Four-Dimensional History Matching Using ES-MDA and Flow-Based Distance-to-Front Measurement
Abstract
:1. Introduction
2. Methodology
2.1. Distance-to-Front Measurement
2.2. Using Streamlines for Distance-to-Front Calculation
Algorithm 1: Four-dimensional distance-to-front using streamlines | |
FOR EACH ENSEMBLE UPDATE STEP | |
1. | Input array(s) of cells representing observed front(s) in the model grid. |
2. | Full physics flow simulation of all candidate members of the ensemble. |
3. | Calculate the difference between saturation data from the date of the seismic survey(s) to . |
4. | Binarize the output of step 3 into flooded/non-flooded regions according to a threshold. |
5. | Calculate the contour of the flooded region at the date of seismic survey(s). |
6. | Matching locations for the output of step 5 and step 1 are assigned a distance of 0. |
7. | Post-processing of streamlines coming from step 2. |
8. | Extract the shortest distance given by the streamlines (step 7) connecting the observed front (step 1) with the simulated front (step 5). |
9. | Merge array(s) of distances computed at step 6 and step 8. |
CONTINUE TO THE NEXT UPDATE STEP |
3. Results and Discussion
3.1. Synthetic 3D Case
3.2. Realistic 3D Case
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Landrø, M. Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics 2001, 66, 836–844. [Google Scholar] [CrossRef]
- Lumley, D.E. Time-lapse seismic reservoir monitoring. Geophysics 2001, 66, 50–53. [Google Scholar] [CrossRef]
- Thore, P.; Hubans, C. 4D seismic-to-well tying, a key step towards 4D inversion. Geophysics 2012, 77, R227–R238. [Google Scholar] [CrossRef]
- Thore, P.; Blanchard, T.D. 4D propagated layer-based inversion. Geophysics 2015, 80, R15–R29. [Google Scholar] [CrossRef]
- Grana, D.; Mukerji, T. Bayesian inversion of time-lapse seismic data for the estimation of static reservoir properties and dynamic property changes. Geophys. Prospect. 2014, 63, 637–655. [Google Scholar] [CrossRef]
- Maharramov, M.; Biondi, B.L.; Meadows, M.A. Time-lapse inverse theory with applications. Geophysics 2016, 81, R485–R501. [Google Scholar] [CrossRef]
- Kazemi, A.; Stephen, K.D.; Shams, A. Seismic History Matching of Nelson Using Time-Lapse Seismic Data: An Investigation of 4D Signature Normalization. SPE Reserv. Evaluation Eng. 2011, 14, 621–633. [Google Scholar] [CrossRef]
- Maleki, M.; Davolio, A.; Schiozer, D.J. Qualitative time-lapse seismic interpretation of Norne Field to assess challenges of 4D seismic attributes. Lead. Edge. 2018, 37, 754–762. [Google Scholar] [CrossRef]
- Lygren, M.; Husby, O.; Osdal, B.; El Ouair, Y.; Springer, M. History matching using 4D seismic and pressure data on the Norne field. In Proceedings of the 67th EAGE Conference & Exhibition, Madrid, Spain, 13–16 June 2005; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2005; p. cp-1. [Google Scholar] [CrossRef]
- Roggero, F.; Ding, D.Y.; Berthet, P.; Lerat, O.; Cap, J.; Schreiber, P.-E. Matching of Production History and 4D Seismic Data--Application to the Girassol Field, Offshore Angola. In Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007; OnePetro: Richardson, TX, USA, 2007. [Google Scholar] [CrossRef]
- Castro, S.A.; Caers, J.; Otterlei, C.; Meisingset, H.; Hoye, T.; Gomel, P.; Zachariassen, E. Incorporating 4D seismic data into reservoir models while honoring production and geologic data: A case study. Lead. Edge. 2009, 28, 1498–1505. [Google Scholar] [CrossRef]
- Le Ravalec, M.; Tillier, E.; Da Veiga, S.; Enchery, G.; Gervais, V. Advanced integrated workflows for incorporating both production and 4d seismic-related data into reservoir models. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 207–220. [Google Scholar] [CrossRef]
- Roggero, F.; Lerat, O.; Ding, D.; Berthet, P.; Bordenave, C.; Lefeuvre, F.; Perfetti, P. History matching of production and 4D seismic data: Application to the Girassol field, offshore Angola. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 237–262. [Google Scholar] [CrossRef]
- Byerley, G.; Singer, L.; Rose, P. Resaturated pay: A new infill target type identified through the application and continuous improvement of 4D seismic at the Forties Field. Lead. Edge. 2016, 35, 831–838. [Google Scholar] [CrossRef]
- Calvert, M.A.; Hoover, A.R.; Vagg, L.D.; Ooi, K.C.; Hirsch, K.K. Halfdan 4D workflow and results leading to increased recovery. Lead. Edge. 2016, 35, 840–848. [Google Scholar] [CrossRef]
- Rankey, E.C.; Mitchell, J.C. That’s why it’s called interpretation: Impact of horizon uncertainty on seismic attribute analysis. Lead. Edge. 2003, 22, 820–828. [Google Scholar] [CrossRef]
- Zhou, W.; Lumley, D. Nonrepeatability effects on time-lapse 4D seismic full-waveform inversion for ocean-bottom node data. Geophysics 2021, 86, R547–R561. [Google Scholar] [CrossRef]
- Sarkar, S.; Gouveia, W.P.; Johnston, D.H. On the inversion of time-lapse seismic data. In Proceedings of the 2003 SEG Annual Meeting, Dallas, TX, USA, 26–31 October 2003; OnePetro: Richardson, TX, USA, 2003. [Google Scholar] [CrossRef]
- Buland, A.; El Ouair, Y. Bayesian time-lapse inversion. Geophysics 2006, 71, R43–R48. [Google Scholar] [CrossRef]
- Suman, A.; Fernández-Martínez, J.L.; Mukerji, T. Joint Inversion of Production and Time-Lapse Seismic Data: Application to Norne Field; Stanford University: Stanford, CA, USA, 2013. [Google Scholar] [CrossRef]
- Alvarez, E.; MacBeth, C.; Brain, J. Quantifying remaining oil saturation using time-lapse seismic amplitude changes at fluid contacts. Pet. Geosci. 2016, 23, 238–250. [Google Scholar] [CrossRef]
- Arenas, E.; van Kruijsdijk, C.; Oldenziel, T. Semi-automatic history matching using the pilot point method including time-lapse seismic data. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–3 October 2001; OnePetro: Richardson, TX, USA, 2001. [Google Scholar] [CrossRef]
- Fagervik, K.; Lygren, M.; Valen, T.S.; Hetlelid, A.; Berge, G.; Dahl, G.V.; Sønneland, L.; Lie, H.E.; Magnus, I. A method for performing history matching of reservoir flow models using 4d seismic. In Proceedings of the 2001 SEG Annual Meeting, San Antonio, TX, USA, 9–14 September 2001; OnePetro: Richardson, TX, USA, 2001. [Google Scholar] [CrossRef]
- Gosselin, O.; Berg, S.v.D.; Cominelli, A. Integrated history-matching of production and 4D seismic data. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–3 October 2001; OnePetro: Richardson, TX, USA, 2001. [Google Scholar] [CrossRef]
- Gosselin, O.; Aanonsen, S.I.; Aavatsmark, I.; Cominelli, A.; Gonard, R.; Kolasinski, M.; Ferdinandi, F.; Kovacic, L.; Neylon, K. History matching using time-lapse seismic (HUTS). In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 5 October 2003; OnePetro: Richardson, TX, USA, 2003. [Google Scholar] [CrossRef]
- van Ditzhuijzen, R.; Oldenziel, T.; van Kruijsdijk, C. Geological parameterization of a reservoir model for history matching incorporating time-lapse seismic based on a case study of the Statfjord field. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–3 October September 2001; OnePetro: Richardson, TX, USA, 2001. [Google Scholar] [CrossRef]
- Dong, Y.; Oliver, D.S. Quantitative Use of 4D Seismic Data for Reservoir Description. SPE J. 2005, 10, 91–99. [Google Scholar] [CrossRef]
- Haverl, M.; Aga, M.; Reiso, E. Integrated Workflow for Quantitative Use of Time-Lapse Seismic Data in History Matching–A North Sea Field Case (SPE94453). In Proceedings of the 67th EAGE Conference & Exhibition, Madrid, Spain, 13–16 June 2005; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2005; p. cp-1. [Google Scholar] [CrossRef]
- Portella, R.C.M.; Emerick, A.A. Use of Quantitative 4D-Seismic Data in Automatic History Match. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Rio de Janeiro, Brazil, 20 June 2005; OnePetro: Richardson, TX, USA, 2005. [Google Scholar] [CrossRef]
- Stephen, K.D.; Soldo, J.; Macbeth, C.; Christie, M.A. Multiple model seismic and production history matching: A case study. SPE J. 2006, 11, 418–430. [Google Scholar] [CrossRef]
- Dadashpour, M.; Kleppe, J.; Landro, M. Porosity and permeability estimation by gradient based history matching using time-lapse seismic data. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Red Hook, NY, USA, 11–14 March 2007; OnePetro: Richardson, TX, USA, 2007. [Google Scholar] [CrossRef]
- Luo, X.; Bhakta, T.; Jakobsen, M.; Nævdal, G. Efficient big data assimilation through sparse representation: A 3D benchmark case study in petroleum engineering. PLoS ONE 2018, 13, e0198586. [Google Scholar] [CrossRef]
- Oliver, D.S.; Fossum, K.; Bhakta, T.; Sandø, I.; Nævdal, G.; Lorentzen, R.J. 4D seismic history matching. J. Pet. Sci. Eng. 2021, 207, 109119. [Google Scholar] [CrossRef]
- Trani, M.; Arts, R.; Leeuwenburgh, O. Seismic history matching of fluid fronts using the ensemble Kalman filter. SPE J. 2012, 18, 159–171. [Google Scholar] [CrossRef]
- Rollmann, K.; Soriano-Vargas, A.; Almeida, F.; Davolio, A.; Schiozer, D.J.; Rocha, A. Convolutional Neural Network Formulation to Compare 4-D Seismic and Reservoir Simulation Models. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 52, 3052–3065. [Google Scholar] [CrossRef]
- Tillier, E.; Le Ravalec, M.; Da Veiga, S. simultaneous inversion of production data and seismic attributes: Application to a synthetic sagd produced field case. Oil Gas Sci. Technol. Rev. d’IFP Energies Nouv. 2012, 67, 289–301. [Google Scholar] [CrossRef]
- Abadpour, A.; Bergey, P.; Piasecki, R. 4D seismic history matching with ensemble Kalman filter-assimilation on Hausdorff distance to saturation front. In Proceedings of the SPE Reservoir Simulation Symposium, Woodlands, TX, USA, 18–20 February 2013; OnePetro: Richardson, TX, USA, 2013. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Jin, L.; Alpak, F.O.; Hoek, P.J.v.D.; Pirmez, C.; Fehintola, T.; Tendo, F.; Olaniyan, E.E. A comparison of stochastic data-integration algorithms for the joint history matching of production and time-lapse-seismic data. SPE Reserv. Eval. Eng. 2012, 15, 498–512. [Google Scholar] [CrossRef]
- Jin, L.; Weber, D.; Hoek, P.v.D.; Alpak, F.; Pirmez, C. 4D Seismic history matching using information from the flooded zone. First Break. 2012, 30, 11. [Google Scholar] [CrossRef]
- Obidegwu, D.; Chassagne, R.; MacBeth, C. Seismic assisted history matching using binary maps. J. Nat. Gas Sci. Eng. 2017, 42, 69–84. [Google Scholar] [CrossRef]
- Tillier, E.; Da Veiga, S.; Derfoul, R. Appropriate formulation of the objective function for the history matching of seismic attributes. Comput. Geosci. 2012, 51, 64–73. [Google Scholar] [CrossRef]
- Davolio, A.; Schiozer, D.J. Probabilistic seismic history matching using binary images. J. Geophys. Eng. 2017, 15, 261–274. [Google Scholar] [CrossRef]
- Kretz, V.; Vallès, B.; Sonneland, L. Fluid front history matching using 4D seismic and streamline simulation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; OnePetro: Richardson, TX, USA, 2004. [Google Scholar] [CrossRef]
- Leeuwenburgh, O.; Arts, R. Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter. Comput. Geosci. 2014, 18, 535–548. [Google Scholar] [CrossRef]
- Zhang, Y.; Leeuwenburgh, O. Ensemble-based seismic history matching with distance parameterization for complex grids. In Proceedings of the ECMOR XV-15th European Conference on the Mathematics of Oil Recovery, Amsterdam, The Netherlands, 29 August–1 September 2016; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2016; p. cp-494. [Google Scholar] [CrossRef]
- Zhang, Y.; Leeuwenburgh, O. Image-oriented distance parameterization for ensemble-based seismic history matching. Comput. Geosci. 2017, 21, 713–731. [Google Scholar] [CrossRef]
- Trani, M.; Moncorgé, A.; Bergey, P.; Chen, Y. Fluid Front History Matching Using an Iterative Ensemble Smoother. In Proceedings of the 77th EAGE Conference and Exhibition 2015, Madrid, Spain, 1–4 June 2015; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2015; Volume 2015, pp. 1–5. [Google Scholar] [CrossRef]
- Sethian, J.A. A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 1996, 93, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Hassouna, M.S.; Farag, A.A. MultiStencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1563–1574. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations. Comput. Geosci. 2012, 16, 639–659. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. Ensemble smoother with multiple data assimilation. Comput. Geosci. 2013, 55, 3–15. [Google Scholar] [CrossRef]
- Pollock, D.W. Semianalytical computation of path lines for finite-difference models. Groundwater 1988, 26, 743–750. [Google Scholar] [CrossRef]
- Sovold, K.; Rian, D.T.; Sandvik, A. Front Tracking Applied to the Simulation of Water Flooding in a Braided River System. In Proceedings of the SPE Latin America Petroleum Engineering Conference, Rio de Janeiro, Brazil, 14–19 October 1990; OnePetro: Richardson, TX, USA, 1990. [Google Scholar] [CrossRef]
- Journel, A.G.; Isaaks, E.H. Conditional indicator simulation: Application to a Saskatchewan uranium deposit. J. Int. Assoc. Math. Geol. 1984, 16, 685–718. [Google Scholar] [CrossRef]
- Matheron, G.; Beucher, H.; de Fouquet, C.; Galli, A.; Guerillot, D.; Ravenne, C. Conditional simulation of the geometry of fluvio-deltaic reservoirs. In Proceedings of the Spe Annual Technical Conference and Exhibition, Dallas, TX, USA, 27–30 September 1987; OnePetro: Richardson, TX, USA, 1987. [Google Scholar] [CrossRef]
- Avansi, G.D.; Maschio, C.; Schiozer, D.J. Simultaneous history-matching approach by use of reservoir-characterization and reservoir-simulation studies. SPE Reserv. Eval. Eng. 2016, 19, 694–712. [Google Scholar] [CrossRef]
- Skjervheim, J.-A.; Evensen, G.; Hove, J.; Vabø, J.G. An ensemble smoother for assisted history matching. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011; OnePetro: Richardson, TX, USA, 2011. [Google Scholar] [CrossRef]
- Emerick, A.A. Analysis of the performance of ensemble-based assimilation of production and seismic data. J. Pet. Sci. Eng. 2016, 139, 219–239. [Google Scholar] [CrossRef]
- Berthet, P.; Trani, M. A Method for Obtaining at Least One Physical Property of a Subsurface Volume of a Hydrocarbon Reservoir Over Time (European Priority Application, Filing Date 4 December 2020, Publication Number EP4009086). Available online: https://www.sumobrain.com/patents/wipo/Method-obtaining-at-least-one/WO2022117735A1.html (accessed on 1 November 2023).
Parameter Type | Count | Minimum | Maximum |
---|---|---|---|
Pore Volume Multipliers | 13 | 0.85 | 1 |
Fault Transmissibility Multipliers | 10 | 1 × 10−6 | 1 |
Region Transmissibility Multipliers | 3 | 1 × 10−6 | 1 |
Productivity Index Multipliers | 2 | 0.001 | 1 |
Total | 28 Parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrela, E.; Berthet, P.; Trani, M.; Thual, O.; Lapeyre, C. Four-Dimensional History Matching Using ES-MDA and Flow-Based Distance-to-Front Measurement. Energies 2023, 16, 7984. https://doi.org/10.3390/en16247984
Barrela E, Berthet P, Trani M, Thual O, Lapeyre C. Four-Dimensional History Matching Using ES-MDA and Flow-Based Distance-to-Front Measurement. Energies. 2023; 16(24):7984. https://doi.org/10.3390/en16247984
Chicago/Turabian StyleBarrela, Eduardo, Philippe Berthet, Mario Trani, Olivier Thual, and Corentin Lapeyre. 2023. "Four-Dimensional History Matching Using ES-MDA and Flow-Based Distance-to-Front Measurement" Energies 16, no. 24: 7984. https://doi.org/10.3390/en16247984
APA StyleBarrela, E., Berthet, P., Trani, M., Thual, O., & Lapeyre, C. (2023). Four-Dimensional History Matching Using ES-MDA and Flow-Based Distance-to-Front Measurement. Energies, 16(24), 7984. https://doi.org/10.3390/en16247984