Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments
Abstract
:1. Introduction
1.1. Historical Context of Hydrogen as an Energy Carrier
1.2. Recent Advances and Challenges in Hydrogen Production
2. Hydrogen Production Techniques
2.1. Water Splitting Techniques in Hydrogen Production
2.1.1. Alkaline Electrolysis
2.1.2. Proton Exchange Membrane (PEM) Electrolysis
2.1.3. High-Temperature Electrolysis (HTEL)
3. Renewable Energy for Hydrogen Production
3.1. Solar Energy in Hydrogen Production
3.2. Wind Energy in Hydrogen Production
- United States: The US has the largest onshore wind farm capacity, with the Alta Wind Energy Centre in California alone having a capacity of 1548 MW. Texas produces about a quarter of US wind power [109].
- Germany: Germany boasts the highest installed wind capacity in Europe, exceeding 64 GW. The Gode Windfarms and the Nordsee One Offshore Wind farm are among the largest offshore wind farms in the country [109].
- India: With an installed capacity of 42 GW, India’s Muppandal wind farm in Tamil Nadu and the Jaisalmer Wind Park in Rajasthan are among the largest onshore wind farms in the world [109].
- Spain: Around 20% of Spain’s electricity is generated from wind, contributing to its 29 GW of installed capacity. The country is also a key player in global wind manufacturing [109].
- United Kingdom: The UK has a significant offshore wind capacity, with six of the ten highest-capacity offshore wind projects in the world located in its waters. The Hornsea One wind farm is currently the world’s largest [109].
- Brazil: With more than 19 GW, Brazil has the largest wind capacity in South America, competing closely with hydroelectric power for the country’s second place in energy generation [109].
- France: France is aiming to significantly increase its wind generation capacity and streamline its wind construction processes. It currently has an installed wind capacity of 18.7 GW [109].
- Canada: Wind power constitutes about 5% of Canada’s energy supply, with the Rivière-du-Moulin project in Quebec being the largest wind farm in the country at a capacity of 300 MW [109].
- Italy: Italy reached an installed wind generation capacity of 12.7 GW in 2021. The country’s wind industry is largely concentrated in the south and on its islands [109].
3.3. Geothermal Energy in Hydrogen Production
3.4. Hydropower in Hydrogen Production
3.5. Biomass in Hydrogen Production
4. Bibliometric Analysis
5. Conclusions, Roadmap, and Recommendations for Hydrogen Development
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. The Future of Hydrogen, Seizing Today’s Opportunities; IEA: Paris, France, 2019; Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 1 June 2024).
- Brady, J.E.; Holum, J.R. Fundamentals of Chemistry, 3rd ed.; Wiley: Hoboken, NJ, USA, 1988. [Google Scholar]
- Thomas, J.M.W.R. Grove and the fuel cell. Philos. Mag. 2012, 92, 3757–3765. [Google Scholar] [CrossRef]
- Clarke, J.; Dettmer, W.; Wen, J.; Ren, Z. Cryogenic Hydrogen Jet and Flame for Clean Energy Applications: Progress and Challenges. Energies 2023, 16, 4411. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Mahmoud, M.S.; Elsaid, K.; Obaideen, K.; Rezk, H.; Wilberforce, T.; Eisa, T.; Chae, K.-J.; Sayed, E.T. Green hydrogen: Pathways, roadmap, and role in achieving sustainable development goals. Process Saf. Environ. Prot. 2023, 177, 664–687. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, C.; Bai, F.; Wang, W.; An, S.; Zhao, K.; Li, Z.; Li, J.; Sun, H. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 2024, 355, 129455. [Google Scholar] [CrossRef]
- Hassan, Q.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M.; Al-Jiboory, A.K. Hydrogen energy future: Advancements in storage technologies and implications for sustainability. J. Energy Storage 2023, 72, 108404. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue, and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dash, S.K.; Madurai Elavarasan, R.; Kaur, A.; Elangovan, D.; Meraj, S.T.; Kasinathan, P.; Said, Z. Hydrogen energy as future of sustainable mobility. Front. Energy Res. 2022, 10, 893475. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Ugbeh-Johnson, J.; Okeke, N.E.; Ogbonnaya, C. Present and Projected Developments in Hydrogen Production: A Technological Review. Carbon Capture Sci. Technol. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-samari, A.; Abdulateef, J.; Sameen, A.Z.; Salman, H.M.; Al-Jiboory, A.K.; Wieteska, S.; Jaszczur, M. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green hydrogen: A pathway to a sustainable energy future. Int. J. Hydrogen Energy 2024, 50, 310–333. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Hadj Abdallah, H. Integration of renewable-energy-based green hydrogen into the energy future. Processes 2023, 11, 2685. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Antón-Sancho, Á.; Lampropoulos, G.; Vergara, D. On green hydrogen generation technologies: A bibliometric review. Appl. Sci. 2024, 14, 2524. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.X.; Yao, R.; Wu, Y.H.; Qiu, J.S. Progress and prospects of hydrogen production: Opportunities and challenges. J. Electron. Sci. Technol. 2021, 19, 100080. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Hassan, Q.; Al-Musawi, T.J.; Algburi, S.; Al-Razgan, M.; Awwad, E.M.; Viktor, P.; Ahsan, M.; Ali, B.M.; Jaszczur, M.; Kalaf, G.A.; et al. Evaluating energy, economic, and environmental aspects of solar-wind-biomass systems to identify optimal locations in Iraq: A GIS-based case study. Energy Sustain. Dev. 2024, 79, 101386. [Google Scholar] [CrossRef]
- Liu, X.; Zhuang, H. Recent progresses in photocatalytic hydrogen production: Design and construction of Ni-based cocatalysts. Int. J. Energy Res. 2021, 45, 1480–1495. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Kamaraj, M.; Ramachandran, K.K.; Aravind, J. Biohydrogen production from waste materials: Benefits and challenges. Int. J. Environ. Sci. Technol. 2020, 17, 559–576. [Google Scholar] [CrossRef]
- Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef] [PubMed]
- Pathy, A.; Nageshwari, K.; Ramaraj, R.; Maniam, G.P.; Govindan, N.; Balasubramanian, P. Biohydrogen production using algae: Potentiality, economics and challenges. Bioresour. Technol. 2022, 360, 127514. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Bahadar, A.; Liaquat, R.; Muddasar, M. Recent advances in biological hydrogen production from algal biomass: A comprehensive review. Fuel 2023, 350, 128816. [Google Scholar] [CrossRef]
- Goria, K.; Singh, H.M.; Singh, A.; Kothari, R.; Tyagi, V.V. Insights into biohydrogen production from algal biomass: Challenges, recent advancements and future directions. Int. J. Hydrogen Energy 2024, 52, 127–151. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, F.; Zhang, Y.; Djire, A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrogen Energy 2021, 46, 32284–32317. [Google Scholar] [CrossRef]
- Noori, M.T.; Rossi, R.; Logan, B.E.; Min, B. Hydrogen production in microbial electrolysis cells with biocathodes. Trends Biotechnol. 2024, 42, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Evro, S.; Oni, B.A.; Tomomewo, O.S. Carbon neutrality and hydrogen energy systems. Int. J. Hydrogen Energy 2024, 78, 1449–1467. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, J.; Choi, D.G.; Park, S.Y. Analysis of the role of hydrogen energy in achieving carbon neutrality by 2050: A case study of the Republic of Korea. Energy 2024, 304, 132023. [Google Scholar] [CrossRef]
- Xiang, P.-P.; He, C.-M.; Chen, S.; Jiang, W.-Y.; Liu, J.; Jiang, K.-J. Role of hydrogen in China’s energy transition towards carbon neutrality target: IPAC analysis. Adv. Clim. Change Res. 2023, 14, 43–48. [Google Scholar] [CrossRef]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Gençer, E.; Hydrogen. MIT Climate Portal. 23 June 2021. Available online: https://climate.mit.edu/explainers/hydrogen (accessed on 15 December 2023).
- Ahn, S.-Y.; Kim, K.-J.; Kim, B.-J.; Hong, G.-R.; Jang, W.-J.; Bae, J.W.; Park, Y.-K.; Jeon, B.-H.; Roh, H.-S. From gray to blue hydrogen: Trends and forecasts of catalysts and sorbents for unit process. Renew. Sustain. Energy Rev. 2023, 186, 113635. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Absi Halabi, M.; Rana, M.S.; Vinoba, M. Blue hydrogen: Current status and future technologies. Energy Convers. Manag. 2023, 283, 116840. [Google Scholar] [CrossRef]
- Amini Horri, B.; Ozcan, H. Green hydrogen production by water electrolysis: Current status and challenges. Curr. Opin. Green Sustain. Chem. 2024, 47, 100932. [Google Scholar] [CrossRef]
- Franco, A.; Giovannini, C. Recent and Future Advances in Water Electrolysis for Green Hydrogen Generation: Critical Analysis and Perspectives. Sustainability 2023, 15, 16917. [Google Scholar] [CrossRef]
- El-Shafie, M. Hydrogen production by water electrolysis technologies: A review. Results Eng. 2023, 20, 101426. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef]
- Brauns, J.; Turek, T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020, 8, 248. [Google Scholar] [CrossRef]
- Burton, N.A.; Padilla, R.V.; Rose, A.; Habibullah, H. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renew. Sustain. Energy Rev. 2021, 135, 110255. [Google Scholar] [CrossRef]
- Jaradat, M.; Alsotary, O.; Juaidi, A.; Albatayneh, A.; Alzoubi, A.; Gorjian, S. Potential of producing green hydrogen in Jordan. Energies 2022, 15, 9039. [Google Scholar] [CrossRef]
- Budama, V.K.; Rincon Duarte, J.P.; Roeb, M.; Sattler, C. Potential of solar thermochemical water-splitting cycles: A review. Sol. Energy 2023, 249, 353–366. [Google Scholar] [CrossRef]
- Warren, K.J.; Weimer, A.W. Solar thermochemical fuels: Present status and future prospects. Sol. Compass 2022, 1, 100010. [Google Scholar] [CrossRef]
- Das, A.; Peu, S.D. A comprehensive review on recent advancements in thermochemical processes for clean hydrogen production to decarbonize the energy sector. Sustainability 2022, 14, 11206. [Google Scholar] [CrossRef]
- Boretti, A. Which thermochemical water-splitting cycle is more suitable for high-temperature concentrated solar energy? Int. J. Hydrogen Energy 2022, 47, 20462–20474. [Google Scholar] [CrossRef]
- Baiju, S.; Masuda, U.; Datta, S.; Tarefder, K.; Chaturvedi, J.; Ramakrishna, S.; Tripathi, L.N. Photo-electrochemical green-hydrogen generation: Fundamentals and recent developments. Int. J. Hydrogen Energy 2024, 51, 779–808. [Google Scholar] [CrossRef]
- Cao, S.; Piao, L.; Chen, X. Emerging Photocatalysts for Hydrogen Evolution. Trends Chem. 2020, 2, 57–70. [Google Scholar] [CrossRef]
- Xu, F.; Weng, B. Photocatalytic hydrogen production: An overview of new advances in structural tuning strategies. J. Mater. Chem. A 2023, 11, 4473–4486. [Google Scholar] [CrossRef]
- Hora, C.; Dan, F.C.; Rancov, N.; Badea, G.E.; Secui, C. Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review. Energies 2022, 15, 6076. [Google Scholar] [CrossRef]
- Millet, P.; Grigoriev, S. Chapter 2—Water Electrolysis Technologies. In Renewable Hydrogen Technologies; Gandía, L.M., Arzamendi, G., Diéguez, P.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 19–41. [Google Scholar] [CrossRef]
- Brisse, A.; Schefold, J.; Léon, A. Chapter 7—High-temperature steam electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Smolinka, T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 229–280. [Google Scholar] [CrossRef]
- d’Amore-Domenech, R.; Carrillo, I.; Navarro, E.; Leo, T.J. Alkaline electrolysis for hydrogen production at sea: Perspectives on economic performance. Energies 2023, 16, 4033. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Zhao, P.; Xia, H.; Li, Y.; Sun, L.; He, W. Hydrogen Production System Using Alkaline Water Electrolysis Adapting to Fast Fluctuating Photovoltaic Power. Energies 2023, 16, 3308. [Google Scholar] [CrossRef]
- Emam, A.S.; Hamdan, M.O.; Abu-Nabah, B.A.; Elnajjar, E. A review on recent trends, challenges, and innovations in alkaline water electrolysis. Int. J. Hydrogen Energy 2024, 64, 599–625. [Google Scholar] [CrossRef]
- Wang, J.; Wen, J.; Wang, J.; Yang, B.; Jiang, L. Water electrolyzer operation scheduling for green hydrogen production: A review. Renew. Sustain. Energy Rev. 2024, 203, 114779. [Google Scholar] [CrossRef]
- Awad, M.; Said, A.; Saad, M.H.; Farouk, A.; Mahmoud, M.M.; Alshammari, M.S.; Alghaythi, M.L.; Abdel Aleem, S.H.E.; Abdelaziz, A.Y.; Omar, A.I. A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alex. Eng. J. 2024, 87, 213–239. [Google Scholar] [CrossRef]
- Nel Hydrogen. Electrolysis: A Norwegian Success Story. 2024. Available online: https://nelhydrogen.com/podcasts/electrolysis-a-norwegian-success-story/ (accessed on 25 January 2024).
- Smolinka, T.; Bergmann, H.; Garche, J.; Kusnezoff, M. The history of water electrolysis from its beginnings to the present. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Smolinka, T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 83–164. [Google Scholar] [CrossRef]
- Krishnan, S.; Fairlie, M.; Andres, P.; de Groot, T.; Kramer, G.J. Power to gas (H2): Alkaline electrolysis. In Technological Learning in the Transition to a Low-Carbon Energy System; Junginger, M., Louwen, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 165–187. [Google Scholar] [CrossRef]
- Dermühl, S.; Riedel, U. A comparison of the most promising low-carbon hydrogen production technologies. Fuel 2023, 340, 127478. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Travis, A.S.; Lefferts, L. 1921–2021: A Century of Renewable Ammonia Synthesis. Sustain. Chem. 2022, 3, 149–171. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Current State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. 2009. Available online: https://www.nrel.gov/docs/fy10osti/46676.pdf (accessed on 21 December 2023).
- Pozio, A.; Bozza, F.; Nigliaccio, G.; Platter, M.; Monteleone, G. Development perspectives on low-temperature electrolysis. Energ. Ambiente Innov. 2021, 1, 66–72. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kwon, Y.; Kim, S.; Yun, J.; Kim, E.; Jang, G.; Song, Y.; Kim, B.S.; Oh, C.-S.; Choa, Y.-H.; et al. A novel water electrolysis hydrogen production system powered by a renewable hydrovoltaic power generator. Chem. Eng. J. 2024, 495, 153411. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects. Carbon Neutrality 2022, 1, 21. [Google Scholar] [CrossRef]
- Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis. Energy 2007, 32, 431–436. [Google Scholar] [CrossRef]
- Kamaroddin, A.F.; Sabli, N.; Tuan Abdullah, T.A.; Siajam, S.I.; Abdullah, L.C.; Abdul Jalil, A.; Ahmad, A. Membrane-Based Electrolysis for Hydrogen Production: A Review. Membranes 2021, 11, 810. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, C.; Tu, J.; Zhan, Z.; Zhang, B.; Liu, Q.; Zhang, Z.; Hu, H.; Liu, T. The multi-scenario projection of cost reduction in hydrogen production by proton exchange membrane (PEM) water electrolysis in the near future (2020–2060) of China. Fuel 2023, 354, 129409. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Kuhnert, E.; Heidinger, M.; Sandu, D.; Hacker, V.; Bodner, M. Analysis of PEM water electrolyzer failure due to induced hydrogen crossover in catalyst-coated PFSA membranes. Membranes 2023, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Kuhnert, E.; Hacker, V.; Bodner, M.; Subramanian, P. A review of accelerated stress tests for enhancing MEA durability in PEM water electrolysis cells. Int. J. Energy Res. 2023, 2023, 3183108. [Google Scholar] [CrossRef]
- Elder, R.; Cumming, D.; Mogensen, M.B. High temperature electrolysis. In Carbon Dioxide Utilisation; Styring, P., Quadrelli, E.A., Armstrong, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 183–209. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. 3.1 Hydrogen production. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–40. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Z.; Yuan, B.; Xiao, G.; Li, T.; Wang, J.-Q. Optimization of high-temperature electrolysis system for hydrogen production considering high-temperature degradation. Energies 2023, 16, 2616. [Google Scholar] [CrossRef]
- Fallah Vostakola, M.; Ozcan, H.; El-Emam, R.S.; Amini Horri, B. Recent advances in high-temperature steam electrolysis with solid oxide electrolysers for green hydrogen production. Energies 2023, 16, 3327. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jang, Y.J.; Park, H.; Kim, W.Y.; Lee, Y.H.; Choi, S.H.; Lee, J.S. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels. Appl. Catal. B Environ. 2017, 202, 605–610. [Google Scholar] [CrossRef]
- Roeb, M.; Brendelberger, S.; Rosenstiel, A.; Agrafiotis, C.; Monnerie, N.; Budama, V.; Jacobs, N.; Wasserstoff als ein Fundament der Energiewende Teil 1: Technologien und Perspektiven für eine nachhaltige und ökonomische Wasserstoffversorgung [Hydrogen as a Foundation of the Energy Transition Part 1: Technologies and Perspectives for a Sustainable and Economic Hydrogen Supply] (1st ed.). Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). 2020. Available online: https://www.researchgate.net/publication/346300856 (accessed on 30 December 2023).
- Hermesmann, M.; Müller, T.E. Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Park, C.; Koo, M.; Woo, J.R.; Hong, B.I.; Shin, J. Economic valuation of green hydrogen charging compared to gray hydrogen charging: The case of South Korea. Int. J. Hydrogen Energy 2022, 47, 14393–14403. [Google Scholar] [CrossRef]
- Moreno-Brieva, F.; Guimón, J.; Salazar-Elena, J.C. From grey to green and from west to east: The geography and innovation trajectories of hydrogen fuel technologies. Energy Res. Soc. Sci. 2023, 101, 103146. [Google Scholar] [CrossRef]
- Scovell, M.; Walton, A. Blue or Green? Exploring Australian acceptance and beliefs about hydrogen production methods. J. Clean. Prod. 2024, 444, 141151. [Google Scholar] [CrossRef]
- Bungau, C.C.; Bungau, T.; Prada, I.F.; Prada, M.F. Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability 2022, 14, 13121. [Google Scholar] [CrossRef]
- Massarweh, O.; Al-khuzaei, M.; Al-Shafi, M.; Bicer, Y.; Abushaikha, A.S. Blue hydrogen production from natural gas reservoirs: A review of application and feasibility. J. CO2 Util. 2023, 70, 102438. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.R.; Rahman, S.M.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941. [Google Scholar] [CrossRef]
- Diab, J.; Fulcheri, L.; Hessel, V.; Rohani, V.; Frenklach, M. Why turquoise hydrogen will be a game changer for the energy transition. Int. J. Hydrogen Energy 2022, 47, 25831–25848. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Farooqi, Z.U.R.; Lee, C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 2022, 47, 33112–33134. [Google Scholar] [CrossRef]
- IEA. Renewable Electricity Capacity Additions by Technology and Segment, 2016–2028; IEA: Paris, France, 2024; Available online: https://www.iea.org/data-and-statistics/charts/renewable-electricity-capacity-additions-by-technology-and-segment-2016-2028 (accessed on 1 February 2024).
- Matute, G.; Yusta, J.M.; Beyza, J.; Monteiro, C. Optimal dispatch model for PV-electrolysis plants in self-consumption regime to produce green hydrogen: A Spanish case study. Int. J. Hydrogen Energy 2022, 47, 25202–25213. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Techno-economic analysis of green hydrogen ferries with a floating photovoltaic based marine fueling station. Energy Convers. Manag. 2021, 247, 114760. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Amodio, L.; Pagano, M. Hydrogen production by water electrolysis and off-grid solar PV. Int. J. Hydrogen Energy 2021, 46, 29038–29048. [Google Scholar] [CrossRef]
- Sayedin, F.; Maroufmashat, A.; Sattari, S.; Elkamel, A.; Fowler, M. Optimization of Photovoltaic Electrolyzer Hybrid systems; taking into account the effect of climate conditions. Energy Convers. Manag. 2016, 118, 438–449. [Google Scholar] [CrossRef]
- Grimm, A.; de Jong, W.A.; Kramer, G.J. Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. Int. J. Hydrogen Energy 2020, 45, 22545–22555. [Google Scholar] [CrossRef]
- Niaz, H.; Lakouraj, M.M.; Liu, J. Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: A Korean case study. Korean J. Chem. Eng. 2021, 38, 1617–1630. [Google Scholar] [CrossRef]
- Schnuelle, C.; Wassermann, T.; Fuhrlaender, D.; Zondervan, E. Dynamic hydrogen production from PV & wind direct electricity supply—Modeling and techno-economic assessment. Int. J. Hydrogen Energy 2020, 45, 29938–29952. [Google Scholar] [CrossRef]
- Menanteau, P.; Quéméré, M.M.; Le Duigou, A.; Le Bastard, S. An economic analysis of the production of hydrogen from wind-generated electricity for use in transport applications. Energy Policy 2011, 39, 2957–2965. [Google Scholar] [CrossRef]
- Yang, G.; Jiang, Y.; You, S. Planning and operation of a hydrogen supply chain network based on the off-grid wind-hydrogen coupling system. Int. J. Hydrogen Energy 2020, 45, 20721–20739. [Google Scholar] [CrossRef]
- Olateju, B.; Kumar, A.; Secanell, M. A techno-economic assessment of large-scale wind-hydrogen production with energy storage in Western Canada. Int. J. Hydrogen Energy 2016, 41, 8755–8776. [Google Scholar] [CrossRef]
- Tebibel, H. Wind Turbine Power System for Hydrogen Production and Storage: Techno-economic Analysis. In Proceedings of the 2018 International Conference on Wind Energy and Applications in Algeria (ICWEAA), Algiers, Algeria, 6–7 November 2018. [Google Scholar] [CrossRef]
- Genç, M.S.; Çelik, M.; Karasu, I. A review on wind energy and wind–hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey. Renew. Sustain. Energy Rev. 2012, 16, 6631–6646. [Google Scholar] [CrossRef]
- Bendea, G.; Felea, I.; Hora, C.; Bendea, C.; Felea, A.; Blaga, A. Energy Performance Analysis of a Heat Supply System of a University Campus. Energies 2023, 16, 174. [Google Scholar] [CrossRef]
- Koumi Ngoh, S.; Njomo, D. An overview of hydrogen gas production from solar energy. Renew. Sustain. Energy Rev. 2012, 16, 6782–6792. [Google Scholar] [CrossRef]
- Muhammad, H.A.; Naseem, M.; Kim, J.; Kim, S.; Choi, Y.; Lee, Y.D. Solar hydrogen production: Technoeconomic analysis of a concentrated solar-powered high-temperature electrolysis system. Energy 2024, 298, 131284. [Google Scholar] [CrossRef]
- World Bank. Global Solar Atlas. 2017. Available online: https://globalsolaratlas.info (accessed on 12 January 2024).
- PV Magazine. Humans Have Installed 1 Terawatt of Solar Capacity. 2022. Available online: https://www.pv-magazine.com/2022/03/15/humans-have-installed-1-terawatt-of-solar-capacity/ (accessed on 14 December 2023).
- Keiner, D.; Ram, M.; Barbosa, L.D.S.N.S.; Bogdanov, D.; Breyer, C. Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Sol. Energy 2019, 185, 406–423. [Google Scholar] [CrossRef]
- Global Wind Energy Council. Global Wind Report 2023. 2023. Available online: https://gwec.net/globalwindreport2023/ (accessed on 12 January 2024).
- Reddit User. The Potential for Wind Electricity Generation [Online forum Post]. Available online: https://www.reddit.com/r/MapPorn/comments/1v76is/the_potential_for_wind_electricity_generation/ (accessed on 12 February 2024).
- Superchi, F.; Mati, A.; Carcasci, C.; Bianchini, A. Techno-economic analysis of wind-powered green hydrogen production to facilitate the decarbonization of hard-to-abate sectors: A case study on steelmaking. Appl. Energy 2023, 342, 121198. [Google Scholar] [CrossRef]
- Idriss, A.I.; Ahmed, R.A.; Atteyeh, H.A.; Mohamed, O.A.; Ramadan, H.S.M. Techno-Economic Potential of Wind-Based Green Hydrogen Production in Djibouti: Literature Review and Case Studies. Energies 2023, 16, 6055. [Google Scholar] [CrossRef]
- Feng, W.; Yang, L.; Sun, K.; Zhou, Y.; Yuan, Z. An Economic Performance Improving and Analysis for Offshore Wind Farm-Based Islanded Green Hydrogen System. Energies 2024, 17, 3460. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, X.; Wen, H.; Pei, A. Hydrogen production from offshore wind power in South China. Int. J. Hydrogen Energy 2022, 47, 24558–24568. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Delpisheh, M.; Convery, C.; Niblett, D.; Vinothkannan, M.; Mamlouk, M. Offshore green hydrogen production from wind energy: Critical review and perspective. Renew. Sustain. Energy Rev. 2024, 195, 114320. [Google Scholar] [CrossRef]
- Lay, T.; Hernlund, J.; Buffett, B.A. Core–mantle boundary heat flow. Nat. Geosci. 2008, 1, 25–32. [Google Scholar] [CrossRef]
- IRENA. Global Geothermal Market and Technology Assessment. 2023. Available online: https://www.irena.org/Publications/2023/Feb/Global-geothermal-market-and-technology-assessment (accessed on 24 April 2024).
- Gutiérrez-Negrín, L.C.A. Evolution of worldwide geothermal power 2020–2023. Geotherm. Energy 2024, 12, 14. [Google Scholar] [CrossRef]
- International Hydropower Association. The Inaugural 2023 World Hydropower Outlook Out Now. 2023. Available online: https://www.hydropower.org/news/the-inaugural-2023-world-hydropower-outlook-out-now (accessed on 25 March 2024).
- International Energy Agency (IEA). Hydropower Special Market Report. 2023. Available online: https://iea.blob.core.windows.net/assets/4d2d4365-08c6-4171-9ea2-8549fabd1c8d/HydropowerSpecialMarketReport_corr.pdf (accessed on 23 April 2024).
- International Hydropower Association (IHA). 2023 Hydropower Status Report. 2023. Available online: https://indd.adobe.com/view/ad45f7fb-0b2a-4cef-9647-21cc6a888368 (accessed on 23 April 2024).
- European Commission Research and Innovation. Why the EU Supports Hydropower Research and Innovation. 2024. Available online: https://research-and-innovation.ec.europa.eu/research-area/energy/hydropower_en (accessed on 1 July 2024).
- Tkáč, Š. Hydro power plants, an overview of the current types and technology. Sel. Sci. Pap.-J. Civ. Eng. 2018, 13, 115–126. [Google Scholar] [CrossRef]
- Karayel, G.K.; Javani, N.; Dincer, I. Hydropower for green hydrogen production in Turkey. Int. J. Hydrogen Energy 2023, 48, 22806–22817. [Google Scholar] [CrossRef]
- Thapa, B.S.; Neupane, B.; Yang, H.; Lee, Y. Green hydrogen potentials from surplus hydro energy in Nepal. Int. J. Hydrogen Energy 2021, 46, 22256–22267. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Rafa, N.; Mofijur, M.; Badruddin, I.A.; Inayat, A.; Ali, M.S.; Farrok, O.; Khan, T.M.Y. Biohydrogen production from biomass sources: Metabolic pathways and economic analysis. Front. Energy Res. 2021, 9, 753878. [Google Scholar] [CrossRef]
- Dari, D.N.; Freitas, I.S.; Aires, F.I.d.S.; Melo, R.L.F.; dos Santos, K.M.; da Silva Sousa, P.; Gonçalves de Sousa Junior, P.; Luthierre Gama Cavalcante, A.; Neto, F.S.; da Silva, J.L.; et al. An updated review of recent applications and perspectives of hydrogen production from biomass by fermentation: A comprehensive analysis. Biomass 2024, 4, 132–163. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol. 2006, 87, 461–472. [Google Scholar] [CrossRef]
- Braga, A.F.M.; Lens, P.N.L. Natural fermentation as an inoculation strategy for dark fermentation of Ulva spp. hydrolysate. Biomass Bioenergy 2023, 176, 106902. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Ding, L.; Lin, R.; Song, W.; Su, H.; Zhou, J.; Cen, K. Substrate consumption and hydrogen production via co-fermentation of monomers derived from carbohydrates and proteins in biomass wastes. Appl. Energy 2015, 139, 9–16. [Google Scholar] [CrossRef]
- Konur, O. The scientometric evaluation of the research on the production of bioenergy from biomass. Biomass Bioenergy 2012, 47, 504–515. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A.; Jamil, M.M.; Azli, A.A.M.; Misbah, M.F. A review on biomass-based hydrogen production for renewable energy supply. Int. J. Energy Res. 2015, 39, 1597–1615. [Google Scholar] [CrossRef]
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Craiut, L.; Bungau, C.; Bungau, T.; Grava, C.; Otrisal, P.; Radu, A.F. Technology Transfer, Sustainability, and Development, Worldwide and in Romania. Sustainability 2022, 14, 15728. [Google Scholar] [CrossRef]
- Badea, G.E.; Hora, C.; Maior, I.; Cojocaru, A.; Secui, C.; Filip, S.M.; Dan, F.C. Sustainable Hydrogen Production from Seawater Electrolysis: Through Fundamental Electrochemical Principles to the Most Recent Development. Energies 2022, 15, 8560. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaradat, M.; Almashaileh, S.; Bendea, C.; Juaidi, A.; Bendea, G.; Bungau, T. Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies 2024, 17, 3992. https://doi.org/10.3390/en17163992
Jaradat M, Almashaileh S, Bendea C, Juaidi A, Bendea G, Bungau T. Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies. 2024; 17(16):3992. https://doi.org/10.3390/en17163992
Chicago/Turabian StyleJaradat, Mustafa, Sondos Almashaileh, Codruta Bendea, Adel Juaidi, Gabriel Bendea, and Tudor Bungau. 2024. "Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments" Energies 17, no. 16: 3992. https://doi.org/10.3390/en17163992
APA StyleJaradat, M., Almashaileh, S., Bendea, C., Juaidi, A., Bendea, G., & Bungau, T. (2024). Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies, 17(16), 3992. https://doi.org/10.3390/en17163992