Renewable Energy Transition Task Solution for the Oil Countries Using Scenario-Driven Fuzzy Multiple-Criteria Decision-Making Models: The Case of Azerbaijan
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Fuzzy Numbers and Operations on Fuzzy Numbers
3.2. Aggregation of Opinions in MCDM Tasks
3.2.1. Similarity Aggregation Method
3.2.2. Average-Value-Based Approach
3.3. Fuzzy-Information-Based TOPSIS
3.4. Fuzzy-Information-Based MOORA
3.5. Fuzzy-Information-Based VIKOR
3.6. Fuzzy-Information-Based SAW
4. Results
4.1. Application for Energy Policy Scenario Development
- Over the next decades, Azerbaijan will maintain or increase natural gas production due to its relatively lesser influence on the environment and its high export potential.
- Rising domestic and foreign demand for electricity will be offset by renewables.
- There are significant differences in the capacity of the available renewables in the country.
- −
- A1—<NG-K, H-K, S-NI, W-MI>, “Maintain NG and hydro, increase solar notably and wind moderately”;
- −
- A2—<NG-K, H-K, S-MI, W-NI>, “Maintain NG and hydro, increase solar moderately and wind notably”;
- −
- A3—<NG-K, H-K, W-NI>, “Maintain NG and hydro, increase wind notably”;
- −
- A4—<NG-K, H-K, S-MI>, “Maintain NG and hydro, increase solar moderately”;
- −
- A5—<NG-K, H-K, S-NI>, “Maintain NG and hydro, increase solar notably”;
- −
- A6—<NG-MI, H-K, S-NI>, “Increase NG moderately, maintain hydro, and increase solar notably”;
- −
- A7—<NG-MI, H-K, S-NI, WM>, “Increase NG moderately, maintain hydro, increase solar notably and wind moderately”;
- −
- A8—<NG-MI, H-K, S-NI, WNI>, “Increase NG moderately, maintain hydro, increase solar and wind notably”;
- −
- A9—<NG-MI, H-K, S-MI, WNI>, “Increase NG moderately, maintain hydro, increase solar moderately and wind notably”.
4.2. Fuzzy TOPSIS Calculations
4.3. Fuzzy MOORA Calculations
4.4. Fuzzy VIKOR Calculations
- −
- A2, A6, A7, A8, A9—for the average-approach-based aggregated fuzzy data
- −
- A1, A2, A6, A7, A8, A9—for the SAM-approach-based aggregated fuzzy data
4.5. Fuzzy SAW Calculations
4.6. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The World Bank. The World Development Indicators. Available online: https://api.worldbank.org/v2/en/indicator/NY.GDP.TOTL.RT.ZS?downloadformat=excel (accessed on 1 August 2023).
- Gebre, S.L.; Cattrysse, D.; Alemayehu, E.; van Orshoven, J. Multi-criteria decision making methods to address rural land allocation problems: A systematic review. Int. Soil Water Conserv. Res. 2021, 9, 490–501. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Lund, H.; Nielsen, S.; Thellufsen, J.Z. Energy transition in petroleum rich nations: Case study of Iran. Smart Energy 2021, 3, 100026. [Google Scholar] [CrossRef]
- Karanfil, F.; Omgba, L.D. The energy transition and export diversification in oil-dependent countries: The role of structural factors. Ecol. Econ. 2023, 204, 107681. [Google Scholar] [CrossRef]
- Espinoza, V.S.; Fontalvo, J.; Ramírez, P.; Martí-Herrero, J.; Mediavilla, M. Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador. Energies 2022, 15, 6938. [Google Scholar] [CrossRef]
- Fattouh, B. The Energy Transition & Adaptation Strategies for Oil Exporters. OPEC Technical Workshop. 2020. Available online: https://www.oxfordenergy.org/publications/the-energy-transition-adaptation-strategies-for-oil-exporters/ (accessed on 17 October 2023).
- Harichandan, S.; Kar, S.K.; Bansal, R.; Mishra, S.K.; Balathanigaimani, M.S.; Dash, M. Energy transition research: A bibliometric mapping of current findings and direction for future research. Clean. Prod. Lett. 2022, 3, 100026. [Google Scholar] [CrossRef]
- Kaya, I.; Çolak, M.; Terzi, F. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strat. Rev. 2019, 24, 207–228. [Google Scholar] [CrossRef]
- Kaya, I.; Çolak, M.; Terzi, F. Use of MCDM techniques for energy policy and decision-making problems: A review. Int. J. Energy Res. 2018, 42, 2344–2372. [Google Scholar] [CrossRef]
- Afsordegan, A.; Sánchez, M.; Agell, N.; Zahedi, S.; Cremades, L.V. Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. Int. J. Environ. Sci. Technol. 2016, 13, 1419–1432. [Google Scholar] [CrossRef]
- Toklu, M.C.; Taşkin, H. A Fuzzy Hybrid Decision Model for Renewable Energy Sources Selection. Int. J. Comput. Exp. Sci. Eng. 2018, 4, 6–10. [Google Scholar] [CrossRef]
- Çolak, M.; Kaya, I. Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey. Renew. Sustain. Energy Rev. 2017, 80, 840–853. [Google Scholar] [CrossRef]
- Erdogan, M.; Kaya, I. An integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey. Iran. J. Fuzzy Syst. 2015, 12, 1–25. Available online: https://ijfs.usb.ac.ir/article_1839.html (accessed on 17 October 2023).
- Andejany, M. Ranking Renewable Energy Sources in Saudi Arabia. Int. J. Eng. Res. Technol. 2021, 14, 569–581. Available online: http://www.irphouse.com/ijert21/ijertv14n6_12.pdf (accessed on 14 September 2022).
- Shatnawi, N.; Abu-Qdais, H.; Qdais, F.A. Selecting renewable energy options: An application of multi-criteria decision making for Jordan. Sustain. Sci. Pract. Policy 2021, 17, 209–219. [Google Scholar] [CrossRef]
- Das, A.; Shabbiruddin. Renewable Energy Source Selection Using Analytical Hierarchy Process and Quality Function Deployment: A Case Study. In Proceedings of the 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM), Chennai, India, 30–31 March 2016. Available online: https://ieeexplore.ieee.org/document/7560966 (accessed on 17 October 2023).
- Ervural, B.C.; Zaim, S.; Demirel, O.F.; Aydin, Z.; Delen, D. An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renew. Sustain. Energy Rev. 2017, 82, 1538–1550. [Google Scholar] [CrossRef]
- Kang, H.; Hung, M.; Pearn, W.; Lee, A.; Kang, M. An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance. Energies 2011, 4, 2002–2026. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Valasai, G.D.; Khan, M.W.; Ikram, M. An Integrated Delphi-AHP and Fuzzy TOPSIS Approach toward Ranking and Selection of Renewable Energy Resources in Pakistan. Processes 2019, 7, 118. [Google Scholar] [CrossRef]
- Lee, H.C.; Chang, C.-T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Papapostolou, A.; Karakosta, C.; Doukas, H. Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy Environ. 2017, 28, 88–109. Available online: https://www.jstor.org/stable/90006786 (accessed on 17 October 2023). [CrossRef]
- Pavlović, B.; Ivezić, D.; Živković, M. A multi-criteria approach for assessing the potential of renewable energy sources for electricity generation: Case Serbia. Energy Rep. 2021, 7, 8624–8632. [Google Scholar] [CrossRef]
- Tasri, A.; Susilawati, A. Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustain. Energy Technol. Assess. 2014, 7, 34–44. [Google Scholar] [CrossRef]
- Abdullah, L.; Najib, L. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. Int. J. Sustain. Energy 2016, 35, 360–377. [Google Scholar] [CrossRef]
- Sengül, Ü.; Eren, M.; Shiraz, S.; Gezder, V.; ¸Sengül, A. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew. Energy 2015, 75, 617–625. [Google Scholar] [CrossRef]
- Tavana, M.; Shaabani, A.; Javier Santos-Arteaga, F.; Raeesi Vanani, I. A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics. Energies 2020, 13, 3947. [Google Scholar] [CrossRef]
- Boran, F.E.; Boran, K.; Menlik, T. The Evaluation of Renewable Energy Technologies for Electricity Generation in Turkey Using Intuitionistic Fuzzy TOPSIS. Energy Sources Part B Econ. Plan. Policy 2012, 7, 81–90. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, A.R.; Mardani, A.; Cavallaro, F.; Alrasheedi, M.; Alrashidi, A. A novel approach to extended fuzzy TOPSIS based on new divergence measures for renewable energy sources selection. J. Clean. Prod. 2020, 257, 120352. [Google Scholar] [CrossRef]
- Wang, C.-N.; Dang, T.-T.; Tibo, H.; Duong, D.-H. Assessing Renewable Energy Production Capabilities Using DEA Window and Fuzzy TOPSIS Model. Symmetry 2021, 13, 334. [Google Scholar] [CrossRef]
- Peleckis, K. Application of the Fuzzy VIKOR Method to Assess Concentration and Its Effects on Competition in the Energy Sector. Energies 2022, 15, 1349. [Google Scholar] [CrossRef]
- Taylan, O.; Alamoudi, R.; Kabli, M.; AlJifri, A.; Ramzi, F.; Herrera-Viedma, E. Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions. Sustainability 2020, 12, 2745. [Google Scholar] [CrossRef]
- Emovon, I. A fuzzy multi-criteria decision-making approach for power generation problem analysis. J. Eng. Sci. 2020, 7, E26–E31. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Dai, J.; Chen, C. A Fuzzy VIKOR Approach for Renewable Energy Resources Selection in China. Rev. De La Fac. De Ing. 2016, 31, 62–77. Available online: https://scholar.archive.org/work/gw4ssgmtiraivgstdceo6qr3e4/access/wayback/http://revistadelafacultaddeingenieria.com/index.php/ingenieria/article/download/1149/1151 (accessed on 17 October 2023).
- Priyanka; Rajneesh. A Fuzzy VIKOR Model for Selection of Optimal Biomass Usage in India. In Proceedings of the 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) 2016 IEEE, Delhi, India, 4–6 July 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Feylizadeh, M.R.; Dehghani, M.A. Priority Determination of the Renewable Energies Using Fuzzy Group VIKOR Method: Case Study Iran. In Proceedings of the International Conference on Industrial Engineering and Operations Management 2016, Kuala Lumpur, Malaysia, 8–10 March 2016; pp. 3281–3287. Available online: https://ieomsociety.org/ieom_2016/pdfs/235.pdf (accessed on 17 October 2023).
- Turgut, Z.K.; Tolga, A.Ç. Sustainable and Renewable Energy Power Plants Evaluation by Fuzzy VIKOR Technique. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2017, IMECS 2017, Hong Kong, 15–17 March 2017; Volume II. Available online: https://www.iaeng.org/publication/IMECS2017/IMECS2017_pp774-779.pdf (accessed on 17 October 2023).
- Homayounfar, M.; Fadaei, M.; Gheibdoust, H.; Rezaee Kelidbari, H.R. A Systematic Literature Review on MOORA Methodologies and Applications. Iran. J. Oper. Res. 2022, 13, 164–183. Available online: http://iors.ir/journal/article-1-787-en.pdf (accessed on 17 October 2023).
- Yüksel, S.; Mikhaylov, A.; Khomyakova, L. Energy Center Selection in G7 Industry with Fuzzy MOORA. In Handbook of Research on Strategic Management for Current Energy Investments; IGI Global: Hershey, PA, USA, 2021. [Google Scholar] [CrossRef]
- Çelikbilek, Y.; Tuysuz, F. A Multi Criteria Analysis Approach by Using Fuzzy MOORA Technique: An Application to Renewable Energy Sources. In Proceedings of the November 2017 Conference: 4th International Conference on Pure and Applied Sciences: Renewable Energies (ICPAS 2017), İstanbul, Turkey, 23–25 November 2017; Available online: https://www.researchgate.net/publication/321309503 (accessed on 17 October 2023).
- Arslankaya, S.; ÇelikMiraç, T. Green supplier selection in steel door industry using fuzzy AHP and fuzzy Moora methods. Emerg. Mater. Res. 2021, 10, 357–369. [Google Scholar] [CrossRef]
- Khorshidi, M.; Erkayman, B.; Albayrak, Ö.; Kılıç, R.; Demir, H.I. Solar power plant location selection using integrated fuzzy DEMATEL and fuzzy MOORA method. Int. J. Ambient. Energy 2022, 43, 7400–7409. [Google Scholar] [CrossRef]
- Ramezanzade, M.; Karimi, H.; Almutairi, K.; Xuan, H.A.; Saebi, J.; Mostafaeipour, A.; Techato, K. Implementing MCDM Techniques for Ranking Renewable Energy Projects under Fuzzy Environment: A Case Study. Sustainability 2021, 13, 12858. [Google Scholar] [CrossRef]
- Attri, S.D.; Singh, S.; Dhar, A.; Powar, S. Multi-attribute sustainability assessment of wastewater treatment technologies using combined fuzzy multi-criteria decision-making techniques. J. Clean. Prod. 2022, 357, 131849. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Lazim Abdullah, L.; Zamri, N.; Goh, C.M. Application of Interval Type 2 Fuzzy SAW in Flood Control Project. Int. J. Adv. Soft Comput. Its Appl. 2019, 11, 124–137. Available online: https://www.i-csrs.org/Volumes/ijasca/8_p124-137_Application%20of%20Interval%20Type%202%20Fuzzy%20SAW%20in%20Flood%20Control%20Project.pdf (accessed on 17 October 2023).
- Lestari, P.F.I.; Prabowo, T.T.; Utomo, W.M. The Effectiveness of Fuzzy-SAW Method for the Selection of New Student Admissions in Vocational High School. Lett. Inf. Technol. Educ. (LITE) 2020, 3, 18–22. Available online: http://journal2.um.ac.id/index.php/lite/article/view/9727 (accessed on 17 October 2023). [CrossRef]
- Hsu, H.-M.; Chen, C.-T. Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 1996, 79, 279–285. [Google Scholar]
- Ziemba, P. Multi-Criteria Fuzzy Evaluation of the Planned Offshore Wind Farm Investments in Poland. Energies 2021, 14, 978. [Google Scholar] [CrossRef]
- Wang, C.-N.; Kao, J.-C.; Wang, Y.-H.; Nguyen, V.T.; Nguyen, V.T.; Husain, S.T. A Multicriteria Decision-Making Model for the Selection of Suitable Renewable Energy Sources. Mathematics 2021, 9, 1318. [Google Scholar] [CrossRef]
- Nuriyev, M.; Mammadov, J.; Nuriyev, A.; Mammadov, J. Selection of Renewables for Economic Regions with Diverse Conditions: The Case of Azerbaijan. Sustainability 2022, 14, 12548. [Google Scholar] [CrossRef]
- Saqlain, M. Sustainable Hydrogen Production: A Decision-Making Approach Using VIKOR and Intuitionistic Hypersoft Sets. J. Intell. Manag. Decis. 2023, 2, 130–138. [Google Scholar] [CrossRef]
- Gupta, P.; Mehlawat, M.K.; Ahemad, F. Selection of renewable energy sources: A novel VIKOR approach in an intuitionistic fuzzy linguistic environment. Environ. Dev. Sustain. 2023, 25, 3429–3467. [Google Scholar] [CrossRef]
- Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic: Theory and Applications; Van Nostrand Reinhold: New York, NY, USA, 1985. [Google Scholar]
- Chen, C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Tyagi, K. A critical review on effort estimation techniques for service-oriented-architecture-based applications. Int. J. Comput. Appl. 2016, 38, 207–216. [Google Scholar] [CrossRef]
- Opricovic, S. Fuzzy VIKOR with an application to water resources planning. Expert Syst. Appl. 2011, 38, 12983–12990. [Google Scholar] [CrossRef]
- Zamani-Sabzi, H.; King, J.P.; Gard, C.C.; Abudu, S. Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Oper. Res. Perspect. 2016, 3, 92–117. [Google Scholar] [CrossRef]
- The State Statistical Committee of the Republic of Azerbaijan (SSC). GDP Production in the Section of Oil and Non-Oil of Economy. Available online: https://stat.gov.az/source/system_nat_accounts/en/007_1en.xls (accessed on 1 August 2023).
- The World Bank. The World Development Indicators. Available online: https://api.worldbank.org/v2/en/country/AZE?downloadformat=excel (accessed on 1 August 2023).
- Azerbaijan Renewable Energy Agency under the Ministry of Energy of the Republic of Azerbaijan. Potential of Renewable Energy Sources. Available online: https://area.gov.az/en/page/yasil-texnologiyalar/boem-potensiali (accessed on 1 August 2023).
- The State Statistical Committee of the Republic of Azerbaijan (SSC). Renewable Energy Supply, Thousand TOE. Available online: https://stat.gov.az/source/balance_fuel/en/001_5en.xls (accessed on 1 August 2023).
Alternative | Criteria | ||
---|---|---|---|
Linguistic Term | Fuzzy Value | Linguistic Term | Fuzzy Value |
Very Poor (VP) | (0.0, 0.05, 0.2) | Very Low (VL) | (0.0, 0.05, 0.2) |
Poor (P) | (0.05, 0.2, 0.35) | Low (L) | (0.05, 0.2, 0.35) |
Below Average (BA) | (0.2, 0.35, 0.5) | Medium Low (ML) | (0.2, 0.35, 0.5) |
Average (A) | (0.35, 0.5, 0.65) | Medium (M) | (0.35, 0.5, 0.65) |
Above Average (AA) | (0.5, 0.65, 0.8) | Medium High (MH) | (0.5, 0.65, 0.8) |
Good (G) | (0.65, 0.8, 0.95 | High (H) | (0.65, 0.8, 0.95) |
Very Good (VG) | (0.8, 1, 1) | Very High (VH) | (0.8, 1, 1) |
Expert 1 | Expert 7 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |||
A1 | VG | G | G | VG | A | G | VG | AA | A1 | G | VG | VG | G | BA | VG | G | G | ||
A2 | VG | G | G | G | A | G | G | AA | A2 | G | VG | VG | VG | BA | VG | AA | G | ||
A3 | VG | AA | AA | G | A | G | BA | AA | A3 | G | G | G | VG | BA | G | P | G | ||
A4 | G | A | BA | A | BA | G | G | G | ... | A4 | AA | AA | AA | AA | P | G | AA | VG | |
A5 | G | G | AA | G | A | G | VG | G | A5 | AA | VG | G | G | BA | VG | G | VG | ||
A6 | VG | AA | AA | G | A | G | VG | AA | A6 | G | AA | G | G | BA | G | G | G | ||
A7 | VG | G | G | G | A | AA | VG | A | A7 | AA | VG | VG | G | BA | G | G | AA | ||
A8 | VG | G | G | G | AA | G | VG | AA | A8 | G | G | VG | VG | A | VG | G | G | ||
A9 | VG | G | AA | AA | A | G | AA | A | A9 | G | VG | G | G | BA | VG | A | AA |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | |
A1 | 0.8 | 1 | 1 | 0.65 | 0.8 | 1 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.35 | 0.5 | 0.65 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.5 | 0.65 | 0.8 |
A2 | 0.8 | 1 | 1 | 0.65 | 0.8 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.35 | 0.5 | 0.65 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.5 | 0.65 | 0.8 |
A3 | 0.8 | 1 | 1 | 0.5 | 0.65 | 0.8 | 0.5 | 0.65 | 0.8 | 0.65 | 0.8 | 0.95 | 0.35 | 0.5 | 0.65 | 0.65 | 0.8 | 0.95 | 0.2 | 0.35 | 0.5 | 0.5 | 0.65 | 0.8 |
A4 | 0.65 | 0.8 | 0.95 | 0.35 | 0.5 | 0.7 | 0.2 | 0.35 | 0.5 | 0.5 | 0.65 | 0.8 | 0.2 | 0.35 | 0.5 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 |
A5 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 1 | 0.5 | 0.65 | 0.8 | 0.65 | 0.8 | 0.95 | 0.35 | 0.5 | 0.65 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 |
A6 | 0.8 | 1 | 1 | 0.5 | 0.65 | 0.8 | 0.5 | 0.65 | 0.8 | 0.65 | 0.8 | 0.95 | 0.35 | 0.5 | 0.65 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.5 | 0.65 | 0.8 |
A7 | 0.8 | 1 | 1 | 0.65 | 0.8 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.35 | 0.5 | 0.65 | 0.5 | 0.65 | 0.8 | 0.8 | 1 | 1 | 0.35 | 0.5 | 0.65 |
A8 | 0.8 | 1 | 1 | 0.65 | 0.8 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.5 | 0.65 | 0.8 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.5 | 0.65 | 0.8 |
A9 | 0.8 | 1 | 1 | 0.65 | 0.8 | 1 | 0.5 | 0.65 | 0.8 | 0.5 | 0.65 | 0.8 | 0.35 | 0.5 | 0.65 | 0.65 | 0.8 | 0.95 | 0.5 | 0.65 | 0.8 | 0.35 | 0.5 | 0.65 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | l | m | u | |
A1 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.2 | 0.35 | 0.5 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 |
A2 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.8 | 1 | 1 | 0.8 | 1 | 1 | 0.2 | 0.35 | 0.5 | 0.8 | 1 | 1 | 0.5 | 0.65 | 0.8 | 0.65 | 0.8 | 0.95 |
A3 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 1 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.2 | 0.35 | 0.5 | 0.65 | 0.8 | 0.95 | 0.05 | 0.2 | 0.35 | 0.65 | 0.8 | 0.95 |
A4 | 0.5 | 0.65 | 0.8 | 0.5 | 0.65 | 0.8 | 0.5 | 0.65 | 0.8 | 0.5 | 0.65 | 0.8 | 0.05 | 0.2 | 0.35 | 0.65 | 0.8 | 0.95 | 0.5 | 0.65 | 0.8 | 0.8 | 1 | 1 |
A5 | 0.5 | 0.65 | 0.8 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.2 | 0.35 | 0.5 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 |
A6 | 0.65 | 0.8 | 0.95 | 0.5 | 0.65 | 0.8 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.2 | 0.35 | 0.5 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 |
A7 | 0.5 | 0.65 | 0.8 | 0.8 | 1 | 1 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.2 | 0.35 | 0.5 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.5 | 0.65 | 0.8 |
A8 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 1 | 0.8 | 1 | 1 | 0.8 | 1 | 1 | 0.35 | 0.5 | 0.65 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 |
A9 | 0.65 | 0.8 | 0.95 | 0.8 | 1 | 1 | 0.65 | 0.8 | 0.95 | 0.65 | 0.8 | 0.95 | 0.2 | 0.35 | 0.5 | 0.8 | 1 | 1 | 0.35 | 0.5 | 0.65 | 0.5 | 0.65 | 0.8 |
Average-Approach-Based Aggregated Decision Matrix | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |||||||||||||||||
A1 | 0.65 | 0.81 | 0.93 | 0.65 | 0.81 | 0.93 | 0.62 | 0.79 | 0.88 | 0.71 | 0.88 | 0.97 | 0.32 | 0.47 | 0.62 | 0.68 | 0.85 | 0.94 | 0.68 | 0.84 | 0.96 | 0.50 | 0.65 | 0.80 |
A2 | 0.68 | 0.84 | 0.96 | 0.62 | 0.78 | 0.90 | 0.62 | 0.78 | 0.90 | 0.65 | 0.81 | 0.93 | 0.23 | 0,38 | 0.53 | 0.62 | 0.78 | 0.90 | 0.50 | 0.65 | 0.80 | 0.50 | 0.65 | 0.80 |
A3 | 0.68 | 0.85 | 0.94 | 0.50 | 0.65 | 0.80 | 0.50 | 0.65 | 0.80 | 0.65 | 0.82 | 0.91 | 0.29 | 0.44 | 0.59 | 0.56 | 0.71 | 0.86 | 0.17 | 0.32 | 0.47 | 0.47 | 0.62 | 0.77 |
A4 | 0.56 | 0.71 | 0.86 | 0.29 | 0.44 | 0.59 | 0.29 | 0.44 | 0.59 | 0.35 | 0.50 | 0.65 | 0.14 | 0.29 | 0.44 | 0.53 | 0.68 | 0.83 | 0.56 | 0.71 | 0.86 | 0.62 | 0.78 | 0.90 |
A5 | 0,62 | 0.78 | 0.90 | 0.65 | 0.82 | 0.91 | 0.44 | 0.59 | 0.74 | 0.56 | 0.71 | 0.86 | 0.26 | 0.41 | 0.56 | 0.62 | 0.78 | 0.90 | 0.65 | 0.81 | 0.93 | 0.65 | 0.82 | 0.91 |
A6 | 0.65 | 0.81 | 0.93 | 0.38 | 0.53 | 0.68 | 0.47 | 0.62 | 0.77 | 0.53 | 0.68 | 0.83 | 0.23 | 0.38 | 0.53 | 0.53 | 0.68 | 0.83 | 0.68 | 0.84 | 0.96 | 0.47 | 0.62 | 0.77 |
A7 | 0.65 | 0.82 | 0.91 | 0.65 | 0.82 | 0.91 | 0.65 | 0.82 | 0.91 | 0.56 | 0.71 | 0.86 | 0.32 | 0.47 | 0.62 | 0.50 | 0.65 | 0.80 | 0.65 | 0.81 | 0.93 | 0.38 | 0.53 | 0.68 |
A8 | 0.68 | 0.84 | 0.96 | 0.59 | 0.74 | 0.89 | 0.62 | 0.78 | 0.90 | 0.56 | 0.72 | 0.84 | 0.32 | 0.47 | 0.62 | 0.62 | 0.78 | 0.90 | 0.65 | 0.81 | 0.93 | 0.50 | 0.65 | 0.80 |
A9 | 0.68 | 0.85 | 0.94 | 0.62 | 0.78 | 0.90 | 0.50 | 0.65 | 0.80 | 0.47 | 0.62 | 0.77 | 0.29 | 0.44 | 0.59 | 0.65 | 0.82 | 0.91 | 0.44 | 0.59 | 0.74 | 0.32 | 0.47 | 0.62 |
SAM-approach-based aggregation | ||||||||||||||||||||||||
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |||||||||||||||||
A1 | 0.65 | 0.80 | 0.94 | 0.65 | 0.80 | 0.94 | 0.73 | 0.92 | 0.96 | 0.69 | 0.85 | 0.96 | 0.29 | 0.44 | 0.59 | 0.71 | 0.88 | 0.97 | 0.66 | 0.81 | 0.95 | 0.50 | 0.65 | 0.80 |
A2 | 0.66 | 0.81 | 0.95 | 0.59 | 0.74 | 0.88 | 0.59 | 0.75 | 0.89 | 0.65 | 0.80 | 0.94 | 0.21 | 0.36 | 0.51 | 0.59 | 0.74 | 0.88 | 0.50 | 0.65 | 0.80 | 0.50 | 0.65 | 0.80 |
A3 | 0.71 | 0.88 | 0.97 | 0.50 | 0.65 | 0.80 | 0.50 | 0.65 | 0.80 | 0.65 | 0.82 | 0.91 | 0.22 | 0.37 | 0.52 | 0.63 | 0.78 | 0.93 | 0.14 | 0.29 | 0.44 | 0.44 | 0.59 | 0.74 |
A4 | 0.54 | 0.69 | 0.84 | 0.22 | 0.37 | 0.52 | 0.22 | 0.37 | 0.52 | 0.35 | 0.50 | 0.65 | 0.16 | 0.31 | 0.46 | 0.56 | 0.71 | 0.86 | 0.54 | 0.69 | 0.84 | 0.59 | 0.74 | 0.88 |
A5 | 0.59 | 0.74 | 0.88 | 0.63 | 0.79 | 0.89 | 0.37 | 0.52 | 0.67 | 0.49 | 0.64 | 0.79 | 0.22 | 0.37 | 0.52 | 0.59 | 0.74 | 0.88 | 0.65 | 0.80 | 0.94 | 0.65 | 0.82 | 0.91 |
A6 | 0.65 | 0.80 | 0.94 | 0.41 | 0.56 | 0.71 | 0.44 | 0.59 | 0.74 | 0.56 | 0.71 | 0.86 | 0.21 | 0.36 | 0.51 | 0.56 | 0.71 | 0.86 | 0.66 | 0.81 | 0.95 | 0.44 | 0.59 | 0.74 |
A7 | 0.65 | 0.82 | 0.91 | 0.65 | 0.82 | 0.91 | 0.65 | 0.82 | 0.91 | 0.63 | 0.78 | 0.93 | 0.29 | 0.44 | 0.59 | 0.46 | 0.61 | 0.76 | 0.65 | 0.80 | 0.94 | 0.27 | 0.42 | 0.57 |
A8 | 0.66 | 0.81 | 0.95 | 0.60 | 0.75 | 0.90 | 0.59 | 0.74 | 0.88 | 0.52 | 0.67 | 0.81 | 0.29 | 0.44 | 0.59 | 0.59 | 0.74 | 0.88 | 0.65 | 0.80 | 0.94 | 0.50 | 0.65 | 0.80 |
A9 | 0.71 | 0.88 | 0.97 | 0.59 | 0.74 | 0.88 | 0.50 | 0.65 | 0.80 | 0.44 | 0.59 | 0.74 | 0.22 | 0.37 | 0.52 | 0.65 | 0.82 | 0.91 | 0.37 | 0.52 | 0.67 | 0.29 | 0.44 | 0.59 |
Criterion | Experts | l | m | u |
---|---|---|---|---|
C1 | E1 | 0.8 | 1 | 1 |
E2 | 0.8 | 1 | 1 | |
E3 | 0.65 | 0.8 | 0.95 | |
E4 | 0.5 | 0.65 | 0.8 | |
E5 | 0.65 | 0.8 | 1 | |
E6 | 0.8 | 1 | 1 | |
E7 | 0.65 | 0.8 | 0.95 | |
C2 | E1 | 0.35 | 0.5 | 0.65 |
E2 | 0.2 | 0.3 | 0.5 | |
E3 | 0.2 | 0.3 | 0.5 | |
… | … | … | … | … |
C8 | E1 | 0.8 | 1 | 1 |
E2 | 0.8 | 1 | 1 | |
E3 | 0.8 | 1 | 1 | |
E4 | 0.65 | 0.8 | 0.95 | |
E5 | 0.8 | 1 | 1 | |
E6 | 0.8 | 1 | 1 | |
E7 | 0.8 | 1 | 1 |
Criteria | SAM Approach | Average-Based Approach | ||||
---|---|---|---|---|---|---|
c1 | 0.711733 | 0.884838 | 0.977076 | 0.68 | 0.85 | 0.95 |
c2 | 0.289789 | 0.439789 | 0.589789 | 0.32 | 0.45 | 0.62 |
c3 | 0.077632 | 0.227632 | 0.377632 | 0.23 | 0.38 | 0.53 |
c4 | 0.755992 | 0.941322 | 1 | 0.74 | 0.92 | 0.98 |
c5 | 0.2 | 0.35 | 0.5 | 0.2 | 0.35 | 0.5 |
c6 | 0.35 | 0.5 | 0.65 | 0.35 | 0.5 | 0.65 |
c7 | 0.755992 | 0.941322 | 1 | 0.74 | 0.92 | 0.98 |
c8 | 0.793598 | 0.991463 | 1 | 0.77 | 0.96 | 0.99 |
Alternatives | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
---|---|---|---|---|---|---|---|---|---|---|
Fuzzy data aggregated using the SAM approach | 7.66328 | 7.960268 | 8.566622 | 8.423247 | 7.96314 | 7.969061 | 7.53202 | 7.623518 | 7.604861 | |
6.940015 | 6.605144 | 5.962504 | 6.223081 | 6.597282 | 6.641529 | 7.131724 | 6.999374 | 7.142326 | ||
0.475236 | 0.453481 | 0.410383 | 0.42489 | 0.453097 | 0.45457 | 0.486351 | 0.478659 | 0.484318 | ||
Ranking | 4 | 6 | 9 | 8 | 7 | 5 | 1 | 3 | 2 | |
Fuzzy data aggregated using an average-based approach | 7.949076 | 8.368483 | 8.827932 | 8.668382 | 8.260135 | 8.233668 | 7.805282 | 7.958997 | 7.946196 | |
6.6709 | 6.188685 | 5.701995 | 5.969571 | 6.322077 | 6.379804 | 6.965636 | 6.690419 | 6.788799 | ||
0.456287 | 0.42513 | 0.392431 | 0.407815 | 0.433547 | 0.43657 | 0.471578 | 0.456702 | 0.460726 | ||
Ranking | 4 | 7 | 9 | 8 | 6 | 5 | 1 | 3 | 2 |
Alternatives | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
---|---|---|---|---|---|---|---|---|---|---|
SAM approach | 0.105583 | 0.08443 | 0.068322 | 0.06826 | 0.08677 | 0.093493 | 0.116437 | 0.108302 | 0.107367 | |
Ranking | 4 | 7 | 8 | 9 | 6 | 5 | 1 | 2 | 3 | |
Average-based approach | 0.109124 | 0.09483 | 0.07433 | 0.07317 | 0.09326 | 0.09743 | 0.119037 | 0.114054 | 0.115842 | |
Ranking | 4 | 6 | 8 | 9 | 7 | 5 | 1 | 3 | 2 |
Alternatives | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
---|---|---|---|---|---|---|---|---|---|---|
SAM approach | 0.534 | 0.474 | 0.601 | 0.51 | 0.59 | 0.369 | 0.449 | 0.385 | 0.347 | |
Ranking | 7 | 5 | 9 | 6 | 8 | 2 | 4 | 3 | 1 | |
1.242 | 1.618 | 1.849 | 1.899 | 1.6 | 1.419 | 1.089 | 1.183 | 0.985 | ||
Ranking | 4 | 7 | 8 | 9 | 6 | 5 | 2 | 3 | 1 | |
0.1175 | 0.1177 | 0.1982 | 0.1575 | 0.1733 | 0.0502 | 0.0635 | 0.0397 | 0.0049 | ||
Ranking | 5 | 6 | 9 | 7 | 8 | 3 | 4 | 2 | 1 | |
Average-based approach | 0.545 | 0.459 | 0.597 | 0.503 | 0.542 | 0.319 | 0.333 | 0.341 | 0.298 | |
Ranking | 8 | 5 | 9 | 6 | 7 | 2 | 3 | 4 | 1 | |
S | 1.172 | 1.387 | 1.897 | 1.935 | 1.509 | 1.397 | 0.991 | 1.043 | 0.907 | |
Ranking | 4 | 5 | 8 | 9 | 7 | 6 | 2 | 3 | 1 | |
Q | 0.143 | 0.12 | 0.221 | 0.181 | 0.167 | 0.056 | 0.033 | 0.04 | 0.01 | |
Ranking | 6 | 5 | 9 | 8 | 7 | 4 | 2 | 3 | 1 |
Alternatives | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
---|---|---|---|---|---|---|---|---|---|---|
SAM approach | Score | 3.6368 | 3.346 | 3.058 | 3.2 | 3.43 | 3.45 | 3.77 | 3.629 | 3.657 |
Ranking | 3 | 7 | 9 | 8 | 6 | 5 | 1 | 4 | 2 | |
Average-based approach | Score | 3.799 | 3.592 | 3.205 | 3.337 | 3.598 | 3.607 | 3.89 | 3.82 | 3.864 |
Ranking | 4 | 7 | 9 | 8 | 6 | 5 | 1 | 3 | 2 |
Alternatives | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
---|---|---|---|---|---|---|---|---|---|---|
Fuzzy DM aggregated using the SAM approach | TOPSIS | 0.714 | 0.65 | 0.604 | 0.566 | 0.644 | 0.638 | 0.71 | 0.694 | 0.683 |
Ranking | 1 | 5 | 8 | 9 | 6 | 7 | 2 | 3 | 4 | |
MOORA | 0.0341 | 0.0281 | 0.0249 | 0.0208 | 0.02723 | 0.0276 | 0.0343 | 0.0324 | 0.031 | |
Ranking | 2 | 5 | 8 | 9 | 7 | 6 | 1 | 3 | 4 | |
VIKOR (Q) | 3.637 | 3.346 | 3.058 | 3.200 | 3.431 | 3.455 | 3.773 | 3.628 | 3.657 | |
Ranking | 3 | 7 | 9 | 8 | 6 | 5 | 1 | 4 | 2 | |
SAW (FS) | 3.637 | 3.346 | 3.058 | 3.200 | 3.431 | 3.455 | 3.773 | 3.628 | 3.657 | |
Ranking | 3 | 7 | 9 | 8 | 6 | 5 | 1 | 4 | 2 | |
Fuzzy DM aggregated using the average approach | TOPSIS | 0.720 | 0.682 | 0.620 | 0.591 | 0.675 | 0.654 | 0.724 | 0.717 | 0.712 |
Ranking | 2 | 5 | 8 | 9 | 6 | 7 | 1 | 3 | 4 | |
MOORA | 0.032 | 0.028 | 0.024 | 0.020 | 0.027 | 0.026 | 0.033 | 0.032 | 0.031 | |
Ranking | 3 | 5 | 8 | 9 | 6 | 7 | 1 | 2 | 4 | |
VIKOR (Q) | 0.128 | 0.107 | 0.215 | 0.217 | 0.152 | 0.112 | 0.065 | 0.023 | 0.008 | |
Ranking | 6 | 4 | 8 | 9 | 7 | 5 | 3 | 2 | 1 | |
SAW (FS) | 3.799 | 3.592 | 3.205 | 3.337 | 3.598 | 3.607 | 3.890 | 3.821 | 3.864 | |
Ranking | 4 | 7 | 9 | 8 | 6 | 5 | 1 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuriyev, M.; Nuriyev, A.; Mammadov, J. Renewable Energy Transition Task Solution for the Oil Countries Using Scenario-Driven Fuzzy Multiple-Criteria Decision-Making Models: The Case of Azerbaijan. Energies 2023, 16, 8068. https://doi.org/10.3390/en16248068
Nuriyev M, Nuriyev A, Mammadov J. Renewable Energy Transition Task Solution for the Oil Countries Using Scenario-Driven Fuzzy Multiple-Criteria Decision-Making Models: The Case of Azerbaijan. Energies. 2023; 16(24):8068. https://doi.org/10.3390/en16248068
Chicago/Turabian StyleNuriyev, Mahammad, Aziz Nuriyev, and Jeyhun Mammadov. 2023. "Renewable Energy Transition Task Solution for the Oil Countries Using Scenario-Driven Fuzzy Multiple-Criteria Decision-Making Models: The Case of Azerbaijan" Energies 16, no. 24: 8068. https://doi.org/10.3390/en16248068
APA StyleNuriyev, M., Nuriyev, A., & Mammadov, J. (2023). Renewable Energy Transition Task Solution for the Oil Countries Using Scenario-Driven Fuzzy Multiple-Criteria Decision-Making Models: The Case of Azerbaijan. Energies, 16(24), 8068. https://doi.org/10.3390/en16248068