Machine Learning for Geothermal Resource Exploration in the Tularosa Basin, New Mexico
Abstract
:1. Introduction
2. Methods
3. Data
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOE | Department of Energy |
GTO | Geothermal Technologies Office |
GTC | GeoThermalCloud |
ML | machine learning |
NMF | non-negative matrix factorization |
NMFk | NMF + custom k-mean clustering |
PFA | play fairway analysis |
SME | subject matter expertise |
References
- Nardini, I. Geothermal Power Generation. In The Palgrave Handbook of International Energy Economics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 183–194. [Google Scholar]
- Tester, J.; Blackwell, D.; Petty, S.; Richards, M.; Moore, M.; Anderson, B.; Livesay, B.; Augustine, C.; DiPippo, R.; Nichols, K.; et al. The future of geothermal energy: An assessment of the energy supply potential of engineered geothermal systems (EGS) for the United States. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 22–24 January 2007. [Google Scholar]
- Huttrer, G.W. Geothermal power generation in the world 2015–2020 update report. In Proceedings of the World Geothermal Congress, Reykjavik, Iceland, 24–27 October 2021; Volume 1. [Google Scholar]
- GeoVision: Harnessing the Heat Beneath Our Feet. 2019. Available online: https://www.energy.gov/eere/geothermal/articles/geovision-harnessing-heat-beneath-our-feet (accessed on 21 March 2023).
- Hamm, S.G.; Anderson, A.; Blankenship, D.; Boyd, L.W.; Brown, E.A.; Frone, Z.; Hamos, I.; Hughes, H.J.; Kalmuk, M.; Marble, A.; et al. Geothermal Energy R&D: An Overview of the US Department of Energy’s Geothermal Technologies Office. J. Energy Resour. Technol. 2021, 143, 100801. [Google Scholar]
- Lindsey, C.R.; Ayling, B.F.; Asato, G.; Seggiaro, R.; Carrizo, N.; Larcher, N.; Marquetti, C.; Naon, V.; Serra, A.C.; Faulds, J.E.; et al. Play fairway analysis for geothermal exploration in north-western Argentina. Geothermics 2021, 95, 102128. [Google Scholar] [CrossRef]
- Dobson, P.F. A Review of Exploration Methods for Discovering Hidden Geothermal Systems. 2016. Available online: https://publications.mygeoenergynow.org/grc/1032385.pdf (accessed on 21 March 2023).
- Faulds, J.; Hinz, N.; Coolbaugh, M.; Shevenell, L.; Siler, D. The Nevada play fairway project-Phase II: Initial search for new viable geothermal systems in the Great Basin region, western USA. GRC Trans. 2016, 40. Available online: https://www.osti.gov/servlets/purl/1724099 (accessed on 21 March 2023).
- Bennett, C.R.; Nash, G.D.; Sorkhabi, R.; Moore, J.; Simmons, S.; Brandt, A.; Barker, B.; Swanson, B. The Convergence of Heat, Groundwater & Fracture Permeability. Innovative Play Fairway Modelling Applied to the Tularosa Basin Phase 1 Project Report; Technical Report; Ruby Mountain: Salt Lake City, UT, USA, 2015. [Google Scholar]
- Bennett, C.; Nash, G.; Barker, B. The Convergence of Heat, Groundwater & Fracture Permeability: Innovative Play Fairway Modelling Applied to the Tularosa Basin; Technical Report; Ruby Mountain: Salt Lake City, UT, USA, 2020. [Google Scholar]
- Nash, G. Tularosa Basin Play Fairway Analysis: White Sands Missile Range Main Cantonment and NASA Area Faults, New Mexico; Technical Report; Energy and Geoscience; USDOE Geothermal Data Repository: Washington, DC, USA, 2017. [Google Scholar]
- Ito, G.; Frazer, N.; Lautze, N.; Thomas, D.; Hinz, N.; Waller, D.; Whittier, R.; Wallin, E. Play fairway analysis of geothermal resources across the state of Hawaii: 2. Resource probability mapping. Geothermics 2017, 70, 393–405. [Google Scholar] [CrossRef]
- Siler, D.L.; Zhang, Y.; Spycher, N.F.; Dobson, P.F.; McClain, J.S.; Gasperikova, E.; Zierenberg, R.A.; Schiffman, P.; Ferguson, C.; Fowler, A.; et al. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region. Geothermics 2017, 69, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Lautze, N.; Thomas, D.; Hinz, N.; Apuzen-Ito, G.; Frazer, N.; Waller, D. Play fairway analysis of geothermal resources across the State of Hawaii: 1. Geological, geophysical, and geochemical datasets. Geothermics 2017, 70, 376–392. [Google Scholar] [CrossRef]
- Smith, C.M. Machine Learning Techniques Applied to the Nevada Geothermal Play Fairway Analysis. Ph.D. Thesis, University of Nevada, Reno, NV, USA, 2021. [Google Scholar]
- Holmes, R.C.; Fournier, A. Machine Learning-Enhanced Play Fairway Analysis for Uncertainty Characterization and Decision Support in Geothermal Exploration. Energies 2022, 15, 1929. [Google Scholar] [CrossRef]
- Vesselinov, V.V.; Ahmmed, B.; Frash, L.; Mudunuru, M.K. GeoThermalCloud: Machine Learning for Discovery, Exploration, and Development of Hidden Geothermal Resources; Technical Report. In Proceedings of the 47th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 7–9 February 2022. [Google Scholar]
- Mudunuru, M.K.; Vesselinov, V.V.; Ahmmed, B. GeoThermalCloud: Machine Learning for Geothermal Resource Exploration. J. Mach. Learn. Model. Comput. 2022, 3, 57–72. [Google Scholar] [CrossRef]
- Ahmmed, B.; Vesselinov, V.V. Machine learning and shallow groundwater chemistry to identify geothermal prospects in the Great Basin, USA. Renew. Energy 2022, 197, 1034–1048. [Google Scholar] [CrossRef]
- Siler, D.L.; Pepin, J.D.; Vesselinov, V.V.; Mudunuru, M.K.; Ahmmed, B. Machine learning to identify geologic factors associated with production in geothermal fields: A case-study using 3D geologic data, Brady geothermal field, Nevada. Geotherm. Energy 2021, 9, 1–17. [Google Scholar] [CrossRef]
- Discovering hidden geothermal signatures using non-negative matrix factorization with customized k-means clustering. Geothermics 2022, 106, 102576. [CrossRef]
- Grant, P.R., Jr. Geothermal Energy Resources of Northwest New Mexico. 1978. Available online: https://archives.datapages.com/data/fcgs/data/014a/014001/9_four-corners140009.htm (accessed on 21 March 2023).
- Williams, C.F.; Reed, M.J.; Mariner, R.H.; DeAngelo, J.; Galanis, S.P. Assessment of Moderate-and High-Temperature Geothermal Resources of the United States; Technical Report; Geological Survey (US): Reston, VA, USA, 2008. [Google Scholar]
- Nash, G.D.; Brandt, A.; Pfaff, B.; Hardwick, C.; Gwynn, M.; Blake, K.; Simmons, S.; Bennett, C.R. Phase 2: Updated Geothermal Play Fairway Analysis of the Tularosa Basin, New Mexico. Trans.-Geotherm. Resour. Counc. 2017, 41. Available online: https://www.osti.gov/servlets/purl/1766306 (accessed on 21 March 2023).
- Finger, J.T.; Jacobson, R.D. Fort Bliss Exploratory Slimholes: Drilling and Testing; Technical Report; Sandia National Lab: Albuquerque, NM, USA, 1997. [Google Scholar]
- O’Donnell, T., Jr.; Miller, K.; Witcher, J. A seismic and gravity study of the McGregor geothermal system, southern New Mexico. Geophysics 2001, 66, 1002–1014. [Google Scholar] [CrossRef]
- Barker, B.; Moore, J.; Segall, M.; Nash, G.; Simmons, S.; Jones, C.; Lear, J.; Bennett, C. Exploration Drilling and Technology Demonstration At Fort Bliss; Technical Report; El Paso County/Ruby Mountain Inc.: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Newton, B.T.; Land, L. Brackish Water Assessment in the Eastern Tularosa Basin, New Mexico; Aquifer Mapping Program; New Mexico Bureau of Geology and Mineral Resources: Socorro, NM, USA, 2016. [Google Scholar]
- Broadhead, R.F. Petroleum Geology of the McGregor Range, Otero County, New Mexico; Publications-West Texas Geological Society, 2000; pp. 207–208. [Google Scholar]
- Brandt, A. Tularosa Basin Play Fairway Analysis: Methodology Flow Charts; Technical Report; USDOE Geothermal Data Repository US: Salt Lake City, UT, USA, 2015. [Google Scholar]
- Weers, J.; Huggins, J. Getting Data Out of the Ground: Modern Challenges Facing EGS Collab, the DOE Geothermal Data Repository, and the Geothermal Industry. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2019. [Google Scholar]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, B.S.; Vesselinov, V.V. Blind source separation for groundwater pressure analysis based on nonnegative matrix factorization. Water Resour. Res. 2014, 50, 7332–7347. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Vesselinov, V.V.; Alexandrov, B.S.; O’Malley, D. Contaminant source identification using semi-supervised machine learning. J. Contam. Hydrol. 2018, 212, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Vesselinov, V.V.; Mudunuru, M.K.; Karra, S.; O’Malley, D.; Alexandrov, B.S. Unsupervised machine learning based on non-negative tensor factorization for analyzing reactive-mixing. J. Comput. Phys. 2019, 395, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Karingithi, C.W. Chemical geothermometers for geothermal exploration. In Short Course IV on Exploration for Geothermal Resources; Geothermal Training Program Lake Vaivasha, Kenya; United Nations University: Shibuya City, Tokyo, 2009; Volume 1. [Google Scholar]
- Pepin, J.D.; Person, M.; Phillips, F.; Kelley, S.; Timmons, S.; Owens, L.; Witcher, J.; Gable, C.W. Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the T ruth or Consequences, New Mexico low-temperature geothermal system. In Crustal Permeability; Wiley: Hoboken, NJ, USA, 2012; pp. 155–173. [Google Scholar]
- Biehler, S.; Rex, R. Gravity studies in the Imperial Valley. In Cooperative Geological-Geophysical-Geochemical Investigations of Geothermal Resources in the Imperial Valley of California; University of California–Riverside Education Research Service: Riverside, CA, USA, 1971; pp. 29–41. [Google Scholar]
Signature | Dominant Attributes | Geothermal Resource Prospectivity |
---|---|---|
A | Heat flow, K-Mg geothermometer, | High |
silica geothermometer, quaternary fault density | ||
B | Temperature at 2 m, heat flow, gravity, | High |
quaternary fault density, Lithium concentration | ||
C | Fault distance | Low |
D | NaK-Giggenbach geothermometer, gravity, | Moderate |
NaK-Fournier geothermometer, Lithium concentration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudunuru, M.K.; Ahmmed, B.; Rau, E.; Vesselinov, V.V.; Karra, S. Machine Learning for Geothermal Resource Exploration in the Tularosa Basin, New Mexico. Energies 2023, 16, 3098. https://doi.org/10.3390/en16073098
Mudunuru MK, Ahmmed B, Rau E, Vesselinov VV, Karra S. Machine Learning for Geothermal Resource Exploration in the Tularosa Basin, New Mexico. Energies. 2023; 16(7):3098. https://doi.org/10.3390/en16073098
Chicago/Turabian StyleMudunuru, Maruti K., Bulbul Ahmmed, Elisabeth Rau, Velimir V. Vesselinov, and Satish Karra. 2023. "Machine Learning for Geothermal Resource Exploration in the Tularosa Basin, New Mexico" Energies 16, no. 7: 3098. https://doi.org/10.3390/en16073098