Aerodynamic Drag Reduction by the Trapezoid Spanwise Groove Inspired by Pigeon Feathers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microstructure of Pigeon Feathers
2.2. Numerical Approach
2.2.1. Spanwise Groove Geometry and Boundary Conditions
2.2.2. Computational Setup
2.3. Mesh Convergence Analysis
2.4. Experiment Methods
2.4.1. Experiment Setup for Cylinder Model
2.4.2. Experiment Setup for Plate Model
3. Results and Discussion
3.1. Fluid Field Profile
3.2. Drag Results of Simulations and Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bechert, D.W.; Bruse, M.; Hage, W.; Meyer, R. Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 2000, 87, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Biomimetics: Lessons from nature—An overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 1445–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.; Lindemann, A. Optimization and application of riblets for turbulent drag reduction. In Proceedings of the 22nd Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1984. [Google Scholar] [CrossRef]
- Walsh, M. Effect of Detailed Surface Geometry on Riblet Drag Reduction Performance. J. Aircr. 1990, 27, 572–573. [Google Scholar] [CrossRef]
- Bechert, D.W.; Bruse, M.; Hage, W. Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids 2000, 28, 403–412. [Google Scholar] [CrossRef]
- Bechert, D.; Bruse, M.; Hage, W.; Meyer, R. Biological surfaces and their technological application—Laboratory and flight experiments on drag reduction and separation control. In Proceedings of the 28th Fluid Dynamics Conference, Village, CO, USA, 29 June–2 July 1997. [Google Scholar]
- Koeltzsch, K.; Dinkelacker, A.; Grundmann, R. Flow over convergent and divergent wall riblets. Exp. Fluids 2002, 33, 346–350. [Google Scholar] [CrossRef]
- Sundaram, S.; Viswanath, P.R.; Rudrakumar, S. Viscous drag reduction using riblets on NACA 0012 airfoil to moderate incidence. AIAA J. 1996, 34, 676–682. [Google Scholar] [CrossRef]
- Subaschandar, N.; Kumar, R.; Sundaram, S. Drag Reduction Due to Riblets on a GAW(2) Airfoil. J. Aircr. 1999, 36, 890–892. [Google Scholar] [CrossRef]
- Zhang, D.-y.; Luo, Y.-h.; Li, X.; Chen, H.-w. Numerical Simulation and Experimental Study of Drag-Reducing Surface of a Real Shark Skin. J. Hydrodyn. 2011, 23, 204–211. [Google Scholar] [CrossRef]
- Li, C.; Tang, S.; Li, Y.; Geng, Z. Numerical and experimental investigations on drag-reducing effects of riblets. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1726–1745. [Google Scholar] [CrossRef]
- Qiu, H.; Chauhan, K.; Lei, C. A numerical study of drag reduction performance of simplified shell surface microstructures. Ocean. Eng. 2020, 217, 107916. [Google Scholar] [CrossRef]
- Ko, N.W.M.; Leung, Y.C.; Chen, J.J.J. Flow past V-groove circular cylinders. AIAA J. 1987, 25, 806–811. [Google Scholar] [CrossRef]
- Cheng, W.; Pullin, D.I.; Samtaney, R. Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers. J. Fluid Mech. 2017, 835, 327–362. [Google Scholar] [CrossRef]
- Kimura, T.; Tsutahara, M. Fluid dynamic effects of grooves on circular cylinder surface. AIAA J. 1991, 29, 2062–2068. [Google Scholar] [CrossRef]
- Ranjan, P.; Ranjan, A.R.; Singh, A.P. Computational analysis of frictional drag over transverse grooved flat plates. Int. J. Eng. Sci. Technol. 2011, 3, 110–116. [Google Scholar] [CrossRef]
- Sutardi, S.; Widodo, W.A. Analysis of Turbulence Characteristics in the Laminar Sub-Layer Region of a Perturbed Turbulent Boundary Layer. Appl. Mech. Mater. 2016, 836, 115–120. [Google Scholar] [CrossRef]
- Sutardi; Ching, C.Y. The response of a turbulent boundary layer to different shaped transverse grooves. Exp. Fluids 2003, 35, 325–337. [Google Scholar] [CrossRef]
- Ahmadi-Baloutaki, M.; Carriveau, R.; Ting, D.S.K. Effect of free-stream turbulence on flow characteristics over a transversely-grooved surface. Exp. Therm. Fluid Sci. 2013, 51, 56–70. [Google Scholar] [CrossRef]
- Tirandazi, P.; Hidrovo, C.H. Study of drag reduction using periodic spanwise grooves on incompressible viscous laminar flows. Phys. Rev. Fluids 2020, 5, 064102. [Google Scholar] [CrossRef]
- Li, Z.; He, L.; Zheng, Y. Quasi-Analytical Solution of Optimum and Maximum Depth of Transverse V-Groove for Drag Reduction at Different Reynolds Numbers. Symmetry 2022, 14, 342. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, Y.; Liu, M.; Li, S. Analysis of the influence of transverse groove structure on the flow of a flat-plate surface based on Liutex parameters. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1282–1297. [Google Scholar] [CrossRef]
Parameters | w | p | h | |
---|---|---|---|---|
Groove Type | ||||
Triangle | 40 | 120 | 20 | |
Rectangle | 40 | 120 | 20 | |
Trapezoid | 40 | 120 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wei, Y.; Weng, D.; Wang, J. Aerodynamic Drag Reduction by the Trapezoid Spanwise Groove Inspired by Pigeon Feathers. Energies 2023, 16, 2379. https://doi.org/10.3390/en16052379
Wang Y, Wei Y, Weng D, Wang J. Aerodynamic Drag Reduction by the Trapezoid Spanwise Groove Inspired by Pigeon Feathers. Energies. 2023; 16(5):2379. https://doi.org/10.3390/en16052379
Chicago/Turabian StyleWang, Yanqing, Yuju Wei, Ding Weng, and Jiadao Wang. 2023. "Aerodynamic Drag Reduction by the Trapezoid Spanwise Groove Inspired by Pigeon Feathers" Energies 16, no. 5: 2379. https://doi.org/10.3390/en16052379
APA StyleWang, Y., Wei, Y., Weng, D., & Wang, J. (2023). Aerodynamic Drag Reduction by the Trapezoid Spanwise Groove Inspired by Pigeon Feathers. Energies, 16(5), 2379. https://doi.org/10.3390/en16052379