermal Processes, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kou, Q.; Klein, S.A.; Beckman, W.A. A method for estimating the long-term performance of direct-coupled PV pumping systems. Sol. Energy 1998, 64, 33–40. [Google Scholar] [CrossRef]
- Lasnier, F.; Ang, T.G. Photovoltaic Engineering Handbook, 1st ed.; Adam Hilger: New York, NY, USA, 1990; 572p. [Google Scholar]
- Chenni, R.; Makhlouf, M.; Kerbache, T.; Bouzid, A. A detailed modeling method for photovoltaic cells. Energy 2007, 32, 1724–1730. [Google Scholar] [CrossRef]
- Mavromatakis, F.; Kavoussanaki, E.; Vignola, F.; Franghiadakis, Y. Measuring and estimating the temperature of photovoltaic modules. Sol. Energy 2014, 110, 656–666. [Google Scholar] [CrossRef]
- Pérez, J.C.; González, A.; Díaz, J.P.; Expósito, F.J.; Felipe, J. Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands. Renew. Energy 2019, 133, 749–759. [Google Scholar] [CrossRef]
- Sawadogo, W.; Abiodun, B.J.; Okogbue, E.C. Impacts of global warming on photovoltaic power generation over West Africa. Renew. Energy 2020, 151, 263–277. [Google Scholar] [CrossRef]
- Tamizhmani, G.; Ji, L.; Tang, Y.; Petacci, L.; Osterwald, C. Photovoltaic module thermal/wind performance: Long-term monitoring and model development for energy rating. In Proceedings of the NCPV and Solar Program Review Meeting, Denver, CO, USA, 24–26 March 2003; Volume 1, pp. 936–939. [Google Scholar]
- Zou, L.; Wang, L.; Li, J.; Lu, Y.; Gong, W.; Niu, Y. Global surface solar radiation and photovoltaic power from coupled model intercomparison project phase 5 climate models. J. Clean. Prod. 2019, 224, 304–324. [Google Scholar] [CrossRef]
- Smith, C.J.; Crook, J.A.; Crook, R.; Jackson, L.S.; Osprey, S.M.; Forster, P.M. Impacts of Stratospheric Sulfate Geoengineering on Global Solar Photovoltaic and Concentrating Solar Power Resource. J. Appl. Meteorol. Climatol. 2017, 56, 1483–1497. [Google Scholar] [CrossRef]
- Gunderson, I.; Goyette, F.; Gago-Silva, A.; Quiquerez, L.; Lehmann, A. Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region. Environ. Sci. Policy 2015, 46, 70–81. [Google Scholar] [CrossRef]
- Bazyomo, S.D.Y.B.; Lawin, E.A.; Coulibaly, O.; Ouedraogo, A. Forecasted Changes in West Africa Photovoltaic Energy Output by 2045. Climate 2016, 4, 53. [Google Scholar] [CrossRef]
- Perpiñán, O. solaR: Solar Radiation and photovoltaic Systems with R. J. Stat. Softw. 2012, 50, 1–32. [Google Scholar] [CrossRef]
- Medeiros, S.E.L.; Nilo, P.F.; Silva, L.P.; Santos, C.A.C.; Carvalho, M.; Abrahão, R. Influence of climatic variability on the electricity generation potential by renewable sources in the Brazilian semi-arid region. J. Arid. Environ. 2021, 184, 104331. [Google Scholar] [CrossRef]
- Evans, D.L.; Florschuetz, L.W. Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Sol. Energy 1977, 19, 255–262. [Google Scholar] [CrossRef]
- Spectrolab. Photovoltaic Systems Concept Study; Rep. AL0-2748-12; Spectrolab, Inc.: Sylmar, CA, USA, 1977. [Google Scholar]
- Ross, R.G.; Smokler, M.I. Flat-Plate Solar Array Project Final Report—Vol. VI: Engineering Sciences and Reliability; Report DOE/JPL-1012-125; Jet Propulsion Lab.: Pasadena, CA, USA, 1986. [Google Scholar]
- Zhao, X.; Huang, G.; Lu, C.; Zhou, X.; Li, Y. Impacts of climate change on photovoltaic energy potential: A case study of China. Appl. Energy 2020, 280, 115888. [Google Scholar] [CrossRef]
- Panagea, I.S.; Tsanis, I.K.; Koutroulis, A.G.; Grillakis, M.G. Climate change impact on photovoltaic energy output: The case of Greece. Adv. Meteorol. 2014, 2014, 264506. [Google Scholar] [CrossRef]
- Wild, M.; Folini, D.; Henschel, F.; Fischer, N.; Müller, B. Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol. Energy 2015, 116, 12–24. [Google Scholar] [CrossRef]
- Skoplaki, E.; Boudouvis, A.G.; Palyvos, J.A. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 2008, 92, 1393–1402. [Google Scholar] [CrossRef]
- Lewis, C.A.; Kirkpatric, J.P. Solar cell characteristics at high solar intensities and temperatures. In Proceedings of the 8th IEEE Photovoltaic Specialists Conference Record, Seattle, WA, USA, 4–6 August 1970; pp. 123–134. [Google Scholar]
- Bichet, A.; Hingray, B.; Evin, G.; Diedhiou, A.; Kebe, C.M.F.; Anquetin, S. Potential impact of climate change on solar resource in Africa for photovoltaic energy: Analyses from CORDEX-AFRICA climate experiments. Environ. Res. Lett. 2019, 14, 124039. [Google Scholar] [CrossRef]
- Sorensen, B. GIS management of solar resource data. Sol. Energy Mater. Sol. Cells 2001, 67, 503–509. [Google Scholar] [CrossRef]
- Axitec. AXI Power: 60-Cell Polycrystalline Solar Module. 2016. Available online: https://www.axitecsolar.com/solarmodule-von-axitec (accessed on 24 January 2022).
- Notton, G.; Cristofari, C.; Mattei, M.; Poggi, P. Modelling of a double-glass photovoltaic module using finite differences. Appl. Therm. Eng. 2005, 25, 2854–2877. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Chakraborty, A.K.; Pal, K. Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura. India J. Sol. Energy 2014, 2014, 817078. [Google Scholar] [CrossRef]
- Kazem, H.A.; Chaichan, M.T.; Al-Shezawi, I.M.; Al-Saidi, H.S.; Al-Rubkhi, H.S.; Alsinani, K.; Al-Waeli, A.H.A. Effect of Humidity on the PV Performance in Oman. Asian Trans. Eng. 2012, 2, 29–32. [Google Scholar]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- EN 60904-5; Photovoltaic Devices–Part 5: Determination of the Equivalent Cell Temperature (ECT) of Photovoltaic (PV) Devices by the Open-Circuit Method. iTeh, Inc.: Newark, DE, USA, 1995.
- Orzen, T.; Tolgay, D.; Yakut, M.S.; Akinoglu, B.G. An extended analysis of the models to estimate photovoltaic module temperature. Turk. J. Eng. 2020, 4, 183–196. [Google Scholar]
- King, D.L.; Boyson, W.E.; Kratochvil, J.A. Photovoltaic Array Performance Model; No: SAND2004-3; Sandia National Laboratories: Springfield, VA, USA, 2004. [Google Scholar]
- Podewils, C. Differenze evidenti. Quel che i gestori degli impianti dovrebbero sapere sui programmi di simulazione. Photon 2011, 5, 140–147. [Google Scholar]
- Roberts, J.J.; Zevallos, A.A.M.; Cassula, A.M. Assessment of photovoltaic performance models for system simulation. Renew. Sustain. Energy Rev. 2017, 72, 1104–1123. [Google Scholar] [CrossRef]
- González-Peña, D.; García-Ruiz, I.; Díez-Mediavilla, M.; Dieste-Velasco, M.I.; Alonso-Tristán, C. Photovoltaic Prediction Software: Evaluation with Real Data from Northern Spain. Appl. Sci. 2021, 11, 5025. [Google Scholar] [CrossRef]
- Fuster-Palop, E.; Vargas-Salgado, C.; Ferri-Revert, J.C.; Payá, J. Performance analysis and modelling of a 50 MW grid-connected photovoltaic plant in Spain after 12 years of operation. Renew. Sustain. Energy Rev. 2022, 170, 112968. [Google Scholar] [CrossRef]
- Morais, F.H.M.; Oliveira, O.A.V.; Silva, L.; Moraes, A.M.; Barbosa, F.R. Influência da Irradiação Solar na Análise de Viabilidade Econômica de Sistemas Fotovoltaicos. Rev. Bras. Meteorol. 2021, 36, 723–734. [Google Scholar] [CrossRef]
- Silva, J.E.; Santos, F.R.; Kaltmaier, G.; Urbanetz Junior, J. Implementation of a photovoltaic panel to supply electric cars energy demands. Braz. Arch. Biol. Technol. 2018, 61, e18000530. [Google Scholar] [CrossRef]
- Correa-Betanzo, C.; Calleja, H.; León-Aldaco, S. Module temperature models assessment of photovoltaic seasonal energy yield. Sustain. Energy Technol. Assess. 2018, 27, 9–16. [Google Scholar] [CrossRef]
# | Equations | |
---|---|---|
Temperature | Operational Loss Factor | |
M1 | ||
M2 | ||
M3 | ||
M4 | ||
M5 | ||
M6 | - | - |
Manufacturer and Model: Axitec AC-260P/156-60S | |||
---|---|---|---|
Parameter | Value | Parameter | Value |
Photovoltaic cell technology | Polycrystalline silicon | Solar irradiance coefficient | |
Number of modules | Temperature coefficient | ||
Nominal power | Solar irradiance | ||
Module area | Cell operation temperature * | ||
Efficiency | Nominal operating cell temperature |
Conditions | Air Temperature | Daily Solar Irradiance |
---|---|---|
C1 | ||
C2 | ||
C3 | ||
C4 | ||
C5 |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
M1 | - | 10.43% | 1.33% | 6.03% | 13.59% | - |
M2 | 10.43% | - | 8.98% | 4.16% | 25.41% | - |
M3 | 1.33% | 8.98% | - | 4.64% | 15.09% | - |
M4 | 6.03% | 4.16% | 4.64% | - | 20.41% | - |
M5 | 13.59% | 25.41% | 15.09% | 20.41% | - | - |
M6 | - | - | - | - | - | - |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
M1 | - | 1.52% | 0.21% | 9.57% | 6.49% | - |
M2 | 1.52% | - | 1.31% | 7.93% | 0.70% | - |
M3 | 0.21% | 1.31% | - | 9.34% | 6.27% | - |
M4 | 9.57% | 7.93% | 9.34% | - | 2.89% | - |
M5 | 6.49% | 0.70% | 6.27% | 2.89% | - | - |
M6 | - | - | - | - | - | - |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
M1 | - | 1.52% | 0.21% | 9.57% | 6.49% | 12.89% |
M2 | 1.52% | - | 1.31% | 7.93% | 0.70% | 11.20% |
M3 | 0.21% | 1.31% | - | 9.34% | 6.27% | 12.65% |
M4 | 9.57% | 7.93% | 9.34% | - | 2.89% | 3.03% |
M5 | 6.49% | 0.70% | 6.27% | 2.89% | - | 6.01% |
M6 | 12.89% | 11.20% | 12.65% | 3.03% | 6.01% | - |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
−29.57% | −37.22% | −29.96% | −29.57% | −25.01% | - | |
4.74% | 5.32% | 4.73% | −0.50% | 4.28% | - | |
4.74% | 5.32% | 4.73% | 4.08% | 4.28% | - |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
29.57% | 37.22% | 29.96% | 29.57% | 25.01% | - | |
−4.74% | −5.32% | −4.73% | −4.08% | −4.28% | - | |
−4.74% | −5.32% | −4.73% | −4.08% | −4.28% | - |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
−3.85% | −2.38% | −3.66% | −3.66% | −3.13% | - | |
−0.58% | −0.84% | −0.62% | 0.50% | 0.54% | - | |
−18.84% | −19.05% | −18.87% | −17.96% | −17.93% | −18.37% |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
3.85% | 2.38% | 3.66% | 3.66% | 3.13% | - | |
0.37% | 0.64% | 0.41% | −0.50% | −0.54% | - | |
18.81% | 19.12% | 18.86% | 17.77% | 17.73% | 18.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, N.M.F.T.S.; Medeiros, S.E.L.; Abrahão, R. Variability and Sensitivity of Models Used to Estimate Photovoltaic Production. Energies 2024, 17, 4177. https://doi.org/10.3390/en17164177
Araújo NMFTS, Medeiros SEL, Abrahão R. Variability and Sensitivity of Models Used to Estimate Photovoltaic Production. Energies. 2024; 17(16):4177. https://doi.org/10.3390/en17164177
Chicago/Turabian StyleAraújo, Nícolas M. F. T. S., Susane Eterna Leite Medeiros, and Raphael Abrahão. 2024. "Variability and Sensitivity of Models Used to Estimate Photovoltaic Production" Energies 17, no. 16: 4177. https://doi.org/10.3390/en17164177
APA StyleAraújo, N. M. F. T. S., Medeiros, S. E. L., & Abrahão, R. (2024). Variability and Sensitivity of Models Used to Estimate Photovoltaic Production. Energies, 17(16), 4177. https://doi.org/10.3390/en17164177