Data Acquisition of Logging While Drilling at the Newly Discovered Gas Hydrate Reservoir in Hyuganada Sea, Japan
Abstract
:1. Introduction
2. Outline of the Offshore Survey
3. Geology of the Study Area
3.1. Shimanto Super Group
3.2. Miyazaki Group
3.3. Hyuganada Group
3.4. Bottom Simulating Reflector (BSR)
4. Drilling Site Selection
5. Selection of Logging Tool
5.1. Velocity Logging
5.2. Sonic Logging
5.3. Porosity Logging with Nuclear Magnetic Resonance (NMR) Data and Porosity and Density Logging
5.4. Resistivity and Resistivity Image Logging
6. Results
6.1. LWD Results
6.2. Geotechnical Core Samples
6.2.1. Coring Interval
Run No. | Type | Top Depth [mbsf] | Bottom Depth [mbsf] | Advance Length (m) | Core Length (m) | Core Recovery (%) |
---|---|---|---|---|---|---|
1 | HPCS | 0.00 | 9.50 | 9.50 | 9.98 | 105.05 |
2 | HPCS | 9.50 | 18.60 | 9.10 | 10.50 | 115.38 |
3 | HPCS | 18.60 | 27.90 | 9.30 | 10.96 | 117.85 |
4 | HPCS | 27.90 | 37.10 | 9.20 | 10.73 | 116.63 |
5 | HPCS | 37.10 | 38.40 | 1.30 | 1.22 | 93.85 |
Drill down without center bit | 38.40 | 46.50 | - | - | - | |
6 | HPCS | 46.50 | 55.60 | 9.10 | 10.49 | 115.27 |
7 | HPCS | 55.60 | 65.00 | 9.40 | 10.18 | 108.30 |
8 | HPCS | 65.00 | 68.80 | 3.80 | 3.28 | 86.32 |
9 | HPCS | 68.80 | 73.10 | 4.30 | 10.13 | 235.58 |
10 | HPCS | 78.30 | 82.00 | 3.70 | 3.73 | 100.81 |
11 | HPCS | 82.10 | 89.50 | 7.40 | 7.55 | 102.03 |
Drill down with center bit | 59.50 | 107.00 | - | - | - | |
12 | HPCS | 107.00 | 111.00 | 4.00 | 10.21 | 255.25 |
Drill down without center bit | 111.00 | 117.00 | - | - | - | |
13 | HPCS | 117.00 | 123.20 | 6.20 | 10.04 | 161.94 |
Drill down with center bit | 123.20 | 247.50 | - | - | - | |
14 | S-HPCS | 247.50 | 252.00 | 4.50 | 5.41 | 120.22 |
15 | ESCS | 252.20 | 260.10 | 7.90 | 9.62 | 121.77 |
16 | S-HPCS | 260.10 | 264.40 | 4.30 | 5.44 | 126.51 |
Drill down with center bit | 264.40 | 320.40 | - | - | - | |
17 | S-HPCS | 320.40 | 323.40 | 3.00 | 3.68 | 122.67 |
18 | ESCS | 323.50 | 328.50 | 5.00 | 9.27 | 185.40 |
6.2.2. The Geotechnical Core Samples Analysis
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
MH21 | Research Consortium for Methane Hydrate Resources in Japan |
METI | Ministry of Economy, Trade, and Industry |
JOGMEC | Japan Organization for Metals and Energy Security |
AIST | National Institute of Advanced Industrial Science and Technology |
JFY | Japanese fiscal year |
MHCZs | Methane hydrate concentrated zones |
MH | Methane hydrate |
LWD | Logging while drilling |
WFT | Wireline formation testing |
BSR | Bottom simulating reflector |
P. F. zone | Planktonic foraminiferal fossil zone |
WNW | West–northwest |
NNW | North–northwest |
STW | Stratigraphic Test Well |
NMR | Nuclear magnetic resonance |
PNG | Pulsed neutron generator |
GR | Gamma |
BHA | Bottom hole assembly |
BPHI | Best Thermal Neutron Porosity |
FFV | Formation Fluid Volume |
BFV | Bound Fluid Volume |
KTIM | Permeability derived using the Timur-Coates model |
KSDR | Permeability derived using the Schlumberger Doll Research model |
T2 | Transverse relaxation time |
mBSF | m below seafloor |
ROP | Rate of penetration |
WQFM | Weight of quartz, feldspar, and mica |
GRMA | Natural gamma ray average |
UCAV | Ultrasonic caliper average |
RES_BIT | Bit Resistivity |
RES_BS | Shallow Button Resistivity |
RES_BM | Medium Button Resistivity |
RES_BD | Deep Button Resistivity |
RES_BX | Extra Deep Button Resistivity |
RHON | Bulk Density from Neutron |
SIGE | Sigma Matrix from Elements |
SIFA | Sigma Formation, Average |
WCLA | Dry Weight Clay |
WCLC | Dry Weight Calcite |
WPYR | Dry Weight Pyrite |
MRP | Magnetic resonance porosity |
DTCO | Delta-T Compressional |
DTSH | Delta-T Shear Slowness |
HPCS | Hydraulic Piston Coring System |
S-HPCS | Short Hydraulic Piston Coring System |
ESCS | Extended Shoe Coring System |
References
- Aung, T.T.; Tanaka, M.; Fujii, T.; Amo, M. Evaluation of the Methane Hydrate (MH) System; Japan Oil, Gas and Metals National Corporation: Tokyo, Japan, 2017; pp. 165–167. [Google Scholar]
- Ohtsuki, S.; Gao, B.; Yoshii, T.; Maehara, Y.; Watanabe, D.; Kannno, T.; Fan, Z. First Successful Wireline Stress Testing in a Gas Hydrate Reservoir in the Hyuganada Sea, Japan. Energies 2024, 17, 2610. [Google Scholar] [CrossRef]
- Oda, M.; Chiyonobu, S.; Torii, M.; Otomo, T.; Morimoto, J.; Satou, Y.; Ishikawa, H.; Ashikawa, M.; Tominaga, O. Integrated magnetobiochronology of the Pliocene-Pleistocene Miyazaki succession, southern Kyushu, southwest Japan: Implications for an Early Pleistocene hiatus and defining the base of the Gelasian (P/P boundary type section in Japan). J. Asian Earth Sci. 2011, 40, 84–97. [Google Scholar] [CrossRef]
- Kato, T. Stratigraphy of Nichinan Group in southeastern Kyushu, Japan. Contrib. Inst. Geol. Paleontol. Tohoku Univ. 1985, 87, 1–25. [Google Scholar]
- Sakai, H. Toi-misaki olistostrome of Southern Belt of the Shimanto Terrane, South Kyushu-1. Reconstruction of depositional environments and stratigraphy before the collapse. J. Geol. Soc. Jpn. 1998, 94, 733–747. [Google Scholar] [CrossRef]
- Sakai, H. Origin of the Misaki olistostrome belt and re-examination of the Takachiho orogeny. J. Geol. Soc. Jpn. 1998, 94, 945–961. [Google Scholar] [CrossRef]
- Nishi, H. Litho- and biostratigraphy of the Oligocene-Miocene Nichinan Group in Miyazaki prefecture, Kyushu. Mem. Fac. Sci. Kyushu Univ. Ser. D Geol. 1985, 25, 289–317. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ozawa, T.; Nobuhara, T. Stratigraphy and molluscan fauna of the upper Miocene to lower Pliocene Miyazaki Group in the Aoshima area, Miyazaki Prefecture, southwest Japan. J. Geol. Soc. Jpn. 1999, 105, 45–60. [Google Scholar] [CrossRef]
- Yamaji, A. Slab rollback suggested by latest Miocene to Pliocene forearc stress and migration of volcanic front in southern Kyushu, northern Ryukyu Arc. Tectonophysics 2003, 364, 9–24. [Google Scholar] [CrossRef]
- Takashimizu, Y. Ancient submarine-canyon system developed within fore-arc basin fill, Mio-Pliocene “Miyazaki facies”, Miyazaki Group, western Japan. J. Geol. Soc. Jpn. 2009, 115, 559–577. [Google Scholar] [CrossRef]
- Saito, M.; Sakaguchi, K.; Komazawa, M. Miyazaki, Geological Map of Japan 1:200,000; Geological Survey of Japan: Tsukuba, Japan, 1997. [Google Scholar]
- Iwatani, H.; Iritsuki, T. Geology and fossil ostracode assemblages from the Pliocene Miyazaki Group in the northern part of the Miyazaki Plain, Southwest Japan. Fossils 2008, 84, 61–73. [Google Scholar]
- Suzuki, H. Stratigraphy of the Miyazaki Group in the southeastern part of Miyazaki Prefecture, Kyushu, Japan. Contrib. Inst. Geol. Paleontol. Tohoku Univ. 1987, 90, 1–24. [Google Scholar]
- Torii, M.; Oda, M.; Itaya, T. K–Ar dating of tuff beds intercalated in the Miyazaki Group, Kyushu, Japan. Bull. Volcanol. Soc. Jpn. 2000, 45, 131–148. [Google Scholar]
- Torii, M.; Oda, M. Correlation of the Izaku Pyroclastic Flow Deposit in Kagoshima Prefecture with tuff bed intercalated in the Miyazaki Group: The eruption age of the Izaku-Hisamine tephra based on integrated stratigraphy of the Miyazaki Group and its significance. J. Geol. Soc. Jpn. 2001, 107, 379–391. [Google Scholar] [CrossRef]
- Iwatani, H.; Murai, K.; Irizuki, T.; Hayashi, H.; Tanaka, Y. Discovery of the oldest fossil of Argonauta hians in Japan, from the middle Pliocene Sadowara formation, southwest Japan, and its depositional age. J. Geol. Soc. Jpn. 2009, 115, 48–551. [Google Scholar] [CrossRef]
- Chunlian, L.; Yi, H.; Jie, W.; Guoquan, Q.; Tingting, Y.; Lianze, X.; Suqing, Z.; Yuan, W.; Min, L. Miocene-Pliocene planktonic foraminiferal biostratigraphy of the Pearl River Mouth Basin, northern South China Sea. J. Palaeogeogr. 2012, 1, 43–56. [Google Scholar]
- Saeki, T.; Fujii, T.; Inamori, T.; Kobayashi, T.; Hayashi, M.; Nagakubo, S.; Takano, O. Extraction of methane hydrate concentrated zone for resource assessment in the eastern Nankai Trough, Japan. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5 May 2008; p. OTC-19311. [Google Scholar]
- Collett, T.S.; Boswell, R.; Kumar, P.; Roy, S.K.; Chopra, K.; Singh, S.K.; Yamada, Y.; Tenma, N.; Pohlman, J.; Zyrianova, M. India national gas hydrate program expedition 02 summary of scientific results: Gas hydrate systems along the eastern continental margin of India. Mar. Pet. Geol. 2019, 108, 39–142. [Google Scholar] [CrossRef]
- Shankar, U.; Kumar, P.Y.; Devi, S.; Singh, U.U. Gas hydrate saturation from NGHP 02 LWD data in the Mahanadi Basin. Energy Geosci. 2024, 5, 100218. [Google Scholar] [CrossRef]
- Izuhara, W.; Kinoshita, T.; Yamamoto, H. Dispersion characteristics of leaky compressional mode with LWD sonic tool. In Proceedings of the SPWLA 19th Formation Evaluation Symposium of Japan, Chiba, Japan, 26–27 September 2013. [Google Scholar]
- Fujii, T.; Nakazimu, M.; Tsuji, Y.; Namikawa, T.; Okui, T.; Kawasaki, M.; Ochiai, K.; Nishimura, M.; Takano, O. Methane-hydrate occurrence and saturation confirmed from core samples, eastern Nankai Trough, Japan. AAPG Memoir 2009, 89, 385–400. [Google Scholar]
- Naito, K.; Aung, T.T.; Suzuki, K.; Fujii, T.; Yoneda, J.; Yamamoto, K. Additional data acquisition after second offshore gas production test, eastern Nankai Trough, Japan. In Proceedings of the SPWLA 28th Formation Evaluation Symposium of Japan, Chiba, Japan, 13–14 September 2023. [Google Scholar]
Logging Tool | Tool Name (as of SLB) | Memory Data |
---|---|---|
Resistivity and Resistivity Image Logging | MicroScope |
|
Porosity and density logging | NeoScope |
|
Sonic logging | SonicScope |
|
Velocity logging | SeismicVISION |
|
Porosity logging with nuclear magnetic resonance data | proVISION Plus |
|
Core Analysis Items | Parameters to Be Analyze | Purposes |
---|---|---|
Geomechanical Tests | Undrained shear strength, Compaction, etc. | Geomechanical properties |
Anelastic Strain Recovery | 3 dimensional in-situ stresses | Geomechanical properties Reservoir evaluation |
Paleomagnetism | Magnetic inclination Anisotropy of magnetic susceptibility Remanent magnetization | Geomechanical properties Reservoir evaluation Geological interpretation |
Penetration test | Penetration strength | Geomechanical properties Reservoir evaluation |
Vane shear test | Shear strength | Geomechanical properties Reservoir evaluation |
Gas analysis | Gas composition Gas volume Carbon isotopes of methane | Operational Risk Assessment Geological interpretation Reservoir evaluation MH system |
Interstitial water analysis | pH meter, Salinity, Alkalinity, Chlorinity, etc. | Reservoir evaluation MH system |
Xray-CT | Sediment structure | Geological interpretation Reservoir evaluation |
Multi sensor core logger | Gamma, Density, P-wave velocity Magnetic susceptibility | Reservoir evaluation MH system |
Core description | Sediment structure, lithology, etc. | Geological interpretation Reservoir evaluation MH system |
Xray diffraction | Quantitative analysis of minerals | Geophysical properties Reservoir evaluation MH system |
Particle size analysis | Particle size distribution | Reservoir evaluation Geological interpretation |
Bulk and Grain density | Density | Geophysical properties Reservoir evaluation |
Thermal conductivity | Thermal conductivity | Reservoir evaluation |
Microfossil | Geological age, paleoenvironment | Geological interpretation MH system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, T.; Aung, T.T.; Fujimoto, A.; Ohtsuki, S.; Tano, K.; Otomo, S.; Shimoda, N.; Yoshii, T.; Sakata, R.; Yoneda, J.; et al. Data Acquisition of Logging While Drilling at the Newly Discovered Gas Hydrate Reservoir in Hyuganada Sea, Japan. Energies 2024, 17, 3815. https://doi.org/10.3390/en17153815
Imai T, Aung TT, Fujimoto A, Ohtsuki S, Tano K, Otomo S, Shimoda N, Yoshii T, Sakata R, Yoneda J, et al. Data Acquisition of Logging While Drilling at the Newly Discovered Gas Hydrate Reservoir in Hyuganada Sea, Japan. Energies. 2024; 17(15):3815. https://doi.org/10.3390/en17153815
Chicago/Turabian StyleImai, Toshinori, Than Tin Aung, Akira Fujimoto, Satoshi Ohtsuki, Kotaro Tano, Shuhei Otomo, Naoyuki Shimoda, Takanao Yoshii, Ryugen Sakata, Jun Yoneda, and et al. 2024. "Data Acquisition of Logging While Drilling at the Newly Discovered Gas Hydrate Reservoir in Hyuganada Sea, Japan" Energies 17, no. 15: 3815. https://doi.org/10.3390/en17153815
APA StyleImai, T., Aung, T. T., Fujimoto, A., Ohtsuki, S., Tano, K., Otomo, S., Shimoda, N., Yoshii, T., Sakata, R., Yoneda, J., & Suzuki, K. (2024). Data Acquisition of Logging While Drilling at the Newly Discovered Gas Hydrate Reservoir in Hyuganada Sea, Japan. Energies, 17(15), 3815. https://doi.org/10.3390/en17153815