Development of Transpiration-Type Thermoelectric-Power-Generating Material Using Carbon Nanotube Composite Papers with Capillary Action and Heat of Vaporization
Abstract
:1. Introduction
2. Experimental Section
2.1. CNTCP Fabrication Method
2.2. Evaluation of Liquid Absorption Ability
2.3. Measuring Transpiration-Type Thermoelectric Power Generation
2.4. Examination to Improve Electromotive Force by Using Multiple Sheets
3. Results
3.1. Absorption Ability of CNTCP
3.2. Evaluation of Transpiration-Type Thermoelectric-Power-Generating Paper
3.3. Multisheet Structure of Thermoelectric-Power-Generating Paper
4. Discussion
4.1. Absorption Ability of CNTCP
4.2. Transpiration-Type Thermoelectric-Power-Generating Paper
4.3. Multisheet Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNT | carbon nanotube |
CNTCP | carbon nanotube composite paper |
SEM | scanning electron microscope |
SDS | sodium dodecyl sulfate |
MWCNTCP | CNTCP consisting of multiwalled CNT |
SGCNTCP | CNTCP consisting of SG101-CNT |
References
- Snyder, G.; Tobere, E. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Caylor, J.; Coonley, K.; Stuart, J.; Colpitts, T.; Venkatasubramanian, R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 2005, 87, 023105. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Nakanishi, K.; Miyasaka, S.; Tokura, Y. Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 < ∼x < ∼0.1). Phys. Rev. B 2001, 63, 113104. [Google Scholar] [CrossRef]
- Minnich, A.; Dresselhaus, M.; Ren, Z.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Buge, A.; Supino-Viterbo, V.; Rancurel, G.; Pontes, C. Epileptic phenomena in bismuth toxic encephalopathy. J. Neurol. Neurosurg. Psychiatry 1981, 44, 62–67. [Google Scholar] [CrossRef]
- Taylor, A. Biochemistry of tellurium. Biol. Trace Elem. Res. 1996, 55, 231–239. [Google Scholar] [CrossRef]
- Sundar, S.; Chakravarty, J. Antimony toxicity. Int. J. Environ. Res. Public Health 2010, 7, 4267–4277. [Google Scholar] [CrossRef]
- Oya, T.; Ogino, T. Production of electrically conductive paper by adding carbon nanotubes. Carbon 2008, 46, 169–171. [Google Scholar] [CrossRef]
- Ebbesen, T.; Lezec, H.; Hiura, H.; Bennett, J.; Ghaemi, H.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56. [Google Scholar] [CrossRef]
- Yu, M.F.; Files, B.; Arepalli, S.; Ruoff, R. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties. Phys. Rev. Lett. 2000, 84, 5552–5555. [Google Scholar] [CrossRef] [PubMed]
- Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 2014, 7, 025103. [Google Scholar] [CrossRef]
- Liu, J.; Rinzler, A.; Dai, H.; Hafner, J.; Bradley, R.; Boul, P.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; et al. Fullerene Pipes. Science 1998, 280, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.; Ferguson, A.; Cho, C.; Grunlan, J. Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef] [PubMed]
- Ogata, Y.; Iguchi, K.; Oya, T. “Paper dye-sensitized solar cell” based on carbon-nanotube-composite papers. Energies 2020, 13, 57. [Google Scholar] [CrossRef]
- Kou, Y.; Oya, T. Unique dye-sensitized solar cell using carbon nanotube composite papers with gel electrolyte. J. Compos. Sci. 2023, 7, 232. [Google Scholar] [CrossRef]
- Ampo, T.; Oya, T. Development of paper actuator based on carbon-nanotube-composite paper. Molecules 2021, 26, 1463. [Google Scholar] [CrossRef]
- Fugetsu, B.; Sano, E.; Sunada, M.; Sambongi, Y.; Shibuya, T.; Wang, X.; Hiraki, T. Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 2008, 46, 1256–1258. [Google Scholar] [CrossRef]
- Imai, M.; Akiyama, K.; Tanaka, T.; Sano, E. Highly strong and conductive carbon nanotube/cellulose composite paper. Compos. Sci. Technol. 2010, 70, 1564–1570. [Google Scholar] [CrossRef]
- Hamana, Y.; Oya, T. Improvement of performance of paper transistor using carbon-nanotube-composite paper and its application to logic circuit. Adv. Sci. Technol. 2014, 95, 32–37. [Google Scholar] [CrossRef]
- Kawata, K.; Oya, T. Development and evaluation of “thermoelectric power-generating paper” using carbon nanotube-composite paper. Jpn. J. Appl. Phys. 2017, 56, 06GE10. [Google Scholar] [CrossRef]
- Miyama, A.; Oya, T. Modification of producing way for “Thermoelectric power generating paper” using carbon-nanotube-composite paper to improve its performance. In Proceedings of the 2019 MRS Fall Meeting & Exhibit, Boston, MA, USA, 1–6 December 2019. EN13.11.21. [Google Scholar]
- Miyama, A.; Oya, T. Improved performance of thermoelectric power generating paper based on carbon nanotube composite papers. Carbon Trends 2022, 7, 100149. [Google Scholar] [CrossRef]
- Gupta, B.; Shah, D.; Mishra, B.; Joshi, P.; Gandhi, V.G.; Fougat, R. Effect of top soil wettability on water evaporation and plant growth. J. Colloid Interface Sci. 2015, 449, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Arkley, R.J. Relationships between plant growth and transpiration. Hilgardia 1963, 34, 559–584. [Google Scholar] [CrossRef]
- Graamans, L.; van den Dobbelsteen, A.; Meinen, E.; Stanghellini, C. Plant factories; crop transpiration and energy balance. Agric. Syst. 2017, 153, 138–147. [Google Scholar] [CrossRef]
- Pearcy, R.W.; Schulze, E.D.; Zimmermann, R. Measurement of transpiration and leaf conductance. In Plant Physiological Ecology: Field Methods and Instrumentation; Springer: Dordrecht, The Netherlands, 2000; pp. 137–160. [Google Scholar] [CrossRef]
- Yang, Z.; Sinclair, T.R.; Zhu, M.; Messina, C.D.; Cooper, M.; Hammer, G.L. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environ. Exp. Bot. 2012, 78, 157–162. [Google Scholar] [CrossRef]
- Haggenmacher, J. The heat of vaporization as a function of pressure and temperature. J. Am. Chem. Soc. 1946, 68, 1633–1634. [Google Scholar] [CrossRef]
- Gates, D.M. Transpiration and Leaf Temperature. Annu. Rev. Plant Physiol. 1968, 19, 211–238. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Y.; Zhang, H.; Fu, P.; Fan, Z. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 2017, 31, 2202–2211. [Google Scholar] [CrossRef]
- Gupta, S.; Ram, J.; Singh, H. Comparative Study of Transpiration in Cooling Effect of Tree Species in the Atmosphere. J. Geosci. Environ. Prot. 2018, 6, 151–166. [Google Scholar] [CrossRef]
- Gennes, P.G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Morrow, N.R. Physics and Thermodynamics of Capillary Action in Porous Media. Ind. Eng. Chem. 1970, 62, 32–56. [Google Scholar] [CrossRef]
- Gillespie, T. The capillary rise of a liquid in a vertical strip of filter paper. J. Colloid Sci. 1959, 14, 123–130. [Google Scholar] [CrossRef]
- Mohammadi, S.; Busa, L.S.A.; Maeki, M.; Mohamadi, R.M.; Ishida, A.; Tani, H.; Tokeshi, M. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates. Anal. Bioanal. Chem. 2016, 408, 7559–7563. [Google Scholar] [CrossRef] [PubMed]
- Alexander Böhm and, F.C.; Trieb, C.; Schabel, S.; Biesalski, M. Engineering microfluidic papers: Effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid. Nanofluidics 2014, 16, 789–799. [Google Scholar] [CrossRef]
Sample No. | Pulp Material | Drying Method |
---|---|---|
1 | Eucalyptus | Heat pressing |
2 | Eucalyptus | Oven |
3 | Rayon | Heat pressing |
4 | Rayon | Oven |
Numbers of SGCNTCPs | (°C) | (°C) | V (μV) |
---|---|---|---|
3 | 20.4 | 18.8 | 220 |
5 | 21.8 | 19.8 | 356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamekawa, Y.; Arai, K.; Oya, T. Development of Transpiration-Type Thermoelectric-Power-Generating Material Using Carbon Nanotube Composite Papers with Capillary Action and Heat of Vaporization. Energies 2023, 16, 8032. https://doi.org/10.3390/en16248032
Kamekawa Y, Arai K, Oya T. Development of Transpiration-Type Thermoelectric-Power-Generating Material Using Carbon Nanotube Composite Papers with Capillary Action and Heat of Vaporization. Energies. 2023; 16(24):8032. https://doi.org/10.3390/en16248032
Chicago/Turabian StyleKamekawa, Yudai, Koya Arai, and Takahide Oya. 2023. "Development of Transpiration-Type Thermoelectric-Power-Generating Material Using Carbon Nanotube Composite Papers with Capillary Action and Heat of Vaporization" Energies 16, no. 24: 8032. https://doi.org/10.3390/en16248032
APA StyleKamekawa, Y., Arai, K., & Oya, T. (2023). Development of Transpiration-Type Thermoelectric-Power-Generating Material Using Carbon Nanotube Composite Papers with Capillary Action and Heat of Vaporization. Energies, 16(24), 8032. https://doi.org/10.3390/en16248032