TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Decomposition Behaviour-TGA-FTIR Analysis
2.3. Pyrolysis Kinetics Modeling
2.4. Laboratory Scale Pyrolysis Studies
3. Results and Discussion
3.1. Properties and Thermal Decomposition Behavior of Biomass Components and Selected Samples
3.2. TGA-FTIR Analysis of Biomass Components and Selected Samples
3.3. Pyrolysis Kinetics
3.4. Pyrolysis Product Yields
4. Conclusions
- −
- The highest decomposition rate was achieved at the temperatures of 305, 340, and 320 °C for xylose, cellulose, and lignin, respectively.
- −
- Thermal decomposition of selected biomass samples showed similar behavior regardless of their different lignocellulosic structure and composition.
- −
- The superimposition of hemicellulose, cellulose, and lignin degradation curves resulted in a three-step decomposition of biomass samples.
- −
- The 3d visualization of evolved gases during pyrolysis demonstrates the steps of degradation through the gas products.
- −
- The order of pyrolytic volatile production is hemicellulose (xylose), cellulose, and lignin, which is similar to their thermal decomposition and thermal stability.
- −
- CO2, CH4, and H2O are the main products of primary pyrolytic reactions such as cracking, reforming, and dehydration, whereas CO formation is accelerated at higher temperatures during the decomposition of lignin.
- −
- Calculated activation energies revealed the fact that the initialization reactions required more energy than the secondary pyrolysis reactions, such as solidification and condensation.
- −
- Laboratory-scale pyrolysis experiments yielded the highest amount of char for the highest lignin-containing biomass, whereas bio-oil formation was enhanced by the presence of high amounts of cellulose and hemicellulose. In addition, the highest bio-oil yield of 32.26 wt.% was obtained from olive oil pomace since it contains the highest n-hexane soluble fraction among the selected biomass samples.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and Solution Technologies for the Integration of Variable Renewable Energy Sources—A Review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Pang, S. Advances in Thermochemical Conversion of Woody Biomass to Energy, Fuels and Chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, M.V.; Bozieva, A.M.; Zharmukhamedov, S.K.; Leong, Y.K.; Chi-Wei Lan, J.; Veziroglu, A.; Veziroglu, T.N.; Tomo, T.; Chang, J.S.; Allakhverdiev, S.I. A Comprehensive Review on Lignocellulosic Biomass Biorefinery for Sustainable Biofuel Production. Int. J. Hydrogen Energy 2022, 47, 1481–1498. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Pasangulapati, V.; Ramachandriya, K.D.; Kumar, A.; Wilkins, M.R.; Jones, C.L.; Huhnke, R.L. Effects of Cellulose, Hemicellulose and Lignin on Thermochemical Conversion Characteristics of the Selected Biomass. Bioresour. Technol. 2012, 114, 663–669. [Google Scholar] [CrossRef]
- Glasser, W.G. Lignin. In Fundamentals of Thermochemical Biomass Conversion; Overend, R.P., Milne, T.A., Mudge, L.K., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 61–76. ISBN 978-94-009-4932-4. [Google Scholar]
- Theander, O. Cellulose, Hemicellulose and Extractives. In Fundamentals of Thermochemical Biomass Conversion; Overend, R.P., Milne, T.A., Mudge, L.K., Eds.; Springer: Dordrecht, The Netherlands, 1985; pp. 35–60. ISBN 978-94-009-4932-4. [Google Scholar]
- Mohan, D.; Pittman, C.U., Jr.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Wang, K.; Luo, Z. Influence of the interaction of components on the pyrolysis behavior of biomass. J. Anal. Appl. Pyrolysis 2011, 91, 183–189. [Google Scholar] [CrossRef]
- Peters, B. Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Process. Technol. 2011, 92, 1993–1998. [Google Scholar] [CrossRef]
- Rutkowski, P. Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production. Fuel Process. Technol. 2011, 92, 517–522. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Zhu, L.; Zhong, Z. Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics. Korean J. Chem. Eng. 2020, 37, 1660–1668. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Poornima Devi, T.; Sivashanmugam, P.; Kavitha, S.; Yukesh Kannah, R.; Varjani, S.; AdishKumar, S.; Kumar, G.; Banu, J.R. Lignocellulosic Biomass-Based Pyrolysis: A Comprehensive Review. Chemosphere 2022, 286, 131824. [Google Scholar] [CrossRef]
- Raveendran, K.; Ganesh, A.; Khilar, K.C. Pyrolysis Characteristics of Biomass and Biomass Components. Fuel 1996, 75, 987–998. [Google Scholar] [CrossRef]
- Várhegyi, G.; Antal, M.J.; Jakab, E.; Szabó, P. Kinetic Modeling of Biomass Pyrolysis. J. Anal. Appl. Pyrolysis 1997, 42, 73–87. [Google Scholar] [CrossRef]
- Orfão, J.J.M.; Antunes, F.J.A.; Figueiredo, J.L. Pyrolysis Kinetics of Lignocellulosic Materials—Three Independent Reactions Model. Fuel 1999, 78, 349–358. [Google Scholar] [CrossRef]
- Koufopanos, C.A.; Lucchesi, A.; Maschio, G. Kinetic Modelling of the Pyrolysis of Biomass and Biomass Components. Can. J. Chem. Eng. 1989, 67, 75–84. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Meier, D.; Radlein, D. An Overview of Fast Pyrolysis of Biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Igliński, B.; Kujawski, W.; Kiełkowska, U. Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review. Energies 2023, 16, 1829. [Google Scholar] [CrossRef]
- Abou Rjeily, M.; Cazier, F.; Gennequin, C.; Randrianalisoa, J.H. Detailed Analysis of Gas, Char and Bio-Oil Products of Oak Wood Pyrolysis at Different Operating Conditions. Waste Biomass Valorization 2023, 14, 325–343. [Google Scholar] [CrossRef]
- Faleeva, Y.M.; Lavrenov, V.A.; Zaichenko, V.M. Investigation of Plant Biomass Two-Stage Pyrolysis Based on Three Major Components: Cellulose, Hemicellulose, and Lignin. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. Pyrolysis Kinetics and Thermal Behavior of Waste Sawdust Biomass Using Thermogravimetric Analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Mohanty, K. Pyrolysis of Three Waste Biomass: Effect of Biomass Bed Thickness and Distance between Successive Beds on Pyrolytic Products Yield and Properties. Renew. Energy 2019, 141, 549–558. [Google Scholar] [CrossRef]
- Gani, A.; Naruse, I. Effect of Cellulose and Lignin Content on Pyrolysis and Combustion Characteristics for Several Types of Biomass. Renew. Energy 2007, 32, 649–661. [Google Scholar] [CrossRef]
- Klinger, J.L.; Westover, T.L.; Emerson, R.M.; Williams, C.L.; Hernandez, S.; Monson, G.D.; Ryan, J.C. Effect of Biomass Type, Heating Rate, and Sample Size on Microwave-Enhanced Fast Pyrolysis Product Yields and Qualities. Appl. Energy 2018, 228, 535–545. [Google Scholar] [CrossRef]
- Abhijeet, P.; Swagathnath, G.; Rangabhashiyam, S.; Asok Rajkumar, M.; Balasubramanian, P. Prediction of Pyrolytic Product Composition and Yield for Various Grass Biomass Feedstocks. Biomass Convers Biorefin. 2020, 10, 663–674. [Google Scholar] [CrossRef]
- Tsekos, C.; Tandurella, S.; de Jong, W. Estimation of Lignocellulosic Biomass Pyrolysis Product Yields Using Artificial Neural Networks. J. Anal. Appl. Pyrolysis 2021, 157, 105180. [Google Scholar] [CrossRef]
- Hoang, A.T.; Ong, H.C.; Fattah, I.M.R.; Chong, C.T.; Cheng, C.K.; Sakthivel, R.; Ok, Y.S. Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability. Fuel Process. Technol. 2021, 223, 106997. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Pütün, A.E.; Apaydm, E.; Pütün, E. Rice Straw as a Bio-Oil Source via Pyrolysis and Steam Pyrolysis. Energy 2004, 29, 2171–2180. [Google Scholar] [CrossRef]
- Pütün, A.E.; Uzun, B.B.; Apaydin, E.; Pütün, E. Bio-Oil from Olive Oil Industry Wastes: Pyrolysis of Olive Residue under Different Conditions. Fuel Process. Technol. 2005, 87, 25–32. [Google Scholar] [CrossRef]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef]
- Fahmi, R.; Bridgwater, A.V.; Darvell, L.I.; Jones, J.M.; Yates, N.; Thain, S.; Donnison, I.S. The Effect of Alkali Metals on Combustion and Pyrolysis of Lolium and Festuca Grasses, Switchgrass and Willow. Fuel 2007, 86, 1560–1569. [Google Scholar] [CrossRef]
- Yang, X.; Berglund, L.A. Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils. Adv. Mater. 2021, 33, 2001118. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Goyal, D.; Goyal, A. Physico-Chemical Characteristics of Leaf Litter Biomass to Delineate the Chemistries Involved in Biofuel Production. J. Taiwan Inst. Chem. Eng. 2016, 62, 239–246. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Thermally Exfoliated Graphene Oxide for Hydrogen Storage. Mater. Chem. Phys. 2020, 239, 122102. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical Functional Groups of Extractives, Cellulose and Lignin Extracted from Native Leucaena Leucocephala Bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Kim Song, D. Le Libretext Chemistry. Available online: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Chemical_Bonding/Fundamentals_of_Chemical_Bonding/Bond_Energies#:~:text=A%20C%E2%80%93C%20bond%20has,of%20about%20145%20kcal%2Fmol (accessed on 30 March 2023).
- Collard, F.X.; Blin, J. A Review on Pyrolysis of Biomass Constituents: Mechanisms and Composition of the Products Obtained from the Conversion of Cellulose, Hemicelluloses and Lignin. Renew. Sustain. Energy Rev. 2014, 38, 594–608. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D.H.; Liang, D.T. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. Energy Fuels 2006, 20, 388–393. [Google Scholar] [CrossRef]
- Kawamoto, H. Lignin Pyrolysis Reactions. J. Wood Sci. 2017, 63, 117–132. [Google Scholar] [CrossRef]
- Cao, J.; Xiao, G.; Xu, X.; Shen, D.; Jin, B. Study on Carbonization of Lignin by TG-FTIR and High-Temperature Carbonization Reactor. Fuel Process. Technol. 2013, 106, 41–47. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Caballero, J.A.; Conesa, J.A.; Font, R.; Marcilla, A. Pyrolysis Kinetics of Almond Shells and Olive Stones Considering Their Organic Fractions. J. Anal. Appl. Pyrolysis 1997, 42, 159–175. [Google Scholar] [CrossRef]
- Coker, E.N.; Lujan-Flores, X.; Donaldson, B.; Yilmaz, N.; Atmanli, A. An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon. Energies 2023, 16, 1606. [Google Scholar] [CrossRef]
- Escalante, J.; Chen, W.H.; Tabatabaei, M.; Hoang, A.T.; Kwon, E.E.; Andrew Lin, K.Y.; Saravanakumar, A. Pyrolysis of Lignocellulosic, Algal, Plastic, and Other Biomass Wastes for Biofuel Production and Circular Bioeconomy: A Review of Thermogravimetric Analysis (TGA) Approach. Renew. Sustain. Energy Rev. 2022, 169, 112914. [Google Scholar] [CrossRef]
- Emiola-Sadiq, T.; Zhang, L.; Dalai, A.K. Thermal and Kinetic Studies on Biomass Degradation via Thermogravimetric Analysis: A Combination of Model-Fitting and Model-Free Approach. ACS Omega 2021, 6, 22233–22247. [Google Scholar] [CrossRef]
- Olatunji, O.O.; Akinlabi, S.A.; Mashinini, M.P.; Fatoba, S.O.; Ajayi, O.O. Thermo-Gravimetric Characterization of Biomass Properties: A Review. IOP Conf. Series Mater. Sci. Eng. 2018, 423, 12175. [Google Scholar] [CrossRef]
- Akhtar, J.; Imran, M.; Ali, A.M.; Nawaz, Z.; Muhammad, A.; Butt, R.K.; Jillani, M.S.; Naeem, H.A. Torrefaction and Thermochemical Properties of Agriculture Residues. Energies 2021, 14, 4218. [Google Scholar] [CrossRef]
- Fasina, O.; Littlefield, B. TG-FTIR Analysis of Pecan Shells Thermal Decomposition. Fuel Process. Technol. 2012, 102, 61–66. [Google Scholar] [CrossRef]
- Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K. Experimental Study of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose, and Lignin. Ind. Eng. Chem. Res. 2011, 50, 10424–10433. [Google Scholar] [CrossRef]
- Apaydin-Varol, E.; Uzun, B.B.; Önal, E.; Pütün, A.E. Synthetic Fuel Production from Cottonseed: Fast Pyrolysis and a TGA/FT-IR/MS Study. J. Anal. Appl. Pyrolysis 2014, 105, 83–90. [Google Scholar] [CrossRef]
- Wu, Y.-M.; Zhao, Z.-L.; Li, H.-B.; He, F. Low Temperature Pyrolysis Characteristics of Major Components of Biomass. J. Fuel Chem. Technol. 2009, 37, 427–432. [Google Scholar] [CrossRef]
- Schindler, A.; Neumann, G.; Rager, A.; Füglein, E.; Blumm, J.; Denner, T. A Novel Direct Coupling of Simultaneous Thermal Analysis (STA) and Fourier Transform-Infrared (FT-IR) Spectroscopy. J. Therm. Anal. Calorim. 2013, 113, 1091–1102. [Google Scholar] [CrossRef]
- Yıldız, Z.; Ceylan, S. Pyrolysis of Tobacco Factory Waste Biomass. J. Therm. Anal. Calorim. 2019, 136, 783–794. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Li, P.; Huang, D.; Jiang, L.; Zhang, A.; Zhang, J. FTIR Study of Pyrolysis Products Evolving from Typical Agricultural Residues. J. Anal. Appl. Pyrolysis 2010, 88, 117–123. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of Pyrolysis Characteristics and Kinetics of Palm Kernel Shell Using TGA–FTIR and Model-Free Integral Methods. Energy Convers. Manag. 2015, 89, 251–259. [Google Scholar] [CrossRef]
- Özsin, G.; Pütün, A.E. TGA/MS/FT-IR Study for Kinetic Evaluation and Evolved Gas Analysis of a Biomass/PVC Co-Pyrolysis Process. Energy Convers. Manag. 2019, 182, 143–153. [Google Scholar] [CrossRef]
- Guo, X.J.; Wang, S.R.; Wang, K.G.; Liu, Q.; Luo, Z.Y. Influence of Extractives on Mechanism of Biomass Pyrolysis. J. Fuel Chem. Technol. 2010, 38, 42–46. [Google Scholar] [CrossRef]
- Singh, S.; Wu, C.; Williams, P.T. Pyrolysis of Waste Materials Using TGA-MS and TGA-FTIR as Complementary Characterisation Techniques. J. Anal. Appl. Pyrolysis 2012, 94, 99–107. [Google Scholar] [CrossRef]
- Alvarado Flores, J.J.; Alcaraz Vera, J.V.; Ávalos Rodríguez, M.L.; López Sosa, L.B.; Rutiaga Quiñones, J.G.; Pintor Ibarra, L.F.; Márquez Montesino, F.; Aguado Zarraga, R. Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review. Energies 2022, 15, 6524. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, S.; Fu, H.; Gao, W.; Wang, B.; Zeng, J.; Xu, J. Thermal Pyrolysis Characteristics and Kinetics of Hemicellulose Isolated from Camellia Oleifera Shell. Bioresour. Technol. 2019, 282, 228–235. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, X.; Xiao, Z.; Yi, F. Study of Cellulose Pyrolysis Using an in Situ Visualization Technique and Thermogravimetric Analyzer. J. Anal. Appl. Pyrolysis 2012, 94, 126–130. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.; Han, Q.; Xie, A.; Zhou, Z.; Yang, J.; Tang, Q.; Mi, B.; Wu, F. Application of Distributed Activation Energy Model and Coats-Redfern Integration Method in the Study of Industrial Lignin Pyrolysis Kinetics. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Mian, I.; Li, X.; Jian, Y.; Dacres, O.D.; Zhong, M.; Liu, J.; Ma, F.; Rahman, N. Kinetic Study of Biomass Pellet Pyrolysis by Using Distributed Activation Energy Model and Coats Redfern Methods and Their Comparison. Bioresour. Technol. 2019, 294, 122099. [Google Scholar] [CrossRef] [PubMed]
- Slezak, R.; Unyay, H.; Szufa, S.; Ledakowicz, S. An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2. Energies 2023, 16, 2212. [Google Scholar] [CrossRef]
- Gao, Z.; Li, N.; Yin, S.; Yi, W. Pyrolysis Behavior of Cellulose in a Fixed Bed Reactor: Residue Evolution and Effects of Parameters on Products Distribution and Bio-Oil Composition. Energy 2019, 175, 1067–1074. [Google Scholar] [CrossRef]
- Huang, J.; He, C.; Wu, L.; Tong, H. Thermal Degradation Reaction Mechanism of Xylose: A DFT Study. Chem. Phys. Lett. 2016, 658, 114–124. [Google Scholar] [CrossRef]
- Lu, X.; Gu, X. A Review on Lignin Pyrolysis: Pyrolytic Behavior, Mechanism, and Relevant Upgrading for Improving Process Efficiency. Biotechnol. Biofuels Bioprod. 2022, 15, 106. [Google Scholar] [CrossRef]
- Alper, K.; Tekin, K.; Karagöz, S. Pyrolysis of Agricultural Residues for Bio-Oil Production. Clean Technol Env. Policy 2015, 17, 211–223. [Google Scholar] [CrossRef]
- Hawash, S.I.; Farah, J.Y.; El-Diwani, G. Pyrolysis of Agriculture Wastes for Bio-Oil and Char Production. J. Anal. Appl. Pyrolysis 2017, 124, 369–372. [Google Scholar] [CrossRef]
Biomass Type | Holocellulose Content (wt. %) | Lignin Content (wt. %) | Pyrolysis Conditions | Main Objectives | Ref. |
---|---|---|---|---|---|
Oak wood chips | 59.07 | 25.41 | Lab-scale cylindrical pyrolyzer H.R. *: 5–100 °C/min N2 flow: 50–300 mL/min Temperature: 400–800 °C | Effects of pyrolysis conditions on the product yields and quality | [22] |
Pine sawdust | 69.97 | 26.67 | Laboratory scale pyrolyzer H.R.: 10 °C/min N2 Flow rate: 50–200 cm3/min Temperature: 350–575 °C | The pyrolysis behavior of real and synthetic biomass samples was compared with predicted characteristics. | [23] |
Sunflower husk | 69.46 | 28.48 | |||
Pine sawdust | 71.27 | 10.55 | Semi-batch reactor H.R.: 50–120 °C/min N2 Flow rate:100 cm3/min Temperature: 400–600 °C | The effect of biomass bed thickness and distance between successive beds on pyrolytic product yield and characterization | [24,25] |
Sal sawdust | 66.95 | 11.18 | |||
Areca nut husk | 65.79 | 13.27 | |||
Cornstalk | 64 | 15 | TGA experiments H.R.: 20 °C/min N2 flow rate: 120 mL/min Temperature: 900 °C | Effect of the correlation between the cellulose and lignin content on the reaction conversion | [26] |
Larch bark | 59 | 35 | |||
Bagasse | 74 | 90 | |||
Pine needles | N.A. ** | N.A. | Laboratory scale pyrolyzer H.R.: 10–50 °C/min N2 Flow rate: 50–200 cm3/min Temperature: 350–650 °C | Effects of nitrogen flow rate, particle size, and final temperature on the product yields and characteristics of bio-oil and char | [27] |
33 biomass materials | N.A. | N.A. | Microwave-enhanced fast pyrolysis system H.R.: 1.5–50 °C/s N2 flow rate: 0.9 L/min Temperatures: 500 °C | The various effects of biomass and pyrolysis conditions on microwave-enhanced fast pyrolysis product yields and qualities | [27] |
Miscanthus | 76.9 | 12.2 | MATLAB R2015b Temperature: 200–1000 °C | Derivation of a mathematical model to predict the production of biochar, flue gas, and tar under different pyrolysis conditions | [28] |
Bamboo | 69 | 23.2 | |||
482 lignocellulosic samples | N.A. | N.A. | Artificial neural networks | The prediction of the solid, liquid, and gas yields from pyrolysis processes | [29] |
Analysis (wt.%) | Method | Xylose | Cellulose | Lignin | Pinecone | Olive Pomace | Sunflower Waste |
---|---|---|---|---|---|---|---|
Moisture | ASTMD 2016-74 | 1.44 | 4.97 | 9.35 | 9.23 | 6.31 | 8.19 |
Ash | ASTMD 1102-84 | ~0 | ~0 | 33.46 | 1.20 | 4.85 | 11.20 |
Volatile matter | ASTME 897-82 | 91.02 | 91.25 | 40.05 | 71.05 | 70.99 | 67.43 |
Fixed carbon | From difference | 7.54 | 3.78 | 17.14 | 18.52 | 17.85 | 13.18 |
Holocellulose | TS 324 | - | - | - | 57.12 | 55.02 | 64.58 |
Oil | TS 769 | - | - | - | 2.35 | 5.78 | 4.50 |
Extractives | ASTMD 1105-84 | - | - | - | 9.70 | 5.02 | 9.75 |
Lignin | ASTMD 1106-84 | - | - | - | 29.50 | 34.04 | 20.22 |
Wave number (1/cm) | Functional Groups * | Assignment | Xylose | Cellulose | Lignin | Pinecone | Olive Pomace | Sunflower Waste |
---|---|---|---|---|---|---|---|---|
3400–3000 | O-H (υ) | Alcohol, phenol, carboxylic acids | 3331 | 3346 | 3400 | 3345 | 3336 | 3340 |
3000–2800 | C-H (υ) | Alkanes, alkenes | 2978 2889 | 2900 | 2935 | 2928 | 2925 2854 | 2928 |
1740–1600 | C=O (υ) | Ketones, aldehydes | 1632 | - | 1596 | 1734 1663 | 1732 1660 | 1737 |
1620–1510 | C=C (υ) | Olefinics, aromatics | - | - | 1506 | 1611 1511 | 1538 1516 | 1612 |
1460–1325 | C-H (δ) | Aliphatic | 1476 1395 1373 1312 | 1432 1372 1336 | 1421 1374 | 1454 1379 | 1455 1378 | 1423 1323 |
1280–1030 | C-O (υ) | Alcohol, phenol, ester, ether | 1150 1128 1040 | 1165 1113 1032 | 1266 1217 1135 1042 | 1272 1163 | 1244 1163 1033 | 1243 1101 |
900–750 | C-H (δ) | Aromatics | 904 760 | 897 | 856 743 | 895 | 755 | 833 768 |
Sample | Moisture Release | 1. Stage | 2. Stage | 3. Stage | Solid Residue at 1000 °C (%) | ||||
---|---|---|---|---|---|---|---|---|---|
T Range (°C) | Mass Loss (%) | T Range (°C) | Mass Loss (%) | T Range (°C) | Mass Loss (%) | T Range (°C) | Mass Loss (%) | ||
Xylose | 25–130 | 0.17 | 173–249 | 15.74 | 258–355 | 46.31 | 360–645 | 23.25 | 14.53 |
Cellulose | 25–130 | 3.17 | - | - | 291–395 | 80.0 | - | - | 16.83 |
Lignin | 25–100 | 7.12 | 170–420 | 25.96 | 420–495 | 4.35 | 495–835 | 12.05 | 50.52 |
Pinecone | 25–140 | 6.13 | 210–310 | 20.34 | 310–380 | 25.92 | 380–715 | 11.40 | 36.10 |
Olive pomace | 25–130 | 5.39 | 188–350 | 40.14 | 350–410 | 8.79 | 410–620 | 7.27 | 37.65 |
Sunflower waste | 25–125 | 7.54 | 160–275 | 21.60 | 275–380 | 27.91 | 380–570 | 4.30 | 33.12 |
T (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | x = 10 | x = 20 | x = 30 | x = 40 | x = 50 | x = 60 | x = 70 | x = 80 | x = 90 | x@1000 °C |
Xylose | 221 | 269 | 290 | 304 | 319 | 346 | 392 | 630 | >1000 | 80.1 |
Cellulose | 315 | 325 | 333 | 337 | 341 | 345 | 352 | 468 | >1000 | 82.9 |
Lignin | 276 | 330 | 402 | 687 | >1000 | 46.7 | ||||
Pinecone | 262 | 300 | 327 | 346 | 371 | 526 | >1000 | 63.9 | ||
Olive pomace | 242 | 286 | 314 | 342 | 387 | 521 | >1000 | 62.4 | ||
Sunflower waste | 175 | 237 | 271 | 304 | 347 | 471 | >1000 | 67.9 |
Sample | Temperature Range (°C) | E (kJ/mol) | A (1/min) | R2 |
---|---|---|---|---|
Xylose | 173–249 | 104.57 | 5.700 × 109 | 0.8979 |
258–355 | 52.13 | 6.560 × 103 | 0.9748 | |
360–690 | 10.11 | 0.106 × 101 | 0.9545 | |
Cellulose | 291–352 | 252.87 | 2.288 × 1021 | 0.9989 |
Lignin | 210–416 | 56.05 | 5.021 × 103 | 0.9614 |
416–490 | 5.02 | 2.083 × 10−2 | 0.9716 | |
672–874 | 24.28 | 0.421 × 101 | 0.9790 | |
Olive pomace | 188–350 | 52.80 | 3.110 × 104 | 0.9969 |
350–410 | 25.81 | 0.310 × 101 | 0.9956 | |
410–535 | 15.05 | 0.130 × 101 | 0.9813 | |
Pinecone | 210–310 | 93.52 | 3.960 × 108 | 0.9842 |
310–380 | 63.31 | 2.360 × 105 | 0.9841 | |
380–620 | 6.46 | 0.980 × 101 | 0.9910 | |
Sunflower farm waste | 160–275 | 56.45 | 4.630 × 104 | 0.9880 |
275–380 | 24.66 | 1.990 × 101 | 0.9485 | |
380–520 | 8.94 | 0.060 × 101 | 0.9894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apaydın Varol, E.; Mutlu, Ü. TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin. Energies 2023, 16, 3674. https://doi.org/10.3390/en16093674
Apaydın Varol E, Mutlu Ü. TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin. Energies. 2023; 16(9):3674. https://doi.org/10.3390/en16093674
Chicago/Turabian StyleApaydın Varol, Esin, and Ülker Mutlu. 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin" Energies 16, no. 9: 3674. https://doi.org/10.3390/en16093674