Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential
Abstract
:1. Introduction
2. Influencing Factors on Hydrogen Energy Transition
2.1. Technical Factors
2.1.1. Hydrogen Generation Method
2.1.2. Advancements in Hydrogen Technology Development
2.1.3. Hydrogen Efficiency
2.1.4. Transportation and Storage
2.2. Logistical Factors
2.2.1. Hydrogen Energy Supply and Demand Dynamics
2.2.2. Regulatory and Legislative Policies
2.2.3. Intricacy of the Hydrogen Economical Factor
2.2.4. Financing Efficiency
2.2.5. Stakeholders’ Roles in Hydrogen Energy Development
2.2.6. The Private Sector’s Role in Hydrogen Energy Development
2.3. Capital Availability
3. Hydrogen Alignment with Fossil Fuels
3.1. Hydrogen Energy Utilisation and Implementation
3.2. Role of Hydrogen
4. Hydrogen Alignment with Hydropower
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Li, J. A Three-Stage Intelligent Coordinated Operation for Grouped Hydrogen-Based Hybrid Storage Systems Considering the Degradation and the Future Impacts Based on Multi-Criteria Decision Making. Int. J. Hydrog. Energy 2021, 46, 6817–6834. [Google Scholar] [CrossRef]
- Moliner, R.; Lázaro, M.J.; Suelves, I. Analysis of the Strategies for Bridging the Gap towards the Hydrogen Economy. Int. J. Hydrog. Energy 2016, 41, 19500–19508. [Google Scholar] [CrossRef]
- CMS. Facing the Future of Hydrogen: An International Guide. 2021. Available online: https://www.lexology.com/library/detail.aspx?g=cd1ebe47-c84a-4a83-bffe-0343a212625c (accessed on 5 September 2023).
- International Energy Agency. Technology Roadmap: Hydrogen and Fuel Cells. 2015. Available online: https://www.oecd-ilibrary.org/energy/hydrogen-and-fuel-cells_9789264239760-en (accessed on 5 September 2023).
- Ball, M.; Wietschel, M. The Future of Hydrogen—Opportunities and Challenges. Int. J. Hydrog. Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Andrews, J.; Shabani, B. Where Does Hydrogen Fit in a Sustainable Energy Economy? In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Volume 49, pp. 15–25. [Google Scholar]
- Machado, J.T.M.; Flynn, B.; Williamson, I. The National Shaping of Europe’s Emerging Hydrogen Strategies: Cooperative or Competitive Hydrogen Politics? Compet. Regul. Netw. Ind. 2022, 23, 77–96. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Al-Breiki, M.; Bicer, Y.; Al-Ansari, T. Sustainable Hydrogen Roadmap: A Holistic Review and Decision-Making Methodology for Production, Utilisation and Exportation Using Qatar as a Case Study. Int. J. Hydrog. Energy 2021, 46, 35525–35549. [Google Scholar] [CrossRef]
- Leben, J.; Hočevar, S. Correlation between National Development Indicators and the Implementation of a Hydrogen Economy in Slovenia. Int. J. Hydrog. Energy 2012, 37, 5468–5480. [Google Scholar] [CrossRef]
- DOE Department of Energy Hydrogen Program Plan; U.S. Department of Energy: Washington, DC, USA, 2020; Volume 56. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/hydrogen-program-plan-2020.pdf?Status=Master (accessed on 5 September 2023).
- Younas, M.; Rezakazemi, M.; Arbab, M.S.; Shah, J.; Rehman, W.U. Green Hydrogen Storage and Delivery: Utilizing Highly Active Homogeneous and Heterogeneous Catalysts for Formic Acid Dehydrogenation. Int. J. Hydrog. Energy 2022, 47, 11694–11724. [Google Scholar] [CrossRef]
- Dou, Y.; Sun, L.; Ren, J.; Dong, L. Opportunities and Future Challenges in Hydrogen Economy for Sustainable Development. In Hydrogen Economy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 277–305. [Google Scholar]
- Frankowska, M.; Błoński, K.; Mańkowska, M.; Rzeczycki, A. Research on the Concept of Hydrogen Supply Chains and Power Grids Powered by Renewable Energy Sources: A Scoping Review with the Use of Text Mining. Energies 2022, 15, 866. [Google Scholar] [CrossRef]
- Kozhushner, A.; Zion, N.; Elbaz, L. Methods for Assessment and Measurement of the Active Site Density in Platinum Group Metal–Free Oxygen Reduction Reaction Catalysts. Curr. Opin. Electrochem. 2021, 25, 100620. [Google Scholar] [CrossRef]
- Sarrakh, R.; Renukappa, S.; Suresh, S.; Mushatat, S. Impact of Subsidy Reform on the Kingdom of Saudi Arabia’s Economy and Carbon Emissions. Energy Strategy Rev. 2020, 28, 100465. [Google Scholar] [CrossRef]
- Saba, S.M.; Müller, M.; Robinius, M.; Stolten, D. The Investment Costs of Electrolysis—A Comparison of Cost Studies from the Past 30 Years. Int. J. Hydrog. Energy 2018, 43, 1209–1223. [Google Scholar] [CrossRef]
- Greene, D.L.; Ogden, J.M.; Lin, Z. Challenges in the Designing, Planning and Deployment of Hydrogen Refueling Infrastructure for Fuel Cell Electric Vehicles. eTransportation 2020, 6, 100086. [Google Scholar] [CrossRef]
- Abba, Z.Y.I.; Balta-Ozkan, N.; Hart, P. A Holistic Risk Management Framework for Renewable Energy Investments. Renew. Sust. Energy Rev. 2022, 160, 112305. [Google Scholar] [CrossRef]
- Nadler, D.W. Decision Support: Using Machine Learning through MATLAB to Analyze Environmental Data. J. Environ. Stud. Sci. 2019, 9, 419–428. [Google Scholar] [CrossRef]
- Komarova, A.V.; Filimonova, I.V.; Novikov, A.Y. The Impact of the Resource and Environmental Factors on the Economic Development of Russian Regions. Energy Rep. 2021, 7, 422–427. [Google Scholar] [CrossRef]
- Chi, Y.; Xiao, M.; Pang, Y.; Yang, M.; Zheng, Y. Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China. Energies 2022, 15, 281. [Google Scholar] [CrossRef]
- Espegren, K.; Damman, S.; Pisciella, P.; Graabak, I.; Tomasgard, A. The Role of Hydrogen in the Transition from a Petroleum Economy to a Low-Carbon Society. Int. J. Hydrog. Energy 2021, 46, 23125–23138. [Google Scholar] [CrossRef]
- Ren, J.; Xu, D.; Cao, H.; Wei, S.; Dong, L.; Goodsite, M.E. Sustainability Decision Support Framework for the Prioritization of Hydrogen Energy Systems. In Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability; Academic Press: Cambridge, MA, USA, 2017; pp. 225–276. [Google Scholar]
- Kovač, A.; Paranos, M.; Marciuš, D. Hydrogen in Energy Transition: A Review. Int. J. Hydrog. Energy 2021, 46, 10016–10035. [Google Scholar] [CrossRef]
- Liang, H.; Ren, J.; Gao, S.; Dong, L.; Gao, Z. Comparison of Different Multicriteria Decision-Making Methodologies for Sustainability Decision Making. In Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability; Academic Press: Cambridge, MA, USA, 2017; pp. 189–224. [Google Scholar]
- Adami Mattioda, R.; Teixeira Fernandes, P.; Luiz Casela, J.; Canciglieri Junior, O. Social Life Cycle Assessment of Hydrogen Energy Technologies. In Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability; Academic Press: Cambridge, MA, USA, 2017; pp. 171–188. [Google Scholar]
- Wang, D.; Liao, B.; Zheng, J.; Huang, G.; Hua, Z.; Gu, C.; Xu, P. Development of Regulations, Codes and Standards on Composite Tanks for on-Board Gaseous Hydrogen Storage. Int. J. Hydrog. Energy 2019, 44, 22643–22653. [Google Scholar] [CrossRef]
- Moe, E. Energy Transition. In Essential Concepts of Global Environmental Governance; American Illuminations: Torrance, CA, USA, 2020; pp. 86–88. [Google Scholar] [CrossRef]
- Balta-Ozkan, N.; Watson, T.; Mocca, E. Spatially Uneven Development and Low Carbon Transitions: Insights from Urban and Regional Planning. Energy Policy 2015, 85, 500–510. [Google Scholar] [CrossRef]
- Nižetić, S.; Barbir, F.; Djilali, N. The Role of Hydrogen in Energy Transition. Int. J. Hydrog. Energy 2019, 44, 9673–9674. [Google Scholar] [CrossRef]
- Council, H. How Hydrogen Empowers the Energy Transition. 2017. Available online: https://hydrogencouncil.com/wp-content/uploads/2017/06/Hydrogen-Council-Vision-Document.pdf (accessed on 5 September 2023).
- Dincer, I.; Acar, C. Smart Energy Solutions with Hydrogen Options. Int. J. Hydrog. Energy 2018, 43, 8579–8599. [Google Scholar] [CrossRef]
- Frischmuth, F.; Härtel, P. Hydrogen Sourcing Strategies and Cross-Sectoral Flexibility Trade-Offs in Net-Neutral Energy Scenarios for Europe. Energy 2022, 238, 121598. [Google Scholar] [CrossRef]
- Tang, D.; Tan, G.L.; Li, G.W.; Liang, J.G.; Ahmad, S.M.; Bahadur, A.; Humayun, M.; Ullah, H.; Khan, A.; Bououdina, M. State-of-the-Art Hydrogen Generation Techniques and Storage Methods: A Critical Review. J. Energy Storag. 2023, 64, 107196. [Google Scholar] [CrossRef]
- Zeng, L.; Wei, D.; Toan, S.; Sun, Z.; Sun, Z. Sorption-Enhanced Chemical Looping Oxidative Steam Reforming of Methanol for on-Board Hydrogen Supply. Green. Energy Environ. 2022, 7, 145–155. [Google Scholar] [CrossRef]
- Yousefi, M.; Donne, S. Technical Challenges for Developing Thermal Methane Cracking in Small or Medium Scales to Produce Pure Hydrogen—A Review. Int. J. Hydrog. Energy 2022, 47, 699–727. [Google Scholar] [CrossRef]
- Wang, C.; Liu, T.; Qiu, Y.; Gao, Z.; Ou, W.; Song, Y.; Xiao, R.; Zeng, D. Performance of Plasma-Assisted Chemical Looping Hydrogen Generation at Moderate Temperature. Sustain. Energy Fuels 2023, 7, 1204–1212. [Google Scholar] [CrossRef]
- Solovey, V.V.; Zipunnikov, M.M.; Kotenko, A.L. Researching and Adjusting the Modes of Joint Operation of a Photoelectric Converter and a High Pressure Electrolyzer. Int. J. Hydrog. Energy 2022, 47, 28272–28279. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Ma, H.; Dong, G. Enhancing the Yield of Hydrogen Peroxide and Phenol Degradation via a Synergistic Effect of Photoelectrocatalysis Using a G-C3N4/ACF Electrode. Int. J. Hydrog. Energy 2018, 43, 19500–19509. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cai, J.H.; Sun, L.; Gong, J.J.; Lin, C.J. Progress of Photoelectrochemical Performance of Titania Nanotube Arrays for Hydrogen Production. Chin. J. Inorg. Chem. 2012, 28, 647–656. [Google Scholar]
- Shimizu, N.; Hotta, S.; Sekiya, T.; Oda, O. A Novel Method of Hydrogen Generation by Water Electrolysis Using an Ultra-Short-Pulse Power Supply. J. Appl. Electrochem. 2006, 36, 419–423. [Google Scholar] [CrossRef]
- Shin, H.; Jang, D.; Lee, S.; Cho, H.S.; Kim, K.H.; Kang, S. Techno-Economic Evaluation of Green Hydrogen Production with Low-Temperature Water Electrolysis Technologies Directly Coupled with Renewable Power Sources. Energy Convers. Manag. 2023, 286, 117083. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Alahmer, A.; Sayed, E.T. Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization. J. Mar. Sci. Eng. 2023, 11, 617. [Google Scholar] [CrossRef]
- Anjum, S.; Aslam, S.; Hussain, N.; Bilal, M.; Boczkaj, G.; Smułek, W.; Jesionowski, T.; Iqbal, H.M.N. Bioreactors and Biophoton-Driven Biohydrogen Production Strategies. Int. J. Hydrog. Energy 2023, 48, 21176–21188. [Google Scholar] [CrossRef]
- Jain, R.; Panwar, N.L.; Jain, S.K.; Gupta, T.; Agarwal, C.; Meena, S.S. Bio-Hydrogen Production through Dark Fermentation: An Overview. Biomass Conv. Bioref. 2022, 1–26. [Google Scholar] [CrossRef]
- Shahbaz, M.; Al-Ansari, T.; Aslam, M.; Khan, Z.; Inayat, A.; Athar, M.; Naqvi, S.R.; Ahmed, M.A.; McKay, G. A State of the Art Review on Biomass Processing and Conversion Technologies to Produce Hydrogen and Its Recovery via Membrane Separation. Int. J. Hydrog. Energy 2020, 45, 15166–15195. [Google Scholar] [CrossRef]
- Buttler, A.; Spliethoff, H. Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling via Power-to-Gas and Power-to-Liquids: A Review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [Google Scholar] [CrossRef]
- Lippkau, F.; Franzmann, D.; Addanki, T.; Buchenberg, P.; Heinrichs, H.; Kuhn, P.; Hamacher, T.; Blesl, M. Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System. Energies 2023, 16, 3277. [Google Scholar] [CrossRef]
- Hermesmann, M.; Müller, T.E. Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 2022, 90, 100996. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J. An Integrated Decision Support Model for Design and Operation of a Wind-Based Hydrogen Supply System. Int. J. Hydrog. Energy 2017, 42, 3899–3915. [Google Scholar] [CrossRef]
- Iida, S.; Sakata, K. Hydrogen Technologies and Developments in Japan. Clean Energy 2019, 3, 105–113. [Google Scholar] [CrossRef]
- Chapman, A.; Itaoka, K.; Farabi-Asl, H.; Fujii, Y.; Nakahara, M. Societal Penetration of Hydrogen into the Future Energy System: Impacts of Policy, Technology and Carbon Targets. Int. J. Hydrog. Energy 2020, 45, 3883–3898. [Google Scholar] [CrossRef]
- IEA Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021; Volume 224, Available online: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed on 5 September 2023).
- Nagashima, M. Japan’s Hydrogen Strategy and Its Economic and Geopolitical Implications; Institut Français des Relations Internationales: Paris, France, 2018; ISBN 9782365679183. [Google Scholar]
- Pamucar, D.; Iordache, M.; Deveci, M.; Schitea, D.; Iordache, I. A New Hybrid Fuzzy Multi-Criteria Decision Methodology Model for Prioritizing the Alternatives of the Hydrogen Bus Development: A Case Study from Romania. Int. J. Hydrog. Energy 2021, 46, 29616–29637. [Google Scholar] [CrossRef]
- Bossel, U.; Eliasson, B. Energy and Hydrogen Economy. 2002. Available online: https://afdc.energy.gov/files/pdfs/hyd_economy_bossel_eliasson.pdf (accessed on 5 September 2023).
- Schönauer, A.L.; Glanz, S. Hydrogen in Future Energy Systems: Social Acceptance of the Technology and Its Large-Scale Infrastructure. Int. J. Hydrog. Energy 2021, 47, 12251–12263. [Google Scholar] [CrossRef]
- Ozawa, A.; Kudoh, Y.; Murata, A.; Honda, T.; Saita, I.; Takagi, H. Hydrogen in Low-Carbon Energy Systems in Japan by 2050: The Uncertainties of Technology Development and Implementation. Int. J. Hydrog. Energy 2018, 43, 18083–18094. [Google Scholar] [CrossRef]
- Toward, T.P.; Economy, H.; Industry, H.; Broaden, C. The Path toward a Hydrogen Economy: How Industry Can Broaden the Use of Hydrogen. In Workshop Briefs; No. ks--2020-wb10; King Abdullah Petroleum Studies and Research Center: Riyadh, Saudi Arabia, 2020; pp. 1–20. [Google Scholar] [CrossRef]
- Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; et al. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 2002, 298, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Imanina, N.H.N.; Lu, T.K.; Fadhilah, A.R. A Proposed Model of Factors Influencing Hydrogen Fuel Cell Vehicle Acceptance. IOP Conf. Ser. Earth Environ. Sci. 2016, 32, 012052. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef]
- Hydrogen Roadmap Europe A Sustainable Pathway for the European Energy Transition. 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/0817d60d-332f-11e9-8d04-01aa75ed71a1/language-en (accessed on 5 September 2023).
- Lebrouhi, B.E.; Djoupo, J.J.; Lamrani, B.; Benabdelaziz, K.; Kousksou, T. Global Hydrogen Development—A Technological and Geopolitical Overview. Int. J. Hydrog. Energy 2022, 47, 7016–7048. [Google Scholar] [CrossRef]
- Cavaliere, P.D.; Perrone, A.; Silvello, A. Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry. Metals 2021, 11, 1816. [Google Scholar] [CrossRef]
- Mazloomi, K.; Sulaiman, N.B.; Moayedi, H. Electrical Efficiency of Electrolytic Hydrogen Production. Int. J. Electrochem. Sci. 2012, 7, 3314–3326. [Google Scholar] [CrossRef]
- Ibrahim, M.D.; Binofai, F.A.S.; Mohamad, M.O.A. Transition to Low-Carbon Hydrogen Energy System in the UAE: Sector Efficiency and Hydrogen Energy Production Efficiency Analysis. Energies 2022, 15, 6663. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, G.; Chen, Y.; Huang, W. Optimal Operation for the Hydrogen Network Under Consideration of the Dynamic Hydrogen Production Efficiency of Electrolyzers. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2023, 43, 3014–3026. [Google Scholar] [CrossRef]
- Ni, H.; Qu, X.; Peng, W.; Zhao, G.; Zhang, P. Analysis of Internal Heat Exchange Network and Hydrogen Production Efficiency of Iodine–Sulfur Cycle for Nuclear Hydrogen Production. Int. J. Energy Res. 2022, 46, 15665–15682. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrog. Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation. Renew. Sustain. Energy Rev. 2019, 101, 279–294. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Alanne, K.; Cao, S. An Overview of the Concept and Technology of Ubiquitous Energy. Appl. Energy 2019, 238, 284–302. [Google Scholar] [CrossRef]
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Hydrogen Production Technologies Overview. J. Power Energy Eng. 2019, 7, 107–154. [Google Scholar] [CrossRef]
- Pinsky, R.; Sabharwall, P.; Hartvigsen, J.; O’Brien, J. Comparative Review of Hydrogen Production Technologies for Nuclear Hybrid Energy Systems. Prog. Nucl. Energy 2020, 123, 103317. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen Production for Energy: An Overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Mah, A.X.Y.; Ho, W.S.; Bong, C.P.C.; Hassim, M.H.; Liew, P.Y.; Asli, U.A.; Kamaruddin, M.J.; Chemmangattuvalappil, N.G. Review of Hydrogen Economy in Malaysia and Its Way Forward. Int. J. Hydrog. Energy 2019, 44, 5661–5675. [Google Scholar] [CrossRef]
- Cheng, J.; Yue, L.; Ding, L.; Li, Y.Y.; Ye, Q.; Zhou, J.; Cen, K.; Lin, R. Improving Fermentative Hydrogen and Methane Production from an Algal Bloom through Hydrothermal/Steam Acid Pretreatment. Int. J. Hydrog. Energy 2019, 44, 5661–5675. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen Production, Storage, Transportation and Key Challenges with Applications: A Review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Cui, J.; Aziz, M. Techno-Economic Analysis of Hydrogen Transportation Infrastructure Using Ammonia and Methanol. Int. J. Hydrog. Energy 2023, 48, 15737–15747. [Google Scholar] [CrossRef]
- Ulucan, T.H.; Akhade, S.A.; Ambalakatte, A.; Autrey, T.; Cairns, A.; Chen, P.; Cho, Y.W.; Gallucci, F.; Gao, W.; Grinderslev, J.B.; et al. Hydrogen Storage in Liquid Hydrogen Carriers: Recent Activities and New Trends. Prog. Energy 2023, 5, 012004. [Google Scholar] [CrossRef]
- Qureshi, F.; Yusuf, M.; Arham Khan, M.; Ibrahim, H.; Ekeoma, B.C.; Kamyab, H.; Rahman, M.M.; Nadda, A.K.; Chelliapan, S. A State-of-The-Art Review on the Latest Trends in Hydrogen Production, Storage, and Transportation Techniques. Fuel 2023, 340, 127574. [Google Scholar] [CrossRef]
- Abohamzeh, E.; Salehi, F.; Sheikholeslami, M.; Abbassi, R.; Khan, F. Review of Hydrogen Safety during Storage, Transmission, and Applications Processes. J. Loss Prev. Process Ind. 2021, 72, 104569. [Google Scholar] [CrossRef]
- Li, H.; Cao, X.; Liu, Y.; Shao, Y.; Nan, Z.; Teng, L.; Peng, W.; Bian, J. Safety of Hydrogen Storage and Transportation: An Overview on Mechanisms, Techniques, and Challenges. Energy Rep. 2022, 8, 6258–6269. [Google Scholar] [CrossRef]
- Reuß, M.; Grube, T.; Robinius, M.; Stolten, D. A Hydrogen Supply Chain with Spatial Resolution: Comparative Analysis of Infrastructure Technologies in Germany. Appl. Energy 2019, 247, 438–453. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, S.J. Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems. Energies 2020, 13, 6263. [Google Scholar] [CrossRef]
- Aydin, M.I.; Dincer, I.; Ha, H. Development of Oshawa Hydrogen Hub in Canada: A Case Study. Int. J. Hydrog. Energy 2021, 46, 23997–24010. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.; Tong, L.; Wang, L. Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals 2021, 11, 101. [Google Scholar] [CrossRef]
- Netherlands Enterprise Agency. Hydrogen in the GCC Commissioned by the Netherlands Enterprise Agency. 2020. Available online: https://www.rvo.nl/sites/default/files/2020/12/Hydrogen%20in%20the%20GCC.pdf (accessed on 5 September 2023).
- Weidner, E.; Ortiz Cebolla, R.; Bonato, C.; Buttner, W. Summary Report for a Hydrogen Sensor Workshop—Hydrogen Safety Sensors and Their Use in Applications with Hydrogen as an Alternative Fuel. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/06ae27f0-e53a-11e7-9749-01aa75ed71a1/language-en (accessed on 5 September 2023).
- Wang, A.; Jens, J.; Mavins, D.; Moultak, M.; Schimmel, M.; Van Der Leun, K.; Peters, D.; Buseman, M. Analysing Future Demand, Supply, and Transport of Hydrogen. Eur. Hydrog. Backbone 2021. Available online: https://www.gruenes-gas.at/wp-content/uploads/2023/10/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf (accessed on 5 September 2023).
- Chapman, A.; Itaoka, K.; Hirose, K.; Davidson, F.T.; Nagasawa, K.; Lloyd, A.C.; Webber, M.E.; Kurban, Z.; Managi, S.; Tamaki, T.; et al. A Review of Four Case Studies Assessing the Potential for Hydrogen Penetration of the Future Energy System. Int. J. Hydrog. Energy 2019, 44, 6371–6382. [Google Scholar] [CrossRef]
- Ren, X.; Dong, L.; Xu, D.; Hu, B. Challenges towards Hydrogen Economy in China. Int. J. Hydrog. Energy 2020, 45, 34326–34345. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Jenn, A.; Ogden, J. Modeling Future Hydrogen Supply Chains in the Western United States under Uncertainties: An Optimization-Based Approach Focusing on California as a Hydrogen Hub. Sustain. Energy Fuels 2023, 7, 1223–1244. [Google Scholar] [CrossRef]
- Esily, R.R.; Chi, Y.; Ibrahiem, D.M.; Chen, Y. Hydrogen Strategy in Decarbonization Era: Egypt as a Case Study. Int. J. Hydrog. Energy 2022, 47, 18629–18647. [Google Scholar] [CrossRef]
- The International Renewable Energy Agency (IRENA). Hydrogen: A Renewable Energy Perspective; IRENA: Abu, Dhabi, 2019; ISBN 9789292601515. [Google Scholar]
- The Commission to The European Parliament; The Council; The European Economic and Social Committee; The Committee of The Regions. A Hydrogen Strategy for a Climate-Neutral Europe. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0301 (accessed on 5 September 2023).
- Yu, M.; Wang, K.; Vredenburg, H. Insights into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. Int. J. Hydrog. Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Hassan, I.A.; Ramadan, H.S.; Saleh, M.A.; Hissel, D. Hydrogen Storage Technologies for Stationary and Mobile Applications: Review, Analysis and Perspectives. Renew. Sustain. Energy Rev. 2021, 149, 111311. [Google Scholar] [CrossRef]
- Khalid, F.; Dincer, I.; Rosen, M.A. Analysis and Assessment of an Integrated Hydrogen Energy System. Int. J. Hydrog. Energy 2016, 41, 7960–7967. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Ling, W. Policy Optimization of Hydrogen Energy Industry Considering Government Policy Preference in China. Sustain. Prod. Consum. 2022, 33, 890–902. [Google Scholar] [CrossRef]
- Barhorst, N. Green Hydrogen. In Proceedings of the 39th World Energy Engineering Conference, Washington, WA, USA, 21–23 September 2016; pp. 886–897. [Google Scholar]
- Zhao, F.; Mu, Z.; Hao, H.; Liu, Z.; He, X.; Victor Przesmitzki, S.; Ahmad Amer, A. Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective. Energy Technol. 2020, 8, 2000179. [Google Scholar] [CrossRef]
- Komiyama, R.; Otsuki, T.; Fujii, Y. Energy Modeling and Analysis for Optimal Grid Integration of Large-Scale Variable Renewables Using Hydrogen Storage in Japan. Energy 2015, 81, 537–555. [Google Scholar] [CrossRef]
- Ren, X.; Li, W.; Ding, S.; Dong, L. Sustainability Assessment and Decision Making of Hydrogen Production Technologies: A Novel Two-Stage Multi-Criteria Decision Making Method. Int. J. Hydrog. Energy 2020, 45, 34371–34384. [Google Scholar] [CrossRef]
- Vartiainen, E.; Breyer, C.; Moser, D.; Román Medina, E.; Busto, C.; Masson, G.; Bosch, E.; Jäger-Waldau, A. True Cost of Solar Hydrogen. Solar RRL 2022, 6, 2100487. [Google Scholar] [CrossRef]
- Meng, X.; Gu, A.; Wu, X.; Zhou, L.; Zhou, J.; Liu, B.; Mao, Z. Status Quo of China Hydrogen Strategy in the Field of Transportation and International Comparisons. Int. J. Hydrog. Energy 2021, 46, 28887–28899. [Google Scholar] [CrossRef]
- Romano, C.A.; Tanewski, G.A.; Smyrnios, K.X. Capital Structure Decision Making: A Model for Family Business. J. Bus. Ventur. 2001, 16, 285–310. [Google Scholar] [CrossRef]
- Almeida, H.; Wolfenzon, D. The Effect of External Finance on the Equilibrium Allocation of Capital. J. Financ. Econ. 2005, 75, 133–164. [Google Scholar] [CrossRef]
- Tian, P.; Lin, B. Impact of Financing Constraints on Firm’s Environmental Performance: Evidence from China with Survey Data. J. Clean. Prod. 2019, 217, 432–439. [Google Scholar] [CrossRef]
- Hydrogen Council, Path to Hydrogen Competitiveness: A Cost Perspective. 2020. Available online: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed on 5 September 2023).
- Nicita, A.; Maggio, G.; Andaloro, A.P.F.; Squadrito, G. Green Hydrogen as Feedstock: Financial Analysis of a Photovoltaic-Powered Electrolysis Plant. Int. J. Hydrog. Energy 2020, 45, 11395–11408. [Google Scholar] [CrossRef]
- Maggio, G.; Nicita, A.; Squadrito, G. How the Hydrogen Production from RES Could Change Energy and Fuel Markets: A Review of Recent Literature. Int. J. Hydrog. Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Iribarren, D.; Martín-Gamboa, M.; Manzano, J.; Dufour, J. Assessing the Social Acceptance of Hydrogen for Transportation in Spain: An Unintentional Focus on Target Population for a Potential Hydrogen Economy. Int. J. Hydrog. Energy 2016, 41, 5203–5208. [Google Scholar] [CrossRef]
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. Investigating the Economics of the Power Sector under High Penetration of Variable Renewable Energies. Appl. Energy 2020, 267, 113956. [Google Scholar] [CrossRef]
- Menz, F.C.; Vachon, S. The Effectiveness of Different Policy Regimes for Promoting Wind Power: Experiences from the States. Energy Policy 2006, 34, 1786–1796. [Google Scholar] [CrossRef]
- Angeloni, I. Reversing the Great Monetary Expansion. Intereconomics 2023, 58, 142–147. [Google Scholar] [CrossRef]
- Cortes, G.S.; Gao, G.P.; Silva, F.B.G.; Song, Z. Unconventional Monetary Policy and Disaster Risk: Evidence from the Subprime and COVID-19 Crises. J. Int. Money Financ. 2022, 122, 102543. [Google Scholar] [CrossRef]
- Yin, H.-T.; Chang, C.-P.; Wang, H. The Impact Of Monetary Policy On Green Innovation: Global Evidence. Technol. Econ. Dev. Econ. 2022, 28, 1933–1953. [Google Scholar] [CrossRef]
- Erik, J. Managing the Risks of Quantitative Tightening in the Euro Area. Span. Int. Econ. Financ. Outlook 2023, 2023, 5–13. [Google Scholar]
- Pollitt, M.G. The Further Economic Consequences of Brexit: Energy; Faculty of Economics, University of Cambridge: Cambridge, UK, 2021. [Google Scholar]
- Campello, M.; Kankanhalli, G.; Kim, H. Delayed Creative Destruction: How Uncertainty Shapes Corporate Assets; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- Huang, H.; Ali, S.; Solangi, Y.A. Analysis of the Impact of Economic Policy Uncertainty on Environmental Sustainability in Developed and Developing Economies. Sustainability 2023, 15, 5860. [Google Scholar] [CrossRef]
- Scatigna, M.; Xia, F.D.; Zabai, A.; Zulaica, O. Achievements and Challenges in ESG Markets. BIS Q. Rev. 2021. Available online: https://www.bis.org/publ/qtrpdf/r_qt2112f.htm (accessed on 5 September 2023). [CrossRef]
- Harichandan, S.; Kar, S.K. Financing the Hydrogen Industry: Exploring Demand and Supply Chain Dynamics. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Rajgopal, S.; Srivastava, A.; Zhao, R. Do Political Anti-ESG Sanctions Have Any Economic Substance? The Case of Texas Law Mandating Divestment from ESG Asset Management Companies. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Sundaram, A.K.; Hansen, R.G. Handbook of Business and Climate Change; Edward Elgar Publishing: London, UK, 2023. [Google Scholar]
- Secretary of State for Business; Controller of Her Majesty’s Stationery Office. UK Hydrogen Strategy; Willey Online Library: New Brunswick, NJ, USA, 2021; Volume 85. [Google Scholar]
- Hanley, E.S.; Deane, J.P.; Gallachóir, B.P.Ó. The Role of Hydrogen in Low Carbon Energy Futures–A Review of Existing Perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Tlili, O.; Mansilla, C.; Frimat, D.; Perez, Y. Hydrogen Market Penetration Feasibility Assessment: Mobility and Natural Gas Markets in the US, Europe, China and Japan; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 44, pp. 16048–16068. [Google Scholar]
- Smart, K. Review of Recent Progress in Green Ammonia Synthesis: Decarbonisation of Fertiliser and Fuels via Green Synthesis. Johns. Matthey Technol. Rev. 2022, 66, 230–244. [Google Scholar] [CrossRef]
- Milani, D.; Kiani, A.; Haque, N.; Giddey, S.; Feron, P. Green Pathways for Urea Synthesis: A Review from Australia’s Perspective. Sustain. Chem. Clim. Action. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Müller, L.A.; Leonard, A.; Trotter, P.A.; Hirmer, S. Green Hydrogen Production and Use in Low- and Middle-Income Countries: A Least-Cost Geospatial Modelling Approach Applied to Kenya. Appl. Energy 2023, 343, 121219. [Google Scholar] [CrossRef]
- Gomez, J.R.; Baca, J.; Garzon, F. Techno-Economic Analysis and Life Cycle Assessment for Electrochemical Ammonia Production Using Proton Conducting Membrane. Int. J. Hydrog. Energy 2020, 45, 721–737. [Google Scholar] [CrossRef]
- Osman, O.; Sgouridis, S.; Sleptchenko, A. Scaling the Production of Renewable Ammonia: A Techno-Economic Optimization Applied in Regions with High Insolation. J. Clean. Prod. 2020, 271, 121627. [Google Scholar] [CrossRef]
- Faria, J.A. Renaissance of Ammonia Synthesis for Sustainable Production of Energy and Fertilizers. Curr. Opin. Green. Sustain. Chem. 2021, 29, 100466. [Google Scholar] [CrossRef]
- Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy Fuels 2021, 35, 3529–3557. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Lanzac, T.; Rodríguez-Mirasol, J.; Cordero, T.; Bilbao, J. Advances and Challenges in the Valorization of Bio-Oil: Hydrodeoxygenation Using Carbon-Supported Catalysts. Energy Fuels 2021, 35, 17008–17031. [Google Scholar] [CrossRef]
- Cherubini, F. The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Liu, Q.; Zhang, Q.; Chen, L.; Ma, L. A Review of Conversion of Lignocellulose Biomass to Liquid Transport Fuels by Integrated Refining Strategies. Fuel Process. Technol. 2020, 208, 106485. [Google Scholar] [CrossRef]
- Cordero-Lanzac, T.; Ramirez, A.; Navajas, A.; Gevers, L.; Brunialti, S.; Gandía, L.M.; Aguayo, A.T.; Mani Sarathy, S.; Gascon, J. A Techno-Economic and Life Cycle Assessment for the Production of Green Methanol from CO2: Catalyst and Process Bottlenecks. J. Energy Chem. 2022, 68, 255–266. [Google Scholar] [CrossRef]
- Portillo, A.; Ateka, A.; Ereña, J.; Aguayo, A.T.; Bilbao, J. Conditions for the Joint Conversion of CO2and Syngas in the Direct Synthesis of Light Olefins Using In2O3-ZrO2/SAPO-34 Catalyst. Ind. Eng. Chem. Res. 2022, 61, 10365–10376. [Google Scholar] [CrossRef]
- Ateka, A.; Rodriguez-Vega, P.; Ereña, J.; Aguayo, A.T.; Bilbao, J. A Review on the Valorization of CO2. Focusing on the Thermodynamics and Catalyst Design Studies of the Direct Synthesis of Dimethyl Ether. Fuel Process. Technol. 2022, 233, 107310. [Google Scholar] [CrossRef]
- Parra, O.; Portillo, A.; Ereña, J.; Aguayo, A.T.; Bilbao, J.; Ateka, A. Boosting the Activity in the Direct Conversion of CO2/CO Mixtures into Gasoline Using ZnO-ZrO2 Catalyst in Tandem with HZSM-5 Zeolite. Fuel Process. Technol. 2023, 245, 1007745. [Google Scholar] [CrossRef]
- Landa, L.; Remiro, A.; Valecillos, J.; Bilbao, J.; Gayubo, A.G. Thermodynamic Study of the CO2 Valorization in the Combined Steam-Dry Reforming of Bio-Oil into Syngas. J. CO2 Util. 2023, 72, 102503. [Google Scholar] [CrossRef]
- Landa, L.; Remiro, A.; Valecillos, J.; Valle, B.; Sun, S.; Wu, C.; Bilbao, J.; Gayubo, A.G. Sorption Enhanced Steam Reforming (SESR) of Raw Bio-Oil with Ni Based Catalysts: Effect of Sorbent Type, Catalyst Support and Sorbent/Catalyst Mass Ratio. Fuel Process. Technol. 2023, 247, 107799. [Google Scholar] [CrossRef]
- Thapa, B.S.; Neupane, B.; Yang, H.; Lee, Y.-H. Green Hydrogen Potentials from Surplus Hydro Energy in Nepal. Int. J. Hydrog. Energy 2021, 46, 22256–22267. [Google Scholar] [CrossRef]
- Da Silva, E.P.; Marin Neto, A.J.; Ferreira, P.F.P.; Camargo, J.C.; Apolinário, F.R.; Pinto, C.S. Analysis of Hydrogen Production from Combined Photovoltaics, Wind Energy and Secondary Hydroelectricity Supply in Brazil. Solar Energy 2005, 78, 670–677. [Google Scholar] [CrossRef]
- International Hydropower Association. The Green Hydrogen Revolution: Hydropower’s Transformative Role; International Hydropower Association: London, UK, 2021. [Google Scholar]
- International Energy Agency. Hydropower Special Market Report Analysis and Forecast to 2030; International Energy Agency: Paris, France, 2021. [Google Scholar]
Directive | Description | Year | Area |
---|---|---|---|
(EU) 2018/2001 | Renewable energy (RE) liquid and gaseous transport fuels of non-biological origin | 2018 | Renewable energy |
2014/94/EU. | Alternative fuel infrastructure directive | 2014 | Hydrogen energy |
98/70/EC | Fuel quality directive | Fuel directive | |
(EU) 2015/652 | Greenhouse gas (GHG) council directive that sets the production of clean hydrogen, hydrogen from fossil fuels, and methane from hydrogen. | 2015 | Blue hydrogen energy |
Horizon Europe EU research framework initiatives | Initiatives that fund hydrogen research and innovation projects (2021–2027) | Ongoing | Hydrogen energy |
Fuel Cells and Hydrogen Joint (FCH JU) | The European Commission backing of a public-private collaboration | Ongoing | Hydrogen energy |
EU | Important Project of Common European Interest (IPCEI) | Ongoing | Renewable energy |
IPCEIs | Focus on microelectronics and batteries | 2020 | Energy |
22 EU member states and Norway | Manifesto | Ongoing | Energy |
Regulation | Actions Required |
---|---|
The government |
|
Ministry of energy |
|
Fluxes |
|
Federal regulator |
|
The Flemish Regulator of Electricity and Gas Market (VREG). Regional regulations: the Commission Wallonne Pour Energy (CWaPE) and the Brussels Energy Regulator (BRUGEL) |
|
Influencing Indicators | Cost USD Cents/km | Percentage | Comment |
---|---|---|---|
As at year 2020 | 47.2 | - | - |
Scale-up of manufacturing Step 1 | 8.6 | 18% | Annual production of 200,000 vehicles |
Scale-up of manufacturing Step 2 | 4.5 | 10% | Annual production of 700,000 vehicles |
Green hydrogen production | 5.3 | 11% | Transition to 2.5 larger HRS and 40 trucking capacity |
Electrolysis deployment and transition to production systems | 2.4 | 5% | ~50 GW electrolysis deployment and transition to ~100 MW production systems |
Parity with BEV | 26.4 | - | - |
Parameter | Value |
---|---|
Equity rate of return | 7.0% |
Inflation rate | 1.2% |
Tax rate on earnings | 30% |
System degradation rate | 0.5%/year |
Factors | Impact | Details |
---|---|---|
Economic | Cost Reduction, Market Growth and Efficiency |
|
Diversification of Energy Sources |
| |
International Trade Opportunities |
| |
Environmental | Carbon Emission Reduction |
|
Air and Water Quality Improvement |
| |
Challenges with G-H2 in green ammonia production | Initial Investment Costs |
|
Intermittency of Renewable Energy |
| |
Technology Development |
|
Role of H2 | Details | Reference |
---|---|---|
Hydrogen Production from Waste Refineries |
| [139,140] |
| ||
| ||
| ||
Biorefinery Development |
| [141,142] |
| ||
| ||
| ||
CO2 Conversion and Catalytic Processes |
| [143,144,145,146] |
| ||
| ||
| ||
Bio-oil Combined Steam-Dry Reforming (CSDR) |
| [147] |
| ||
| ||
Sorption Enhanced Steam Reforming (SESR) |
| [148] |
Factor | Summary | |
---|---|---|
Logistical | Policies | Inclusive policy strategies, enacted through regulation and legislation, are vital to overcoming scepticism and fostering market entry. Collaborative efforts among nations to share risks, lessons, and best practices are crucial. |
Supply and Demand of Hydrogen Energy | Achieving hydrogen production by 2030 hinges on executing current plans. Future hydrogen pricing is influenced by production expenses and expected demand. Increases in the price of grey hydrogen are expected with heavier carbon emission taxation under systems like the ETS. | |
Energy Supply Chain | Infrastructure and technology availability supporting sustainable demand, storage, and distribution is crucial for long-term supply success. Establishing a global supply network and expanding upstream production are high priorities. | |
Role of Stakeholders | The involvement of diverse sectors in hydrogen development underscores its importance in the transition to a decarbonised global economy. The expansion of the hydrogen economy signifies progress in decarbonisation efforts. | |
Private Sectors | Private sector involvement is expected to accelerate green hydrogen adoption. The desire for quick financial gains drives the private sector to seek rapid improvements in hydrogen energy technologies, including production, transportation, and storage. Collaborative roles between industry sectors are vital in facilitating the sector’s development and progress. | |
Technical | Production | |
Transportation and Storage | Hydrogen transportation presents logistical challenges. Hydrogen fuel cells could potentially replace lithium batteries in long-distance and heavy-duty vehicles, but this depends on reducing hydrogen prices. Hydrogen-powered trains are considered for freight and rural/regional lines, particularly in maritime and aviation, but solutions for weight and storage issues are needed. | |
Hydrogen Technology | Technology development indicates that hydrogen fuel costs are expected to decline due to falling hydrogen prices, impacting energy production and distribution. Hydrogen directly competes with utility-supplied power for stationary use, necessitating a well-planned strategy for using hydrogen technologies in renewable energy sources. The integration of the Internet of Things (IoT) devices aids effective data collection. | |
Utilisation and Implementation | Establishing large-scale hydrogen demand and achieving a hydrogen supply cost below $10/ton are essential for demonstrating the decarbonisation of basic chemicals and thermal demand. By 2030, large passenger vehicle ownership costs may decrease by as much as 45%. | |
Hydrogen Alignment with Fossil Fuels | Hydrogen supply infrastructure has the potential to diversify the transportation fuel market away from oil, dependent on feedstock, population density, geographic factors, and legislative support. Significant investments are required (estimated at $150–190 million per gigajoule) with potential reductions in carbon dioxide emissions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaheel, S.; Ibrahim, K.A.; Fallatah, G.; Lakshminarayanan, V.; Luk, P.; Luo, Z. Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential. Energies 2023, 16, 7975. https://doi.org/10.3390/en16247975
Kaheel S, Ibrahim KA, Fallatah G, Lakshminarayanan V, Luk P, Luo Z. Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential. Energies. 2023; 16(24):7975. https://doi.org/10.3390/en16247975
Chicago/Turabian StyleKaheel, Sultan, Khalifa Aliyu Ibrahim, Gasem Fallatah, Venkatasubramanian Lakshminarayanan, Patrick Luk, and Zhenhua Luo. 2023. "Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential" Energies 16, no. 24: 7975. https://doi.org/10.3390/en16247975
APA StyleKaheel, S., Ibrahim, K. A., Fallatah, G., Lakshminarayanan, V., Luk, P., & Luo, Z. (2023). Advancing Hydrogen: A Closer Look at Implementation Factors, Current Status and Future Potential. Energies, 16(24), 7975. https://doi.org/10.3390/en16247975