# Radiometric Partial Discharge Detection: A Review

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Partial Discharges Overview

#### 2.1. PD Background and Types

#### 2.2. PD Patterns Representation

#### 2.3. Offline Versus Online Measurement

#### 2.4. Different Methods for PD Detection

#### 2.4.1. Conventional Detection Method: IEC 60270

_{x}(in which the PD occurs), a coupling capacitor C

_{b}(with low inductance design), and a measuring impedance Z

_{m}, as important circuit components. The filter unit Z

_{e}suppresses unwanted high-frequency background noise or disturbances generated by AC voltage sources. It is usually built as a large inductor because the tested object insulation system, C

_{x}, exhibits a predominantly capacitive character. The coupling capacitor, when connected in series with the impedance Z

_{m}, creates a capacitive divider, converting the high-frequency current into a voltage signal detectable by the measuring instrument [57]. When a discharge occurs in the object under test, the coupling capacitor transfers a charge to it to compensate for the momentary collapse of the voltage across it [18]. As a result, when coupling the sense impedance Z

_{m}, the sub-1 MHz current pulse resulting from PD activity in the test object (C

_{x}) can also be detected from the coupling capacitor branch. The coupling device serves as a measuring module from which the PD voltage signal can be extracted. Such an approach provides additional information about the test voltage, which is needed for a phase-related partial discharge (PRPD) measurement. The signal can be represented in both time and phase domains to illustrate the characteristics of the PD events. The test configuration shown in Figure 3 is appropriate for measuring PD from a test object that has a ground terminal or is connected between the HV AC source and the ground [18]. The coupling capacitor picks up and detects the PD-generated current at the test object, which has a connecting loop to the ground line through some impedance. When a discharge occurs, a transient current flows in some ns in the external circuit Z

_{m}corresponding to an amount of charge (known as the apparent charge). This pulse can be measured using the impedance Z

_{m}, often composed by a parallel RLC circuit. The inductance L strongly attenuates the low-frequency components of the measured signal, the capacitance C incorporates rapid PD pulses, and the resistance R dampens the voltage oscillations at its terminals. After calibration, this circuit measures a signal proportional to the apparent PD. Electrical measurement provides high sensitivity and is easy to execute. However, due to its high sensitivity, it is prone to problems and therefore unsuitable for the long-term monitoring of transformers.

#### 2.4.2. Radiofrequency (RF) Methods

#### 2.4.3. Non-Electrical Methods

_{3}), nitric oxide (NO), and nitrous oxide (N

_{2}O), which in turn yield nitrogen dioxide (NO

_{2}), and therefore nitric acid (HNO

_{3}) if water vapor is present. These toxic gases are corrosive and can degrade and weaken the insulation, in addition to causing shortness of breath in people. The chemical measuring techniques used to identify PD in high-voltage transformers are based on the collection and chemical analysis of oil and gas samples emitted during the PD process. Essentially, two chemical measuring procedures are in use: dissolved gas analysis (DGA) and the high-performance liquid chromatography (HPLC) method. HPLC analyzes PD-ejected by-products, such as deteriorated forms of glucose caused by insulation breakdown, whereas DGA analyzes the total amount of gas generated by the PD [29]. Before chemical testing techniques can be used, sufficient by-products or ejected gas must be collected. Therefore, there will be a time lag between the collection and analysis of data, which makes chemical detection unsuitable for real-time monitoring. Furthermore, both methods are not able to provide information about PD localization [49,63].

## 3. Radiometric Sensors for PD Detection

#### 3.1. Inductive Sensors

#### 3.1.1. High-Frequency Current Transformer (HFCT)

#### 3.1.2. Rogowski Coil (RC)

#### 3.1.3. Inductive Loop Sensor (ILS)

#### 3.2. Loop Antennas

#### 3.3. VHF/UHF Antennas

#### 3.3.1. VHF Antennas

#### 3.3.2. Wire Antennas

#### 3.3.3. PCB Trace Antennas

- (a)
- Fractal antennas

- (b)
- Microstrip antennas

^{2}. In laboratory tests, the results showed that the antenna had the ability to detect PD activities with a charge value of 30 pC, indicating high measurement sensitivity. The authors confirmed the detection of PD activity at various frequencies ranging from 333 MHz to 1.21 GHz. Despite the efficiency of the patch antenna, the final dimensions make it more suitable for PD detection when placed in environments with greater flexibility in space, such as in HV equipment surveillance in open power stations. Indeed, additional miniaturization techniques are required for applications in environments with dimensional constraints, such as dielectric windows. Cruz et al. [119] developed a miniaturized printed monopole antenna for PD detection. The latter’s geometry was bio-inspired and based on the Inga Marginata leaf (Figure 17b). The antenna had a 34 × 14 cm

^{2}footprint and an operating frequency range from 340 MHz to values above 8 GHz. The results showed that the designed antenna was insensitive to the detection of corona discharges in an open-air power station. Even with its compact dimensions, the bio-inspired antenna was still relatively bulky for applications such as dielectric windows. Thus, according to the authors, the use of this type of sensor in open substations is recommended due to its omnidirectional radiation pattern and its insensitivity to corona discharges. Yang et al. [120] proposed an UWB-printed antenna used for external PD detection in GIS, adopting a modified U-shaped radiating patch similar to [121] (Figure 17c). The results showed that the designed UWB antenna had a bandwidth covering 0.5 to 1.5 GHz, which satisfied the bandwidth criteria for UHF antennas. The latter was tested twice for PD measurements: in the laboratory using an artificial air cavity at a distance of 50 cm and on-site using air-insulated switchgear at a distance of 75 cm. Both tests produced notable results for PD signals. The antenna’s average gain and physical size showed that its performance was outstanding when used as an external sensor but may not meet the needs of internal sensors for GIS or transformers. Since this type of antenna can detect a wide variety of frequency components, PD identification can be used with greater accuracy when combined with frequency spectrum analysis. Uwiringiyimana et al. [122] proposed a circular-shaped microstrip patch antenna developed for PD measurement with reduced noise level (Figure 17d). The antenna measured 100 × 100 mm

^{2}and had a bandwidth of 1.2 to 4.5 GHz. The latter was compared to an HFCT for PD tests. At a distance of 70 cm from the source, the UHF antenna detected a peak-to-peak signal of 288 mV for an applied voltage of 7 kV. Telecom background noise was reduced. However, the antenna bandwidth included all other telecommunication bands while excluding only the GSM-900 MHz band. For this reason, noise cancellation was not entirely successful.

- (c)
- Spiral antennas

- (d)
- Biconical antennas

^{2}and was built on a 1.6 mm-thick FR4 board, had a return loss of 10 dB and a VSWR of 2. Real-world PD tests were not performed. Uwiringiyimana and Khayam [131] designed a double-layer bowtie antenna by modifying the wings’ shape (Figure 21b) for corona PD measurement. The bowtie antenna was tested and compared with a conventional RC detector. Since the antenna’s bandwidth included several communication bands as background noise while excluding the region where PD occurs most frequently, the antenna’s ability to detect PD signals was limited.

- (e)
- Aperture Antennas

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Liao, Y.; Liu, H.; Yuan, J.; Xu, Y.; Zhou, W.; Zhou, C. A holistic approach to risk-based maintenance scheduling for HV cables. IEEE Access
**2019**, 7, 118975–118985. [Google Scholar] [CrossRef] - Montanari, G.C.; Mazzanti, G. Ageing of polymeric insulating materials and insulation system design. Polym. Int.
**2002**, 51, 1151–1158. [Google Scholar] [CrossRef] - Afia, R.S.; Mustafa, E.; Tamus, Z.Á. Aging Assessment of XLPE/CSPE LV Nuclear Power Cables Under Simultaneous Radiation-Mechanical Stresses. Energy Rep.
**2022**, 8, 1028–1037. [Google Scholar] [CrossRef] - Gjerde, A. Multifactor ageing models-origin and similarities. IEEE Electr. Insul. Mag.
**1997**, 13, 6–13. [Google Scholar] [CrossRef] - Morshuis, P.H.F. Partial Discharge Mechanisms: Mechanisms Leading to Breakdown, Analyzed by Fast Electrical and Optical Measurements. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1993. [Google Scholar]
- Ardila-Rey, J.A.; Cerda-Luna, M.P.; Rozas-Valderrama, R.A.; De Castro, B.A.; Andreoli, A.L.; Muhammad-Sukki, F. Separation techniques of partial discharges and electrical noise sources: A review of recent progress. IEEE Access
**2020**, 8, 199449–199461. [Google Scholar] [CrossRef] - Morshuis, P.H. Degradation of solid dielectrics due to internal partial discharge: Some thoughts on progress made and where to go now. IEEE Trans. Dielectr. Electr. Insul.
**2005**, 12, 905–913. [Google Scholar] [CrossRef] - Niemeyer, L. A generalized approach to partial discharge modeling. IEEE Trans. Dielectr. Electr. Insul.
**1995**, 2, 510–528. [Google Scholar] [CrossRef] [Green Version] - Moradnouri, A.; Vakilian, M.; Hekmati, A.; Fardmanesh, M. HTS transformer’s partial discharges raised by floating particles and nitrogen bubbles. J. Supercond. Nov. Magn.
**2020**, 33, 3027–3034. [Google Scholar] [CrossRef] - Kreuger, F.; Gulski, E.; Krivda, A. Classification of partial discharges. IEEE Trans. Electr. Insul.
**1993**, 28, 917–931. [Google Scholar] [CrossRef] [Green Version] - Cavallini, A.; Montanari, G.; Puletti, F.; Contin, A. A new methodology for the identification of PD in electrical apparatus: Properties and applications. IEEE Trans. Dielectr. Electr. Insul.
**2005**, 12, 203–215. [Google Scholar] [CrossRef] - Wu, M.; Cao, H.; Cao, J.; Nguyen, H.-L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Electr. Insul. Mag.
**2015**, 31, 22–35. [Google Scholar] [CrossRef] - Lu, S.; Chai, H.; Sahoo, A.; Phung, B. Condition monitoring based on partial discharge diagnostics using machine learning methods: A comprehensive state-of-the-art review. IEEE Trans. Dielectr. Electr. Insul.
**2020**, 27, 1861–1888. [Google Scholar] [CrossRef] - Biswas, S.; Koley, C.; Chatterjee, B.; Chakravorti, S. A methodology for identification and localization of partial discharge sources using optical sensors. IEEE Trans. Dielectr. Electr. Insul.
**2012**, 19, 18–28. [Google Scholar] [CrossRef] - Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag.
**2002**, 18, 8–17. [Google Scholar] [CrossRef] [Green Version] - Descoeudres, A.; Hollenstein, C.; Demellayer, R.; Wälder, G. Optical emission spectroscopy of electrical discharge machining plasma. J. Phys. D Appl. Phys.
**2004**, 37, 875. [Google Scholar] [CrossRef] - Ilkhechi, H.D.; Samimi, M.H. Applications of the acoustic method in partial discharge measurement: A review. IEEE Trans. Dielectr. Electr. Insul.
**2021**, 28, 42–51. [Google Scholar] [CrossRef] - Morsalin, S.; Das, N. Diagnostic aspects of partial discharge measurement at very low frequency: A review. IET Sci. Meas. Technol.
**2020**, 14, 825–841. [Google Scholar] [CrossRef] - Rostaminia, R.; Saniei, M.; Vakilian, M.; Mortazavi, S.S. Evaluation of transformer core contribution to partial discharge electromagnetic waves propagation. Int. J. Electr. Power Energy Syst.
**2016**, 83, 40–48. [Google Scholar] [CrossRef] - Upton, D.W.; Mistry, K.K.; Mather, P.J.; Zaharis, Z.D.; Atkinson, R.C.; Tachtatzis, C.; Lazaridis, P.I. A review of techniques for RSS-based radiometric partial discharge localization. Sensors
**2021**, 21, 909. [Google Scholar] [CrossRef] - Samimi, M.H.; Mahari, A.; Farahnakian, M.A.; Mohseni, H. The Rogowski coil principles and applications: A review. IEEE Sens. J.
**2014**, 15, 651–658. [Google Scholar] [CrossRef] - Chai, H.; Phung, B.T.; Mitchell, S. Application of UHF sensors in power system equipment for partial discharge detection: A review. Sensors
**2019**, 19, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Roslizan, N.; Rohani, M.; Wooi, C.; Isa, M.; Ismail, B.; Rosmi, A.; Mustafa, W. A review: Partial discharge detection using UHF sensor on high voltage equipment. J. Phys. Conf. Ser.
**2020**, 1432, 012003. [Google Scholar] [CrossRef] - Hikita, M.; Ohtsuka, S.; Matsumoto, S. Recent trend of the partial discharge measurement technique using the UHF electromagnetic wave detection method. IEEJ Trans. Electr. Electron. Eng.
**2007**, 2, 504–509. [Google Scholar] [CrossRef] - Tenbohlen, S.; Beura, C.P.; Sikorski, W.; Sánchez, R.A.; de Castro, B.A.; Beltle, M.; Fehlmann, P.; Judd, M.; Werner, F.; Siegel, M. Frequency Range of UHF PD Measurements in Power Transformers. Energies
**2023**, 16, 1395. [Google Scholar] [CrossRef] - Mondal, M.; Kumbhar, G.B. Detection, measurement, and classification of partial discharge in a power transformer: Methods, trends, and future research. IETE Tech. Rev.
**2018**, 35, 483–493. [Google Scholar] [CrossRef] - Mondal, M.; Kumbhar, G.B. Partial discharge localization in a power transformer: Methods, trends, and future research. IETE Tech. Rev.
**2017**, 34, 504–513. [Google Scholar] [CrossRef] - Bartnikas, R. Detection of partial discharges (corona) in electrical apparatus. IEEE Trans. Electr. Insul.
**1990**, 25, 111–124. [Google Scholar] [CrossRef] - Bartnikas, R. Partial discharges. Their mechanism, detection and measurement. IEEE Trans. Dielectr. Electr. Insul.
**2002**, 9, 763–808. [Google Scholar] [CrossRef] - Pan, C.; Wu, K.; Chen, G.; Gao, Y.; Florkowski, M.; Lv, Z.; Tang, J. Understanding partial discharge behavior from the memory effect induced by residual charges: A review. IEEE Trans. Dielectr. Electr. Insul.
**2020**, 27, 1951–1965. [Google Scholar] [CrossRef] - Van Brunt, R.J.; Cernyar, E.; Von Glahn, P. Importance of unraveling memory propagation effects in interpreting data on partial discharge statistics. IEEE Trans. Electr. Insul.
**1993**, 28, 905–916. [Google Scholar] [CrossRef] [Green Version] - Dissado, L.A. Understanding electrical trees in solids: From experiment to theory. IEEE Trans. Dielectr. Electr. Insul.
**2002**, 9, 483–497. [Google Scholar] [CrossRef] - Stone, G.; Boulter, E.A.; Culbert, I.; Dhirani, H. Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair; Wiley-IEEE Press: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kreuger, F.H. Detection and Location of Discharges. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Nederland, 1961. [Google Scholar]
- Gulski, E. Computer-Aided Recognition of Partial Dicharges Using Statistical Tools. Ph.D. Thesis, Delft University Press, Delft, The Netherlands, 1991. [Google Scholar]
- Contin, A.; Montanari, G.; Ferraro, C. PD source recognition by Weibull processing of pulse height distributions. IEEE Trans. Dielectr. Electr. Insul.
**2000**, 7, 48–58. [Google Scholar] [CrossRef] - Basharan, V.; Siluvairaj, W.I.M.; Velayutham, M.R. Recognition of multiple partial discharge patterns by multi-class support vector machine using fractal image processing technique. IET Sci. Meas. Technol.
**2018**, 12, 1031–1038. [Google Scholar] [CrossRef] - Sahoo, N.; Salama, M.; Bartnikas, R. Trends in partial discharge pattern classification: A survey. IEEE Trans. Dielectr. Electr. Insul.
**2005**, 12, 248–264. [Google Scholar] [CrossRef] - Romano, P.; Imburgia, A.; Ala, G. Partial discharge detection using a spherical electromagnetic sensor. Sensors
**2019**, 19, 1014. [Google Scholar] [CrossRef] [Green Version] - Peng, X.; Yang, F.; Wang, G.; Wu, Y.; Li, L.; Li, Z.; Bhatti, A.A.; Zhou, C.; Hepburn, D.M.; Reid, A.J.; et al. A Convolutional Neural Network-Based Deep Learning Methodology for Recognition of Partial Discharge Patterns from High-Voltage Cables. IEEE Trans. Power Deliv.
**2019**, 34, 1460–1469. [Google Scholar] [CrossRef] - Barrios, S.; Buldain, D.; Comech, M.P.; Gilbert, I.; Orue, I. Partial discharge classification using deep learning methods—Survey of recent progress. Energies
**2019**, 12, 2485. [Google Scholar] [CrossRef] [Green Version] - Cavallini, A.; Montanari, G.; Contin, A.; Pulletti, F. A new approach to the diagnosis of solid insulation systems based on PD signal inference. IEEE Electr. Insul. Mag.
**2003**, 19, 23–30. [Google Scholar] [CrossRef] - Hirata, A.; Nakata, S.; Kawasaki, Z.-I. Toward automatic classification of partial discharge sources with neural networks. IEEE Trans. Power Deliv.
**2005**, 21, 526–527. [Google Scholar] [CrossRef] - Gulski, E.; Krivda, A. Neural networks as a tool for recognition of partial discharges. IEEE Trans. Electr. Insul.
**1993**, 28, 984–1001. [Google Scholar] [CrossRef] [Green Version] - IEEE. Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment; IEEE: New York, NY, USA, 2007. [Google Scholar]
- Hu, Y.; Zeng, Z.; Liu, J.; Wang, J.; Zhang, W. Design of a distributed UHF sensor array system for PD detection and location in substation. IEEE Trans. Instrum. Meas.
**2019**, 68, 1844–1851. [Google Scholar] [CrossRef] - IEC-60270; High-Voltage Test Techniques: Partial Discharge Measurements. IEC: Geneva, Switzerland, 2000; pp. 13–31.
- Cheng, C.; Fan, C.-L.; Hsiao, H.-C.; Wang, W.-M. On-site partial discharge measurement of uderground cable system. In Proceedings of the 2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 1–4 November 2011; pp. 575–580. [Google Scholar]
- Bakar, N.A.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag.
**2014**, 30, 39–49. [Google Scholar] [CrossRef] - Danouj, B.; Tahan, S.; David, E. Using a new generation of piezoelectric sensors for partial discharge detection. Measurement
**2013**, 46, 660–666. [Google Scholar] [CrossRef] - Zhang, Y.; Glover, I. Design of an ultrawideband VHF/UHF antenna for partial discharge detection. In Proceedings of the 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, 5–8 August 2014; pp. 487–490. [Google Scholar]
- Mor, A.R.; Heredia, L.C.C.; Muñoz, F.A. A novel approach for partial discharge measurements on GIS using HFCT sensors. Sensors
**2018**, 18, 4482. [Google Scholar] - Kaziz, S.; Imburgia, A.; Flandre, D.; Rizzo, G.; Romano, P.; Viola, F.; Ala, G.; Tounsi, F. Performances of a PCB-based Loop Antenna Inductive Sensor for Partial Discharges Detection. In Proceedings of the 2022 IEEE 4th International Conference on Dielectrics (ICD), Palermo, Italy, 3–7 July 2022; pp. 9–12. [Google Scholar]
- Wang, X.; Li, B.; Xiao, Z.; Lee, S.H.; Roman, H.; Russo, O.L.; Chin, K.K.; Farmer, K.R. An ultra-sensitive optical MEMS sensor for partial discharge detection. J. Micromechan. Microeng.
**2004**, 15, 521. [Google Scholar] [CrossRef] [Green Version] - Salustiano, R.; Capelini, R.; De Abreu, S.; Martinez, M.; Tavares, I.; Ferraz, G.; Romano, M. Development of new methodology for insulators inspections on aerial distribution lines based on partial discharge detection tools. In Proceedings of the 2014 ICHVE International Conference on High Voltage Engineering and Application, Poznan, Poland, 8–11 September 2014; pp. 1–4. [Google Scholar]
- Kanegami, M.; Miyazaki, S.; Miyake, K. Partial Discharge Detection with High-Frequency Band through Resistance-Temperature Sensor of Hydropower Generator Stator Windings. Electr. Eng. Jpn.
**2016**, 195, 9–15. [Google Scholar] [CrossRef] - Kindl, V.; Skala, B.; Pechanek, R.; Kus, V.; Hornak, J. Low-pass filter for HV partial discharge testing. Sensors
**2018**, 18, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kaziz, S.; Romano, P.; Imburgia, A.; Ala, G.; Sghaier, H.; Flandre, D.; Tounsi, F. PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables. Sensors
**2023**, 23, 290. [Google Scholar] [CrossRef] - Robles, G.; Martinez-Tarifa, J.M.; Rojas-Moreno, M.V.; Sanz-Feito, J. Inductive sensor for measuring high frequency partial discharges within electrical insulation. IEEE Trans. Instrum. Meas.
**2009**, 58, 3907–3913. [Google Scholar] [CrossRef] - Rozi, F.; Khayam, U. Development of loop antennas for partial discharge detection. Int. J. Electr. Eng. Inform.
**2015**, 7, 29. [Google Scholar] [CrossRef] - Azam, S.K.; Othman, M.; Illias, H.A.; Latef, T.A.; Islam, M.T.; Ain, M.F. Ultra-high frequency printable antennas for partial discharge diagnostics in high voltage equipment. Alex. Eng. J.
**2023**, 64, 709–729. [Google Scholar] [CrossRef] - Schwarz, R.; Muhr, M. Modern technologies in optical partial discharge detection. In Proceedings of the 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 14–17 October 2007; pp. 163–166. [Google Scholar]
- Wang, Z.; Cotton, I. Northcote, and others, Dissolved gas analysis of alternative fluids for power transformers. IEEE Electr. Insul. Mag.
**2007**, 23, 5–14. [Google Scholar] - Qian, S.; Chen, H.; Xu, Y.; Su, L. High sensitivity detection of partial discharge acoustic emission within power transformer by sagnac fiber optic sensor. IEEE Trans. Dielectr. Electr. Insul.
**2018**, 25, 2313–2320. [Google Scholar] [CrossRef] - Chelmiah, E.T.; Kavanagh, D.F. Acoustic Sensor Array Topologies for Partial Discharge Localisation in Electric Machines. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 1582–1588. [Google Scholar]
- BúaNúñez, I.; Posada-Román, J.E.; Rubio-Serrano, J.; Garcia-Souto, J.A. Instrumentation system for location of partial discharges using acoustic detection with piezoelectric transducers and optical fiber sensors. IEEE Trans. Instrum. Meas.
**2013**, 63, 1002–1013. [Google Scholar] [CrossRef] [Green Version] - Liu, B.; Ma, H.; Ju, P. Partial discharge diagnosis by simultaneous observation of discharge pulses and vibration signal. IEEE Trans. Dielectr. Electr. Insul.
**2017**, 24, 288–295. [Google Scholar] [CrossRef] - Posada-Roman, J.; Garcia-Souto, J.A.; Rubio-Serrano, J. Fiber optic sensor for acoustic detection of partial discharges in oil-paper insulated electrical systems. Sensors
**2012**, 12, 4793–4802. [Google Scholar] [CrossRef] [Green Version] - Zhou, H.-Y.; Ma, G.-M.; Zhang, M.; Zhang, H.-C.; Li, C.-R. A high sensitivity optical fiber interferometer sensor for acoustic emission detection of partial discharge in power transformer. IEEE Sens. J.
**2019**, 21, 24–32. [Google Scholar] [CrossRef] - Campbell, S.; Stone, G. Investigations into the use of temperature detectors as stator winding partial discharge detectors. In Proceedings of the Conference Record of the 2006 IEEE International Symposium on Electrical Insulation, Toronto, ON, Canada, 11–14 June 2006; pp. 369–375. [Google Scholar]
- Hampton, B.; Meats, R. Diagnostic measurements at UHF in gas insulated substations. IEE Proc. C Gener. Transm. Distrib.
**1988**, 135, 137–144. [Google Scholar] [CrossRef] - Ahmed, N.; Srinivas, N. On-line partial discharge detection in cables. IEEE Trans. Dielectr. Electr. Insul.
**1998**, 5, 181–188. [Google Scholar] [CrossRef] - Fritsch, M.; Wolter, M. High-Frequency Current Transformer Design and Construction Guide. IEEE Trans. Instrum. Meas.
**2022**, 71, 1–9. [Google Scholar] [CrossRef] - Zachariades, C.; Shuttleworth, R.; Giussani, R.; MacKinlay, R. Optimization of a high-frequency current transformer sensor for partial discharge detection using finite-element analysis. IEEE Sens. J.
**2016**, 16, 7526–7533. [Google Scholar] [CrossRef] [Green Version] - Álvarez, F.; Garnacho, F.; Ortego, J.; Sánchez-Urán, M.Á. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment. Sensors
**2015**, 15, 7360–7387. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Luo, G.; Zhang, D. Study on performance of HFCT and UHF sensors in partial discharge detection. In Proceedings of the 2010 Conference Proceedings IPEC, Singapore, 27–29 October 2010; pp. 630–635. [Google Scholar]
- Paulus, S.; Kammerer, J.-B.; Pascal, J.; Bona, C.; Hebrard, L. Continuous calibration of Rogowski coil current transducer. Analog. Integr. Circuits Signal Process.
**2016**, 89, 77–88. [Google Scholar] [CrossRef] - Hashmi, G.M.; Lehtonen, M.; Nordman, M. Modeling and experimental verification of on-line PD detection in MV covered-conductor overhead networks. IEEE Trans. Dielectr. Electr. Insul.
**2010**, 17, 167–180. [Google Scholar] [CrossRef] - Moreno, M.V.R.; Robles, G.; Albarracin, R.; Rey, J.A.; Tarifa, J.M.M. Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses. Electr. Eng.
**2017**, 99, 817–826. [Google Scholar] [CrossRef] - Metwally, I.A. Self-integrating Rogowski coil for high-impulse current measurement. IEEE Trans. Instrum. Meas.
**2009**, 59, 353–360. [Google Scholar] [CrossRef] - Han, R.-Y.; Wu, J.-W.; Ding, W.-D.; Jing, Y.; Zhou, H.-B.; Liu, Q.-J.; Qiu, A.-C. Hybrid PCB Rogowski coil for measurement of nanosecond-risetime pulsed current. IEEE Trans. Plasma Sci.
**2015**, 43, 3555–3561. [Google Scholar] [CrossRef] - Kumar, C.L.G.P.; Khalid, N.H.A.; Ahmad, M.H.; Nawawi, Z.; Sidik, M.A.B.; Jambak, M.I.; Kurnia, R.F.; Waldi, E.P. Development and Validation of Rogowski Coil with Commercial High Frequency Current Transformer for Partial Discharge Detection. In Proceedings of the 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), Pangkal Pinang, Indonesia, 2–4 October 2018; pp. 315–320. [Google Scholar]
- Shafiq, M.; Kutt, L.; Lehtonen, M.; Nieminen, T.; Hashmi, M. Parameters identification and modeling of high-frequency current transducer for partial discharge measurements. IEEE Sens. J.
**2012**, 13, 1081–1091. [Google Scholar] [CrossRef] - Sharifinia, S.; Allahbakhshi, M.; Ghanbari, T.; Akbari, A.; Mirzaei, H.R. A New Application of Rogowski Coil Sensor for Partial Discharge Localization in Power Transformers. IEEE Sens. J.
**2021**, 21, 10743–10751. [Google Scholar] [CrossRef] - Waldi, E.P.; Lestari, A.I.; Fernandez, R.; Mulyadi, S.; Murakami, Y.; Hozumi, N. Rogowski coil sensor in the digitization process to detect partial discharge. Telecommun. Comput. Electron. Control.
**2020**, 18, 1062–1071. [Google Scholar] [CrossRef] - Liu, X.; Huang, H.; Dai, Y. Effect of frequency on the linearity of double-layer and single-layer Rogowski coils. IEEE Sens. J.
**2020**, 20, 9910–9918. [Google Scholar] [CrossRef] - Ardila-Rey, J.A.; Barrueto, A.; Zerene, A.; de Castro, B.A.; Ulson, J.A.C.; Mas’ud, A.A.; Valdivia, P. Behavior of an inductive loop sensor in the measurement of partial discharge pulses with variations in its separation from the primary conductor. Sensors
**2018**, 18, 2324. [Google Scholar] [CrossRef] [Green Version] - Rojas-Moreno, M.V.; Robles, G.; Mart’, J.M.; Sanz-Feito, J. Self-integrating inductive loop for measuring high frequency pulses. Rev. Sci. Instrum.
**2011**, 82, 085102. [Google Scholar] [CrossRef] [PubMed] - Ardila-Rey, J.A.; Montaña, J.; De Castro, B.A.; Schurch, R.; Ulson, J.A.C.; Muhammad-Sukki, F.; Bani, N.A. A comparison of inductive sensors in the characterization of partial discharges and electrical noise using the chromatic technique. Sensors
**2018**, 18, 1021. [Google Scholar] [CrossRef] [Green Version] - Imburgia, A.; Kaziz, S.; Romano, P.; Flandre, D.; Artale, G.; Rizzo, G.; Viola, F.; Tounsi, F.; Ala, G. Investigation of PCB-based Inductive Sensors Orientation for Corona Partial Discharge Detection. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 559–563. [Google Scholar]
- Lopez-Roldan, J.; Tang, T.; Gaskin, M. Optimisation of a sensor for onsite detection of partial discharges in power transformers by the UHF method. IEEE Trans. Dielectr. Electr. Insul.
**2008**, 15, 1634–1639. [Google Scholar] [CrossRef] - Jin, Z.; Sun, C.; Cheng, C.; Li, J. Two types of compact UHF antennas for partial discharge measurement. In Proceedings of the 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 19–12 November 2008; pp. 616–620. [Google Scholar]
- Widjaja, C.D.; Fahren, A.A.M.; Khayam, U.; Hidayat, S. Design of Loop Antenna as Partial Discharge Sensor on Metal-Enclosed Power Apparatus. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1506–1510. [Google Scholar]
- Ye, H.-F.; Qian, Y.; Dong, Y.; Sheng, G.H.; Jiang, X.C. Development of multi-band ultra-high-frequency sensor for partial discharge monitoring based on the meandering technique. IET Sci. Meas. Technol.
**2014**, 8, 327–335. [Google Scholar] - Zeidi, N.; Kaziz, S.; Said, M.H.; Rufer, L.; Cavallini, A.; Tounsi, F. Partial discharge detection with on-chip spiral inductor as a loop antenna. Rev. Sci. Instrum.
**2021**, 92, 094701. [Google Scholar] [CrossRef] [PubMed] - Mor, A.R.; Heredia, L.C.; Muñoz, F. A magnetic loop antenna for partial discharge measurements on GIS. Int. J. Electr. Power Energy Syst.
**2020**, 115, 105514. [Google Scholar] - Rodrigo-Mor, A.; Muñoz, F.A.; Castro-Heredia, L.C. A novel antenna for partial discharge measurements in GIS based on magnetic field detection. Sensors
**2019**, 19, 858. [Google Scholar] [CrossRef] [Green Version] - Hussain, G.A.; Zaher, A.A.; Hummes, D.; Safdar, M.; Lehtonen, M. Hybrid sensing of internal and surface partial discharges in air-insulated medium voltage switchgear. Energies
**2020**, 13, 1738. [Google Scholar] [CrossRef] [Green Version] - Chen, G.; Tao, J.; Ma, Y.; Fu, H.; Liu, Y.; Zhou, Z.; Huang, C.; Guo, C. On-site portable partial discharge detection applied to power cables using HFCT and UHF methods. WSEAS Trans. Circuits Syst.
**2016**, 15, 83–90. [Google Scholar] - Khan, A.A.; Malik, N.; Al-Arainy, A.; Alghuweinem, S. Investigation of attenuation characteristics of PD pulse during propagation in XLPE cable. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Tang, J.; Zhou, Q.; Tang, M.; Xie, Y. Study on mathematical model for VHF partial discharge of typical insulated defects in GIS. IEEE Trans. Dielectr. Electr. Insul.
**2007**, 14, 30–38. [Google Scholar] [CrossRef] - Thungsook, K.; Pattanadech, N.; Nimsanong, P.; Srinangyam, C. The Bandwidth Verification of VHF Antenna and Apply for Partial Discharge Measurement. In Proceedings of the 2022 9th International Conference on Condition Monitoring and Diagnosis (CMD), Kitakyushu, Japan, 13–18 November 2022; pp. 559–562. [Google Scholar]
- Maneerot, S.; Kando, M.; Pattanadech, N. Applying HF and VHF/UHF Partial Discharge Detection for Distribution Transformer. J. Mob. Multimed.
**2019**, 15, 357–376. [Google Scholar] [CrossRef] - Saktioto; Soerbakti, Y.; Syahputra, R.F.; Gamal, M.D.H.; Irawan, D.; Putra, E.H.; Darwis, R.S. Improvement of low-profile microstrip antenna performance by hexagonal-shaped SRR structure with DNG metamaterial characteristic as UWB application. Alex. Eng. J.
**2022**, 61, 4241–4252. [Google Scholar] [CrossRef] - Albarracin, R.; Ardila-Rey, J.A.; Masiud, A.A. On the use of monopole antennas for determining the effect of the enclosure of a power transformer tank in partial discharges electromagnetic propagation. Sensors
**2016**, 16, 148. [Google Scholar] [CrossRef] [Green Version] - Sikorski, W.; Szymczak, C.; Siod, K.; Polak, F. Hilbert curve fractal antenna for detection and on-line monitoring of partial discharges in power transformers. Eksploat. Niezawodn.
**2018**, 20, 343–351. [Google Scholar] [CrossRef] - Li, J.; Cheng, C.; Bao, L.; Jiang, T. Resonant frequency calculation and optimal design of peano fractal antenna for partial discharge detection. Int. J. Antennas Propag.
**2012**, 2012, 361517. [Google Scholar] [CrossRef] [Green Version] - Li, J.; Li, X.; Du, L.; Cao, M.; Qian, G. An intelligent sensor for the ultra-high-frequency partial discharge online monitoring of power transformers. Energies
**2016**, 9, 383. [Google Scholar] [CrossRef] [Green Version] - Wang, Y.; Wang, Z.; Li, J. UHF Moore fractal antennas for online GIS PD detection. IEEE Antennas Wirel. Propag. Lett.
**2016**, 16, 852–855. [Google Scholar] [CrossRef] - Li, M.; Guo, C.; Peng, Z. Design of meander antenna for UHF partial discharge detection of transformers. Sens. Transducers
**2014**, 171, 232. [Google Scholar] - Li, J.; Jiang, T.; Cheng, C.; Wang, C. Hilbert fractal antenna for UHF detection of partial discharges in transformers. IEEE Trans. Dielectr. Electr. Insul.
**2013**, 20, 2017–2025. [Google Scholar] [CrossRef] - Zahed, A.H.; Harbaji, M.M.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of hilbert fractal antenna for partial discharge detection and classification. In Proceedings of the 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 24–26 November 2015; pp. 1–4. [Google Scholar]
- Darmawan, M.A.; Khayam, U. Design, simulation, and fabrication of second, third, and forth order Hilbert antennas as ultra high frequency partial discharge sensor. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering (ICEVT\& IMECE), Surakarta, Indonesia, 4–5 November 2015; pp. 319–322. [Google Scholar]
- Salah, W.S.; Gad, A.H.; Attia, M.A.; Eldebeikey, S.M.; Salama, A.R. Design of a compact ultra-high frequency antenna for partial discharge detection in oil immersed power transformers. Ain Shams Eng. J.
**2022**, 13, 101568. [Google Scholar] [CrossRef] - Wang, F.; Bin, F.; Sun, Q.; Fan, J.; Liang, F.; Xiao, X. A novel uhf m inkowski fractal antenna for partial discharge detection. Microw. Opt. Technol. Lett.
**2017**, 59, 1812–1819. [Google Scholar] [CrossRef] - Ediriweera, W.; Priyanayana, K.; Rajakaruna, R.; Ranasinghe, R.; Lucas, J.; Samarasinghe, R. Microstrip Patch Antenna for Partial Discharge detection as a condition monitoring tool of power system assets. In Proceedings of the 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 29–31 May 2017; pp. 368–372. [Google Scholar]
- Sarkar, B.; Mishra, D.; Koley, C.; Roy, N. Microstrip patch antenna based UHF sensor for detection of partial discharge in high voltage electrical equipments. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014; pp. 1–6. [Google Scholar]
- Xavier, G.V.; da Costa, E.G.; Serres, A.J.; Nobrega, L.A.; Oliveira, A.C.; Sousa, H.F. Design and application of a circular printed monopole antenna in partial discharge detection. IEEE Sens. J.
**2019**, 19, 3718–3725. [Google Scholar] [CrossRef] - Cruz, J.N.; Serres, A.J.R.; de Oliveira, A.C.; Xavier, G.V.R.; de Albuquerque, C.C.R.; da Costa, E.G.; Freire, R.C.S. Bio-inspired printed monopole antenna applied to partial discharge detection. Sensors
**2019**, 19, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yang, F.; Peng, C.; Yang, Q.; Luo, H.; Ullah, I.; Yang, Y. An UWB printed antenna for partial discharge UHF detection in high voltage switchgears. Prog. Electromagn. Res. C
**2016**, 69, 105–114. [Google Scholar] [CrossRef] [Green Version] - Luo, H.; Cheng, P.; Liu, H.; Kang, K.; Yang, F.; Liu, K. Research on the UHF microstrip antenna for partial discharge detection in high voltage switchgear. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 2273–2276. [Google Scholar]
- Uwiringiyimana, J.P.; Khayam, U.; Suwarno; Montanari, G.C. Design and Implementation of Ultra-Wide Band Antenna for Partial Discharge Detection in High Voltage Power Equipment. IEEE Access
**2022**, 10, 10983–10994. [Google Scholar] [CrossRef] - Lozano-Claros, D.; Custovic, E.; Elton, D. Two planar antennas for detection of partial discharge in gas-insulated switchgear (GIS). In Proceedings of the 2015 IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), Bandung, Indonesia, 10–12 December 2015; pp. 8–15. [Google Scholar]
- Park, S.; Jung, K.-Y. Design of a circularly-polarized UHF antenna for partial discharge detection. IEEE Access
**2020**, 8, 81644–81650. [Google Scholar] [CrossRef] - Yadam, Y.R.; Sarathi, R.; Arunachalam, K. Planar Ultrawideband Circularly Polarized Cosine Slot Archimedean Spiral Antenna for Partial Discharge Detection. IEEE Access
**2022**, 10, 35701–35711. [Google Scholar] [CrossRef] - Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF partial discharge sensor in GIS. IEEE Trans. Dielectr. Electr. Insul.
**2012**, 19, 1421–1430. [Google Scholar] [CrossRef] - Cheng, L.; Wen, H.; Liu, Y.; Jiang, Y.; Zhou, Z.; Zhang, J.; Zhang, G.; Mao, H. Study on Flexible Built-in Miniature Archimedes Spiral Antenna Sensor for High-voltage electrical equipment PD Detection. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1477–1482. [Google Scholar]
- Andre, H.; Emeraldi, P.; Hazmi, A.; Waldi, E.P.; Khayam, U. Long bowtie antenna for partial discharge sensor in gas-insulated substation. In Proceedings of the 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Bali, Indonesia, 2–5 October 2017; pp. 175–178. [Google Scholar]
- Rhamdhani, T.; Khayam, U.; Zaeni, A. Improving Antenna Performance by Combining Dipole and Bowtie Antenna for Partial Discharge Measurement in Gas Insulated Switchgear. In Proceedings of the 2022 IEEE International Conference in Power Engineering Application (ICPEA), Shah Alam, Malaysia, 7–8 March 2022; pp. 1–4. [Google Scholar]
- Daulay, M.S.H.; Khayam, U. New Design of Double Layer Bow-tie Antenna with Edge and Middle Sliced Modification for Partial Discharge Measurement. In Proceedings of the 2018 Conference on Power Engineering and Renewable Energy (ICPERE), Surakarta, Indonesia, 29–31 October 2018; pp. 1–5. [Google Scholar]
- Uwiringiyimana, J.P.; Khayam, U. Measurement of partial discharge in air insulation by using UHF double layer bowtie antenna with modified wings edges. In Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 9–10 July 2019; pp. 228–233. [Google Scholar]
- Zhang, J.; Zhang, X.; Xiao, S. Antipodal Vivaldi antenna to detect uhf signals that leaked out of the joint of a transformer. Int. J. Antennas Propag.
**2017**, 2017, 9627649. [Google Scholar] [CrossRef] [Green Version] - Saleh, S.; Ismail, W.; Abidin, I.S.Z.; Bataineh, M.H.; Alzoubi, A.S. Compact UWB Vivaldi Tapered Slot Antenna. Alex. Eng. J.
**2022**, 61, 4977–4994. [Google Scholar] [CrossRef] - Albarracin, R.; Robles, G.; Mart’, J.; Ardila-Rey, J. Separation of sources in radiofrequency measurements of partial discharges using time-power ratio maps. ISA Trans.
**2015**, 58, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Harbaji, M.M.; Zahed, A.H.; Habboub, S.A.; AlMajidi, M.A.; Assaf, M.J.; El-Hag, A.H.; Qaddoumi, N.N. Design of Hilbert fractal antenna for partial discharge classification in oil-paper insulated system. IEEE Sens. J.
**2016**, 17, 1037–1045. [Google Scholar] [CrossRef] - Uwiringiyimana, J.P.; Suwarno; Khayam, U. Design of an Ultra-Wide Band Microstrip Patch Antenna for Partial Discharge Detection on Power Transformer. In Proceedings of the 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Johor Bahru, Malaysia, 11–15 July 2021; pp. 242–245. [Google Scholar]
- Sinaga, H.H. Detection, Identification and Localization of Partial Discharges in Power Transformers Using UHF Techniques. Ph.D. Thesis, The University of New South Wales Australia, Sydney, Australia, 2012. [Google Scholar]
- Chai, H.; Phung, B.; Zhang, D. Development of UHF sensors for partial discharge detection in power transformer. In Proceedings of the 2018 Condition Monitoring and Diagnosis (CMD), Perth, Australia, 23–26 September 2018; pp. 1–5. [Google Scholar]
- Zhang, X.; Cheng, Z.; Gui, Y. Design of a new built-in UHF multi-frequency antenna sensor for partial discharge detection in high-voltage switchgears. Sensors
**2016**, 16, 1170. [Google Scholar] [CrossRef] [Green Version] - Khosronejad, M.; Gentili, G.G. Design of an Archimedean spiral UHF antenna for pulse monitoring application. In Proceedings of the 2015 Loughborough Antennas Propagation Conference (LAPC), Leicestershire, UK, 2–3 November 2015; pp. 1–4. [Google Scholar]

**Figure 1.**Different types of partial discharges: (

**a**) internal, (

**b**) treeing, (

**c**) surface, and (

**d**) corona.

**Figure 2.**PRPD patterns (colored points) showing the magnitude of all recorded discharge events (y-axis) plotted against time (x-axis) compared to the excitation AC for: (

**a**) corona discharge, (

**b**) surface discharge, and (

**c**) internal discharge [39].

**Figure 4.**Location of the different radio and optical detection methods on the electromagnetic spectrum.

**Figure 5.**(

**a**) HFCT model (20 winding turns) with the top part of the casing removed [74], (

**b**) HFCT sensor placed in a ground conductor for PD measurement in the cable system, (

**c**) the equivalent circuit model of the HFCT sensor.

**Figure 8.**ILS sensor: (

**a**) working principle based on Faraday’s law, and (

**b**) arrangement with the primary conductor carrying the PD pulse [87].

**Figure 9.**Experimental setup and location of the three sensors to record the partial discharge by [89].

**Figure 10.**The magnetic loop antenna: (

**a**) Best orientation and reception 2D pattern towards the emitted EM wave, and (

**b**) reception 3D pattern in space.

**Figure 12.**The principal of VHF/UHF detection [22].

**Figure 17.**Microstrip antennas: (

**a**) the circularly printed monopole antenna studied in [118], (

**b**) the bio-inspired antenna based on the Inga Marginata studied in [119], (

**c**) the UWB-printed antenna with a modified U-shaped proposed and studied in [120], and (

**d**) the circular-shaped microstrip patch antenna studied in [122].

**Figure 18.**The (

**a**) Archimedean spiral antenna, and (

**b**) Planar complex spiral antenna proposed in [123].

**Figure 20.**The flexible Archimedes spiral antenna studied in [127]: (

**a**) the antenna body on a flexible thermosetting polyimide (TPI) substrate, (

**b**) the antenna feedline, which is an exponential gradient microstrip balun, and (

**c**) the total assembled structure.

Method | Detection Phenomena | Applied Sensor | PD Localization | Online Monitoring |
---|---|---|---|---|

Electrical method | Compensation current due to dielectric loss (current pulse from kHz to some MHz) | Coupling capacitor (IEC 60270) [47] Transient earth voltage (TEV) [48] | Yes | No |

Chemical method | Change of gas pressure Chemical change | Gas chronographs High-performance liquid chromatography (HPLC) Dissolved gas analysis (DGA) [49] | No | Yes |

Acoustic method | Mechanical pressure waves (sound) | Ultrasonic microphone (with 40 kHz center frequency) Piezoelectric sensors [50] Acoustic contact sensor (with detection bandwidth range 20 kHz–300 kHz) | Yes | Yes |

Electromagnetic method | Electromagnetic interference (EMI) detection (high-frequency waves) | VHF/UHF antennas [51] Radio/high-frequency current transformer (RFCT/HFCT) [52] Inductive loop sensors [53] | Yes | Yes |

Optical method | Optical effects (ultraviolet—visible—infrared range) | Mach–Zehnder fiber interferometers/Fabry–Perot interferometers [54] Infrared camera [55] | Yes | Yes |

Thermal method | Heat/high temperature | Resistance-temperature sensor (RTD) [56] | No | Yes |

Antenna Type | Pattern Type | Physical Size | VSWR | Bandwidth | Application Test | Ref. |
---|---|---|---|---|---|---|

Fractal antennas | Hilbert | 110 mm | <2 | 0.8–2 GHz | PD model | [106] |

Peano | 90 mm | <5 | 0.3–1 GHz | PD model | [107,108] | |

Moore | 65 mm | <2 | 0.3–3 GHz | GIS | [109] | |

Hilbert | 100 mm | <5 | 0.3–1 GHz | Transformer | [111] | |

Hilbert | 100 mm | - | 0.1–3 GHz | PD model | [112] | |

Hilbert | 105 mm | - | 0.3–3 GHz | - | [113] | |

Meander | 70 mm | <2 | 0.3–1 GHz | Transformer | [110] | |

Hilbert | 80 mm | <2 | 0.3–4 GHz | PD model | [114] | |

Minkowski | 300 mm | - | 0.7–3 GHz | Transformer | [115] | |

Hilbert | 100 mm | - | 0.3–3 GHz | PD model | [135] | |

Microstrip antennas | Monopole | 100 mm | - | 0.5–2.5 GHz | Transformer | [105] |

Squared | 232 mm | - | 0.35–0.8 GHz | High-voltage equipment | [117] | |

Circular | 320 mm | - | 0.3–1.5 GHz | PD model | [118] | |

U-shaped | 215 mm | - | 0.5–1.5 GHz | High-voltage switchgears | [120] | |

Microstrip | 105 mm | <2 | 0.5–1.5 GHz | - | [121] | |

Microstrip patch | 100 mm | <2 | 1.2–4.5 GHz | PD model | [122] | |

Microstrip patch | 100 mm | <2 | 1.18–3 GHz | Transformer | [136] | |

Conical | 100 mm | <5 | 0.6–3 GHz | Transformer | [137] | |

Circular | 100 mm | <2 | 1.2–3 GHz | Transformer | [138] | |

Koch Snowflake | 280 mm | <5 | 0.3–1 GHz | High-voltage switchgears | [139] | |

Spiral antennas | planar complex | 191 mm | ≤2 | 0.3–3 GHz | GIS | [123] |

Archimedean | 190 mm | - | 0.6–1.7 GHz | - | [124] | |

cavity-backed cosine slot | 70 mm | - | 0.5–5 GHz | PD model | [125] | |

Two Arm equiangular | 150 mm | - | 0.7–3 GHz | GIS | [126] | |

Archimedean | 198 mm | ≤2 | 0.61–3 GHz | High-voltage switchgears | [127] | |

Single Arm | 200 mm | - | 1.15–2.4 GHz | Transformer | [140] | |

Biconical antennas | Asymmetric biconical | 150 mm/ 95 mm | <2 | 0.47–3 GHz | Power substation | [46] |

Long bowtie | 60 mm | ≤2 | 0.8–1.06 GHz/ 2.01–2.63 GHz | GIS | [128] | |

Bowtie | 100 mm | <2 | 782 MHz | GIS | [129] | |

Double layer bowtie | 36 mm | <2 | 1.576–2.1 GHz | PD model | [131] | |

Aperture antennas | Antipodal Vivaldi | 100 mm | - | 0.8–3 GHz | Transformer | [132] |

Tapered Slot | 270 mm | - | 3.1–10.6 GHz | - | [133] | |

Vivaldi | 120 mm | - | 1.3–3 GHz | PD model | [134] |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kaziz, S.; Said, M.H.; Imburgia, A.; Maamer, B.; Flandre, D.; Romano, P.; Tounsi, F.
Radiometric Partial Discharge Detection: A Review. *Energies* **2023**, *16*, 1978.
https://doi.org/10.3390/en16041978

**AMA Style**

Kaziz S, Said MH, Imburgia A, Maamer B, Flandre D, Romano P, Tounsi F.
Radiometric Partial Discharge Detection: A Review. *Energies*. 2023; 16(4):1978.
https://doi.org/10.3390/en16041978

**Chicago/Turabian Style**

Kaziz, Sinda, Mohamed Hadj Said, Antonino Imburgia, Bilel Maamer, Denis Flandre, Pietro Romano, and Fares Tounsi.
2023. "Radiometric Partial Discharge Detection: A Review" *Energies* 16, no. 4: 1978.
https://doi.org/10.3390/en16041978