Power-from-Shore Optioneering for Integration of Offshore Renewable Energy in Oil and Gas Production
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Motivations and Contributions
1.3. Research Plan
1.4. Paper Organization
2. Materials
2.1. Databases and Reference Data
2.2. Transmission Models
- AC offshore transmission cable system;
- AC offshore transmission cable with SVC-based reactive power compensation;
- DC offshore transmission cable system.
- Each PFS terminal is composed of a single substation (one onshore and one offshore);
- The cables can be rated at (AC) 33, 66, 110, 132, 150, and 220 kV or (DC) 80 kV;
- Single-phase and three-phase cables (1 or 2 conductors per phase) are proposed;
- Only the offshore section of the export cable is incorporated in the model;
- For HVDC, the model focuses on the selection of the DC interconnection cable;
- In the HVDC setup, the converter stations are alongside the AC substations.
2.3. Cost Models
- Costs are calculated based on rates proportional to power rating, distance, or both;
- Each sub-component should be understood as a fully delivered (lump-sum basis);
- The plot areas above are approximate to the typical respective cost breakdown;
- The compensated AC connections include the cost of the SVC-based compensation.
3. Methods
3.1. Objective Function
3.2. Optioneering Model
- AC evaluation;
- DC evaluation;
- Optioneering algorithm.
3.3. Clustering
- Elbow;
- Gaps;
- Silhouette.
3.4. General Genetic Algorithm
- The population is sized to include all site candidates in the sample;
- Candidates are modeled as power rating/shore distance tuples;
- The traits (grid connection solution) to assign to each individual are restricted to the pool from the optioneering model, and only one grid connection will be assigned to each individual, and all candidates must be connected;
- The grid configuration pool of options must include a minimum of one DC solution as a fallback to ensure the above point and the size of the pool will be determined based on the K-Means evaluation methods.
- The percentages for fitness are adjusted to reflect an integer number of candidates.
- The ranking of the population is done both based on the cost/km or the cost/MW (alternatives shown in Results); this introduced small variations in speed/accuracy.
- A threshold was set at 100 km, whereas any upward connection of such length would be deemed connected in DC. This resulted in improved model speed with no compromise on overall infrastructure cost as this distance set-point was validated in the baseline calculations.
3.5. DC-Specific General Genetic Algorithm
3.6. GA Models
4. Results
4.1. Cluster Baseline
4.2. HVAC Clustering
4.3. HVDC Clustering
4.4. HVAC vs. HVDC Approach
4.5. Optioneering Sandbox
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Abbreviations
Acronym | Full Name |
AC | Alternated Current |
ARM | Association Rule Mining |
BL | Baseline |
CAPEX | Capital Expenditure |
DC | Direct Current |
DFIG | Doubly-fed Induction Generator |
EPCI | Engineering, Procurement, Construction and Installation |
FCM | Fuzzy C-Means |
GA | Genetic Algorithm |
H2 | Hydrogen |
HVAC | High Voltage Alternated Current |
HVDC | High Voltage Direct Current |
MILP | Mixed-Integer Linear Programming |
MST | Minimum Spanning Tree |
MV | Medium Voltage |
O&G | Oil and Gas |
OHVS | Offshore High Voltage Substation(s) |
OS | Optimal Solution |
OSS | Offshore Substations |
OWF | Offshore Wind Farm |
PFS | Power from Shore |
POC | Point-of-Connection |
PSO | Particle Swarm Optimization |
SCR | Short-circuit Rating |
STATCOM | Static Synchronous VAR Compensation |
SVC | Static Var Compensation |
VAR | Reactive Power |
VSC | Voltage-Sourced Converter |
WTG | Wind Turbine Generator |
List of Variables
Variable | Variable Name/Description | Units |
Active power requirement/envelop of the candidate | MW | |
Total cost using AC solution inc. Reactive Compensation (for candidate) | USD | |
Cost factor per unit of Apparent Power | USD/MVA | |
Distance of the candidate site to shore | M | |
Cost factor per unit of Kilometer | USD/km | |
Reactive power requirement/envelop of the candidate | MVAr | |
Cost factor per unit of Reactive Power (VAR system) | USD/MVAr | |
Other costs (lump-sum) | USD | |
Baseline solution | - | |
Optimum solution | - | |
Total cost using AC solution (for candidate) | USD | |
Total cost using AC solution including Reactive Compensation (for candidate) | USD | |
Total cost using DC solution (for candidate) | USD | |
Total cost offshore on-board gas turbine generation (for candidate) | USD | |
Voltage at reception (remote-end or offshore) | kV | |
Current at reception (remote-end or offshore) | A | |
Longitudinal Impedance | Ω/km | |
Transverse Admittance | S | |
Voltage at emission (local-end or onshore) | kV | |
Current at emission (local-end or onshore) | A | |
ABCD | Transmission line model coefficients | - |
Line Current | ADC | |
Line Voltage | kVDC | |
Resistance per-km (DC cable) | Ω/km | |
Active Power Flow | MW |
Appendix A
Parameter | Units | Value |
---|---|---|
Rated voltage | % | 100 |
Cable de-rating | % | 80 |
Cable loading | % | 80 |
Power factor | N/A | 1.0 |
Parameter | Units | Value |
---|---|---|
Minimum nominal voltage | % | 0.9 |
Maximum nominal voltage | % | 105 |
No-load current | % | 100 |
Minimum no-load voltage | % | 0.95 |
Maximum no-load voltage | % | 105 |
Static stability maximum angle | º | 30 |
Parameter | Units | Value |
---|---|---|
Land cable (supply and installation) | MUSD/MVA.km | 4.4 |
Submarine cable (supply and installation) | MUSD/MVA.km | 4.6 |
Onshore substation (EPCI) | MUSD/MW | 0.054 |
Offshore substation (EPCI) | MUSD/MW | 0.194 |
VAR compensation (SVC-type) | MUSD/MVAr | 0.1 |
Development and other costs | % | 10.0 |
Parameter | Units | Value |
---|---|---|
Land cable (supply and installation) | MUSD/MVA.km | 1.5 |
Submarine cable (supply and installation) | MUSD/MVA.km | 1.5 |
Onshore substation (EPCI) | MUSD/MW | 0.137 |
Offshore substation (EPCI) | MUSD/MW | 0.277 |
Development and other costs | % | 10.0 |
References
- Antunes, T.A.; Castro, R.; Santos, P.J.; Pires, A.J. Standardization of Power-from-Shore Grid Connections for Offshore Oil & Gas Production. Sustainability 2023, 15, 5041. [Google Scholar] [CrossRef]
- Vrana, T.K.; Mo, O. Optimal Operation Voltage for Maximal Power Transfer Capability on Very Long HVAC Cables. Energy Procedia 2016, 94, 399–408. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, X.; Zhou, Z.; Kocewiak, Ł.; Svensson, J.R. Comparative study of battery-based STATCOM in grid-following and grid-forming modes for stabilization of offshore wind power plant. Electr. Power Syst. Res. 2022, 212, 108449. [Google Scholar] [CrossRef]
- Bian, Z.; Xu, Z.; Xiao, L.; Dong, H.; Xu, Q. Selection of optimal access point for offshore wind farm based on multi-objective decision making. Int. J. Electr. Power Energy Syst. 2018, 103, 43–49. [Google Scholar] [CrossRef]
- Tan, H.; Li, H.; Yao, R.; Zhou, Z.; Liu, R.; Wang, X.; Zheng, J. Reactive-voltage coordinated control of offshore wind farm considering multiple optimization objectives. Int. J. Electr. Power Energy Syst. 2021, 136, 107602. [Google Scholar] [CrossRef]
- Raza, M.; Collados, C.; Gomis-Bellmunt, O. Reactive power management in an offshore AC network having multiple voltage source converters. Appl. Energy 2017, 206, 793–803. [Google Scholar] [CrossRef]
- Liu, G.; Fan, M.; Wang, P.; Zheng, M. Study on Reactive Power Compensation Strategies for Long Distance Submarine Cables Considering Electrothermal Coordination. J. Mar. Sci. Eng. 2021, 9, 90. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, I.; Alkhammash, H.I.; Nadeem, M.F. A Comparison Review on Transmission Mode for Onshore Integration of Offshore Wind Farms: HVDC or HVAC. Electronics 2021, 10, 1489. [Google Scholar] [CrossRef]
- Montilla-Djesus, M.E.; Arnaltes, S.; Castronuovo, E.D.; Santos-Martin, D. Optimal Power Transmission of Offshore Wind Power Using a VSC-HVdc Interconnection. Energies 2017, 10, 1046. [Google Scholar] [CrossRef]
- Ryndzionek, R.; Sienkiewicz, Ł. Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems. Energies 2020, 13, 1914. [Google Scholar] [CrossRef]
- Gulski, E.; Anders, G.; Jongen, R.; Parciak, J.; Siemiński, J.; Piesowicz, E.; Paszkiewicz, S.; Irska, I. Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability. Renew. Sustain. Energy Rev. 2021, 151, 111580. [Google Scholar] [CrossRef]
- Gulski, E.; Jongen, R.; Rakowska, A.; Siodla, K. Offshore Wind Farms On-Site Submarine Cable Testing and Diagnosis with Damped AC. Energies 2019, 12, 3703. [Google Scholar] [CrossRef]
- Offshore Renewable Energy Catapult, Guide to an Offshore Windfarm, Guide to an Offshore Windfarm. 2019. Available online: https://guidetoanoffshorewindfarm.com/wind-farm-costs (accessed on 23 December 2023).
- Zhao, X.; Liu, Y.; Wu, J.; Xiao, J.; Hou, J.; Gao, J.; Zhong, L. Technical and economic demands of HVDC submarine cable technology for Global Energy Interconnection. Glob. Energy Interconnect. 2020, 3, 120–127. [Google Scholar] [CrossRef]
- Lakshmanan, P.; Liang, J.; Jenkins, N. Assessment of collection systems for HVDC connected offshore wind farms. Electr. Power Syst. Res. 2015, 129, 75–82. [Google Scholar] [CrossRef]
- Korompili, A.; Wu, Q.; Zhao, H. Review of VSC HVDC connection for offshore wind power integration. Renew. Sustain. Energy Rev. 2016, 59, 1405–1414. [Google Scholar] [CrossRef]
- Stan, A.; Costinaș, S.; Ion, G. Overview and Assessment of HVDC Current Applications and Future Trends. Energies 2022, 15, 1193. [Google Scholar] [CrossRef]
- Fjellstedt, C.; Ullah, I.; Forslund, J.; Jonasson, E.; Temiz, I.; Thomas, K. A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources. Energies 2022, 15, 5816. [Google Scholar] [CrossRef]
- Smailes, M.; Ng, C.; Mckeever, P.; Shek, J.; Theotokatos, G.; Abusara, M. Hybrid, Multi-Megawatt HVDC Transformer Topology Comparison for Future Offshore Wind Farms. Energies 2017, 10, 851. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, Y.; Meng, K.; Dong, Z.Y. Collector System Topology for Large-Scale Offshore Wind Farms Considering Cross-Substation Incorporation. IEEE Trans. Sustain. Energy 2019, 11, 1601–1611. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Qian, T.; Ning, L.; Lin, J. A fast dimension reduction framework for large-scale topology optimization of grid-layout offshore wind farm collector systems. Int. J. Electr. Power Energy Syst. 2023, 149, 109066. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, T.; Wang, Y.; Zhang, H.; Feng, X.; Song, X.; Shibasaki, R. A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network. Renew. Energy 2021, 185, 302–320. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Chen, Z. Offshore substation locating in wind farms based on prim algorithm. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Paul, S.; Rather, Z.H. A novel approach for optimal cabling and determination of suitable topology of MTDC connected offshore wind farm cluster. Electr. Power Syst. Res. 2022, 208, 107877. [Google Scholar] [CrossRef]
- Hardy, S.; Van Hertem, D.; Ergun, H. Application of Association Rule Mining in offshore HVAC transmission topology optimization. Electr. Power Syst. Res. 2022, 211, 108358. [Google Scholar] [CrossRef]
- Jiang, D.; Wu, B.; Yang, X.; Van Gelder, P. A fuzzy evidential reasoning based approach for submarine power cable routing selection for offshore wind farms. Ocean Eng. 2019, 193, 106616. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lin, L.; Koo, P. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. J. Wind. Eng. Ind. Aerodyn. 2015, 139, 89–99. [Google Scholar] [CrossRef]
- González, J.S.; García, L.T.; Payán, M.B.; Santos, J.R.; Rodríguez, G.G. Optimal wind-turbine micro-siting of offshore wind farms: A grid-like layout approach. Appl. Energy 2017, 200, 28–38. [Google Scholar] [CrossRef]
- De Kuyffer, E.; Shen, K.; Martens, L.; Joseph, W.; De Pessemier, T. Offshore windmill and substation maintenance planning with Distance, Fuel consumption and Tardiness optimisation. Oper. Res. Perspect. 2023, 10, 100267. [Google Scholar] [CrossRef]
- Bin Ahmad, I.; Schnepf, A.; Ong, M.C. An optimisation methodology for suspended inter-array power cable configurations between two floating offshore wind turbines. Ocean Eng. 2023, 278, 114406. [Google Scholar] [CrossRef]
- Pinto, R.T.; Rodrigues, S.F.; Wiggelinkhuizen, E.; Scherrer, R.; Bauer, P.; Pierik, J. Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms. Energies 2012, 6, 1–26. [Google Scholar] [CrossRef]
- Jin, R.; Hou, P.; Yang, G.; Qi, Y.; Chen, C.; Chen, Z. Cable routing optimization for offshore wind power plants via wind scenarios considering power loss cost model. Appl. Energy 2019, 254, 113719. [Google Scholar] [CrossRef]
- Pérez-Rúa, J.-A.; Das, K.; Cutululis, N.A. Optimum sizing of offshore wind farm export cables. Int. J. Electr. Power Energy Syst. 2019, 113, 982–990. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Huang, L.-L.; Ren, Z.-X.; Jia, F. Optimization of offshore grid planning considering onshore network expansions. Renew. Energy 2021, 181, 91–104. [Google Scholar] [CrossRef]
- Dong, T.; Brakelmann, H.; Anders, G. Analysis method for the design of long submarine cables. Renew. Sustain. Energy Rev. 2023, 171, 113029. [Google Scholar] [CrossRef]
- Årdal, A.R.; Undeland, T.; Sharifabadi, K. Voltage and Frequency Control in Offshore Wind Turbines Connected to Isolated Oil Platform Power Systems. Energy Procedia 2012, 24, 229–236. [Google Scholar] [CrossRef]
- Korpås, M.; Warland, L.; He, W.; Tande, J.O.G. A Case-Study on Offshore Wind Power Supply to Oil and Gas Rigs. Energy Procedia 2012, 24, 18–26. [Google Scholar] [CrossRef]
- Kim, A.; Kim, H.; Choe, C.; Lim, H. Feasibility of offshore wind turbines for linkage with onshore green hydrogen demands: A comparative economic analysis. Energy Convers. Manag. 2023, 277, 116662. [Google Scholar] [CrossRef]
- Zhang, H.; Tomasgard, A.; Knudsen, B.R.; Svendsen, H.G.; Bakker, S.J.; Grossmann, I.E. Modelling and analysis of offshore energy hubs. Energy 2022, 261, 125219. [Google Scholar] [CrossRef]
- Antunes, T.A.; Castro, R.; Santos, P.J.; Pires, A.J.; Foehr, M. Optimized Electrification of Subsea Oil & Gas Infrastructures Based in Genetic Algorithm. In Proceedings of the 10th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Costa de Caparica, Portugal, 8–10 May 2019; pp. 214–223. [Google Scholar] [CrossRef]
- Paiva, J.P.S. Redes de Energia Eléctrica: Uma Análise Sistémica; IST Press: Lisboa, Portugal, 2007. [Google Scholar]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [Google Scholar] [CrossRef]
Population Size (Offshore Sites) | Individual Traits (Voltage Levels) | Clusters | Number of Cycles | Fitness Rate | Crossover Rate | Mutation Rate |
---|---|---|---|---|---|---|
102 | 6 | 3 + 1 | 50 | 20% | - | - |
Population Size (Offshore Sites) | Individual Traits (Power Slots) | Clusters | Number of Cycles | Fitness Rate | Crossover Rate | Mutation Rate |
---|---|---|---|---|---|---|
102 | 12 | 3 | 150 | 20% | - | - |
Exercise Set | Sub-Exercises | Summarized Description |
---|---|---|
#1 | #1.1 | Baseline model; Calculate all options |
#1 | #1.2 | GA-based; Optimized for cost/MW |
#1 | #1.3 | GA-based; Optimized for cost/km |
#2 | #2.1 | Baseline model; Calculate all in AC only |
#2 | #2.2 | GA-based for AC only; Optimized for cost/MW |
#2 | #2.3 | GA-based for AC only; Optimized for cost/km |
#3 | #3.1 | Baseline model; Calculate all in DC only |
#3 | #3.2 | GA-based for DC only; Optimized for cost/MW |
#3 | #3.3 | GA-based for DC only; Optimized for cost/km |
Exercise | Candidates | Number of Cycles | Initial Total CAPEX [MUSD] | Final Total CAPEX [MUSD] | Running Time (s) | Voltage Pool |
---|---|---|---|---|---|---|
#1.1 | 104 | 1 | 8686 | - | 15 | AC: 66 and 110 kV; DC: 80 kV |
#1.2 | 50 | 8686 | 8614 | 571 | AC: 66, 110 and 132 kV, DC: 80 kV | |
#1.3 | 50 | 8688 | 8677 | 569 | AC: 66 and 132 kV, DC: 80 kV |
Exercise | Candidates | Number of Cycles | Initial Total CAPEX [MUSD] | Final Total CAPEX [MUSD] | Running Time (s) | Voltage Pool |
---|---|---|---|---|---|---|
#2.1 | 15 | 1 | 26,655 | - | 15 | AC: 66, 150 and 220 kV |
#2.2 | 50 | 26,326 | 25,887 | 547 | AC: 110, 132 and 275 kV | |
#2.3 | 50 | 26,544 | 26,315 | 549 | AC: 110, 132 and 220 kV |
Exercise | Candidates | Number of Cycles | Initial Total CAPEX [MUSD] | Final Total CAPEX [MUSD] | Running Time (s) | Voltage Pool |
---|---|---|---|---|---|---|
#3.1 | 104 | 1 | 9123 | - | 12 | 80 kV/50–120 MW |
#3.2 | 150 | 8579 | 9369 | 67 | 80 kV/50, 120 MW | |
#3.3 | 150 | 8579 | 9315 | 64 | 80 kV/50, 120 MW |
Exercise Set | Sub-Exercises | Initial CAPEX [MUSD] | Final CAPEX [MUSD] | Deviation to the Baseline (%) |
---|---|---|---|---|
#1 | #1.1 | 8686 | - | - |
#1 | #1.2 | - | 8614 | −0.8 |
#1 | #1.3 | - | 8677 | −0.0 |
#2 | #2.1 | 26,655 | - | - |
#2 | #2.2 | - | 25,887 | −2.9 |
#2 | #2.3 | - | 26,315 | −1.3 |
#3 | #3.1 | 9123 | - | - |
#3 | #3.2 | - | 9369 | +2.7 |
#3 | #3.3 | - | 9315 | +2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, T.A.; Castro, R.; Santos, P.J.; Pires, A.J. Power-from-Shore Optioneering for Integration of Offshore Renewable Energy in Oil and Gas Production. Energies 2024, 17, 151. https://doi.org/10.3390/en17010151
Antunes TA, Castro R, Santos PJ, Pires AJ. Power-from-Shore Optioneering for Integration of Offshore Renewable Energy in Oil and Gas Production. Energies. 2024; 17(1):151. https://doi.org/10.3390/en17010151
Chicago/Turabian StyleAntunes, Tiago A., Rui Castro, Paulo J. Santos, and Armando J. Pires. 2024. "Power-from-Shore Optioneering for Integration of Offshore Renewable Energy in Oil and Gas Production" Energies 17, no. 1: 151. https://doi.org/10.3390/en17010151
APA StyleAntunes, T. A., Castro, R., Santos, P. J., & Pires, A. J. (2024). Power-from-Shore Optioneering for Integration of Offshore Renewable Energy in Oil and Gas Production. Energies, 17(1), 151. https://doi.org/10.3390/en17010151