Investigation of Key Controlling Factors and Applicability Boundaries of Natural Gas Injection for Shale Oil Development: A Case Study of Chang 7 Reservoir, Ordos Basin, China
Abstract
:1. Introduction
2. Numerical Simulation and Methodology
2.1. Reservoir Characteristics
2.2. Model Description
2.2.1. Study Area and Grid Division
2.2.2. Stress Sensitive Model
Geomechanical Parameters
Geomechanical Model
2.2.3. Component Characteristics of Crude Oil
2.2.4. Curves of Relative Permeability
3. Results and Discussion
3.1. Effectiveness of Natural Gas Flooding
3.1.1. Water Flooding vs. Natural Gas Flooding
3.1.2. Effectiveness of Different Gas Injection Methods
3.2. Analysis of Influencing Parameters on Shale Oil Development with Natural Gas Flooding
3.2.1. Reservoir Physical Property
Matrix Permeability
Oil Saturation
Formation Thickness
3.2.2. Fracturing Parameters
Fracture Half-Length
Fracture Conductivity
3.2.3. Parameters of Injection and Production
Gas Injection Rate
Bottom Hole Flow Pressure
3.3. Adaptive Boundary of Shale Oil Development with Natural Gas Flooding
3.3.1. Analysis of the Key Controlling Factors for Natural Gas Flooding
Analysis of Influencing Factor Weights Based on Random Forest Algorithm
Weight Determination
3.3.2. Adaptive Boundary Chart of Natural Gas Flooding
Permeability–Oil Saturation
Permeability–Fracture Half-Length
Oil Saturation–Fracture Half-Length
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Recovery for Different Parameter Values
No. | Permeability /×10−3 μm2 | Thickness /m | Conductivity Coefficient /×10−3 μm2∙m | Oil Saturation /% | Bottomhole Pressure /MPa | Fracture Half-Length /m | Daily Gas Injection Amount /(m3/d) | 10 Years Recovery /% | 20 Years Recovery /% |
---|---|---|---|---|---|---|---|---|---|
1 | 0.01 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 4.92 | 6.03 |
2 | 0.02 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 7.32 | 8.82 |
3 | 0.05 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 9.77 | 14.45 |
4 | 0.1 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 15.04 | 24.42 |
5 | 0.2 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 23.35 | 32.60 |
6 | 0.5 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 25.35 | 36.91 |
7 | 1 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 26.27 | 36.98 |
8 | 0.13 | 4 | 100 | 65 | 9 | 160 | 4000 | 21.04 | 31.89 |
9 | 0.13 | 8 | 100 | 65 | 9 | 160 | 4000 | 21.04 | 31.58 |
10 | 0.13 | 12 | 100 | 65 | 9 | 160 | 4000 | 20.72 | 30.48 |
11 | 0.13 | 16 | 100 | 65 | 9 | 160 | 4000 | 19.05 | 29.01 |
12 | 0.13 | 20 | 100 | 65 | 9 | 160 | 4000 | 17.12 | 27.51 |
13 | 0.13 | 8.7 | 20 | 65 | 9 | 160 | 4000 | 15.08 | 33.86 |
14 | 0.13 | 8.7 | 40 | 65 | 9 | 160 | 4000 | 17.28 | 33.26 |
15 | 0.13 | 8.7 | 60 | 65 | 9 | 160 | 4000 | 19.02 | 33.26 |
16 | 0.13 | 8.7 | 80 | 65 | 9 | 160 | 4000 | 20.21 | 32.25 |
17 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 21.00 | 31.42 |
18 | 0.13 | 8.7 | 100 | 45 | 9 | 160 | 4000 | 1.05 | 2.74 |
19 | 0.13 | 8.7 | 100 | 50 | 9 | 160 | 4000 | 3.10 | 8.60 |
20 | 0.13 | 8.7 | 100 | 55 | 9 | 160 | 4000 | 7.37 | 19.19 |
21 | 0.13 | 8.7 | 100 | 60 | 9 | 160 | 4000 | 13.11 | 26.64 |
22 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 21.00 | 31.42 |
23 | 0.13 | 8.7 | 100 | 70 | 9 | 160 | 4000 | 28.15 | 35.53 |
24 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 21.00 | 31.42 |
25 | 0.13 | 8.7 | 100 | 65 | 11 | 160 | 4000 | 17.25 | 30.38 |
26 | 0.13 | 8.7 | 100 | 65 | 13 | 160 | 4000 | 12.95 | 28.91 |
27 | 0.13 | 8.7 | 100 | 65 | 9 | 120 | 4000 | 17.58 | 33.96 |
28 | 0.13 | 8.7 | 100 | 65 | 9 | 140 | 4000 | 19.51 | 32.81 |
29 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 20.98 | 31.42 |
30 | 0.13 | 8.7 | 100 | 65 | 9 | 180 | 4000 | 21.86 | 29.98 |
31 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 2000 | 17.72 | 28.22 |
32 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 3000 | 18.76 | 29.96 |
33 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 4000 | 21.01 | 31.42 |
34 | 0.13 | 8.7 | 100 | 65 | 9 | 160 | 5000 | 23.12 | 32.45 |
References
- Wan, T.; Sheng, J.J.; Soliman, M. Evaluate EOR Potential in Fractured Shale Oil Reservoirs by Cyclic Gas Injection. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013. [Google Scholar]
- Li, H.-B.; Yang, Z.-M.; Li, R.-S.; Zhou, T.-Y.; Guo, H.-K.; Liu, X.-W.; Dai, Y.-X.; Hu, Z.-G.; Meng, H. Mechanism of CO2 enhanced oil recovery in shale reservoirs. Pet. Sci. 2021, 18, 1788–1796. [Google Scholar] [CrossRef]
- Sanchez-Rivera, D.; Mohanty, K.; Balhoff, M. Reservoir simulation and optimization of Huff-and-Puff operations in the Bakken Shale. Fuel 2015, 147, 82–94. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, J.J. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs. Petroleum 2017, 3, 249–257. [Google Scholar] [CrossRef]
- Ahmed, B.; Bakht, S.; Wahid, S.; Hanif, M. Structural analysis and reservoir characterisation of cretaceous sequence in Kohala Bala, Khyber Pakhtunkhwa, Pakistan. Rud. Geološko Naft. Zb. 2022, 37, 65–81. [Google Scholar] [CrossRef]
- Sheng, J.J. Enhanced oil recovery in shale reservoirs by gas injection. J. Nat. Gas Sci. Eng. 2015, 22, 252–259. [Google Scholar] [CrossRef]
- Akbarabadi, M.; Alizadeh, A.; Piri, M.; Nagarajan, N. Experimental evaluation of enhanced oil recovery in unconventional reservoirs using cyclic hydrocarbon gas injection. Fuel 2023, 331, 125676. [Google Scholar] [CrossRef]
- Sui, H.; Zhang, F.; Zhang, L.; Wang, Z.; Yuan, S.; Wang, D.; Wang, Y. Mechanism of CO2 enhanced oil recovery in kerogen pores and CO2 sequestration in shale: A molecular dynamics simulation study. Fuel 2023, 349, 128692. [Google Scholar] [CrossRef]
- Sheng, J.J.; Chen, K. Evaluation of the EOR potential of gas and water injection in shale oil reservoirs. J. Unconv. Oil Gas Resour. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Hoffman, B.T. Comparison of Various Gases for Enhanced Recovery from Shale Oil Reservoirs. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2012. [Google Scholar]
- Yu, W.; Lashgari, H.R.; Wu, K.; Sepehrnoori, K. CO2 injection for enhanced oil recovery in Bakken tight oil reservoirs. Fuel 2015, 159, 354–363. [Google Scholar] [CrossRef]
- Dong, C.; Hoffman, B.T. Modeling Gas Injection into Shale Oil Reservoirs in the Sanish Field, North Dakota. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013. [Google Scholar]
- Kong, B.; Wang, S.; Chen, S. Simulation and Optimization of CO2 Huff-and-Puff Processes in Tight Oil Reservoirs. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016. [Google Scholar]
- Zhu, P.; Balhoff, M.T.; Mohanty, K.K. Simulation of Fracture-to-Fracture Gas Injection in an Oil-Rich Shale. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar]
- Syed, F.I.; Dahaghi, A.K.; Muther, T. Laboratory to field scale assessment for EOR applicability in tight oil reservoirs. Pet. Sci. 2022, 19, 2131–2149. [Google Scholar] [CrossRef]
- Carpenter, C. Huff ‘n’ Puff Gas-Injection Pilot Improves Oil Recovery in the Eagle Ford. J. Pet. Technol. 2018, 70, 91–92. [Google Scholar] [CrossRef]
- Hoffman, B.T. Huff-N-Puff Gas Injection Pilot Projects in the Eagle Ford. In Proceedings of the SPE Canada Unconventional Resources Conference, Calgary, AB, Canada, 13–14 March 2018. [Google Scholar]
- Wang, L.; Tian, Y.; Yu, X.; Wang, C.; Yao, B.; Wang, S.; Winterfeld, P.H.; Wang, X.; Yang, Z.; Wang, Y.; et al. Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel 2017, 210, 425–445. [Google Scholar] [CrossRef]
- Burrows, L.C.; Haeri, F.; Cvetic, P.; Sanguinito, S.; Shi, F.; Tapriyal, D.; Goodman, A.L.; Enick, R.M. A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs. Energy Fuels 2020, 34, 5331–5380. [Google Scholar] [CrossRef]
- Liu, Y.; Rui, Z. A Storage-Driven CO2 EOR for a Net-Zero Emission Target. Engineering 2022, 18, 79–87. [Google Scholar] [CrossRef]
- Song, Y.-L.; Song, Z.-J.; Zhang, Y.-F.; Xie, Z.-H.; Zhang, L.-C.; Wang, D.-G.; Hui, G. Pore scale performance evaluation and impact factors in nitrogen huff-n-puff EOR for tight oil. Pet. Sci. 2022, 19, 2932–2940. [Google Scholar] [CrossRef]
- Li, L.; Su, Y.; Hao, Y.; Zhan, S.; Lv, Y.; Zhao, Q.; Wang, H. A comparative study of CO2 and N2 huff-n-puff EOR performance in shale oil production. J. Pet. Sci. Eng. 2019, 181, 106174. [Google Scholar] [CrossRef]
- Yan, X. Study on corrosion mechanism in CO2-driven gathering pipelines. Chem. Eng. Technol. 2020, 1, 100–102. [Google Scholar]
- Belhaj, H.; Abukhalifeh, H.; Javid, K. Miscible oil recovery utilizing N2 and/or HC gases in CO2 injection. J. Pet. Sci. Eng. 2013, 111, 144–152. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Z.; Lu, X.; Cheng, S.; Xie, Q.; Qu, X. Review of enhanced oil recovery by carbonated water injection. Pet. Sci. Bull. 2020, 2, 204–228. [Google Scholar]
- Matkivskyi, S.; Kondrat, O. Studying the influence of the carbon dioxide injection period duration on the gas recovery factor during the gas condensate fields development under water drive. Min. Miner. Deposits 2021, 15, 95–101. [Google Scholar] [CrossRef]
- Bustin, A.; Bustin, R.; Chikatamarla, L.; Downey, R.; Mansoori, J. Learnings from a failed nitrogen enhanced coalbed methane pilot: Piceance Basin, Colorado. Int. J. Coal Geol. 2016, 165, 64–75. [Google Scholar] [CrossRef]
- Wu, J.; Gan, Y.; Shi, Z.; Huang, P.; Shen, L. Pore-scale lattice Boltzmann simulation of CO2-CH4 displacement in shale matrix. Energy 2023, 278, 127991. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Liang, Y.; Wang, Q.; Guo, Y.-J.; Gao, M.; Wang, Z.-B.; Liu, W.-L. Status and progress of worldwide EOR field applications. J. Pet. Sci. Eng. 2020, 193, 107449. [Google Scholar] [CrossRef]
- Schmidt, M.; Sekar, B. Innovative Unconventional 2 EOR-a light EOR an unconventional tertiary recovery approach to an unconventional bakken reservoir in southeast saskatchewan. In Proceedings of the SPE 21st World Petroleum Congress, Moscow, Russia, 15–19 June 2014. [Google Scholar]
- Tang, Y.; Chen, Y.; He, Y.; Yu, G.; Guo, X.; Yang, Q.; Wang, Y. An improved system for evaluating the adaptability of natural gas flooding in enhancing oil recovery considering the miscible ability. Energy 2021, 236, 121441. [Google Scholar] [CrossRef]
- Long, K.; Tang, Y.; He, Y.; Wang, Y.; Qin, J.; Tang, L. Fluid phase behavior during multi-cycle injection and production of underground gas storage based on gas-condensate reservoirs with oil rim. Geoenergy Sci. Eng. 2023, 226, 211769. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Jiang, T. Underground storage of hydrogen and hydrogen/methane mixtures in porous reservoirs: Influence of reservoir factors and engineering choices on deliverability and storage operations. Int. J. Hydrogen Energy 2023, 4, 95–99. [Google Scholar]
- Warner, J. An Evaluation of Miscible CO2 Flooding in Waterflooded Sandstone Reservoirs. J. Pet. Technol. 1977, 29, 1339–1347. [Google Scholar] [CrossRef]
- Wan, T.; Meng, X.; Sheng, J.J.; Watson, M. Compositional Modeling of EOR Process in Stimulated Shale Oil Reservoirs by Cyclic Gas Injection. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2014. [Google Scholar]
- Ding, M.; Zhao, H.; Zhao, Q. Experimental study on factors affecting hydrocarbon gas drive efficiency. Sci. Technol. Soc. 2013, 13, 7816–7818. [Google Scholar]
- Yang, Y.; Liu, Y.; Zhou, D.; Jiao, X.; Cao, Q.; Meng, Z.; Zhao, M. Lithotypes, organic matter and paleoenvironment characteristics in the Chang73 submember of the Triassic Yanchang Formation, Ordos Basin, China: Implications for organic matter accumulation and favourable target lithotype. J. Pet. Sci. Eng. 2022, 216, 110691. [Google Scholar] [CrossRef]
- Yu, H.; Song, J.; Chen, Z.; Zhang, Y.; Wang, Y.; Yang, W.; Lu, J. Numerical study on natural gas injection with allied in-situ injection and production for improving shale oil recovery. Fuel 2022, 318, 123586. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Luo, L.; Liu, J.; Cheng, S.; Qu, X.; Lei, Q.; Lu, J. Application of cumulative-in-situ-injection-production technology to supplement hydrocarbon recovery among fractured tight oil reservoirs: A case study in Changqing Oilfield, China. Fuel 2019, 242, 804–818. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, Y.; Lang, H.; Yu, H.; Zhu, C.; Yang, B.; Zhang, H.; Sun, Z. Feasibility of inter-fracture injection and production for the same multistage fractured horizontal well in tight oil reservoir. Acta Petrolei Sin. 2017, 38, 1411–1419. [Google Scholar]
- Liu, X.; Li, D.; Jia, Y.; Liyong, Y.; Xiaoting, G.; Tao, Z.; Ziwei, C.; Mao, L.; Juan, W.; Xiangyun, S.; et al. Optimizing construction parameters for fractured horizontal wells in shale oil. Front. Earth Sci. 2023, 10, 1015107. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Z.; Liu, G.; Xu, H. A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm. Energy 2022, 254, 124427. [Google Scholar] [CrossRef]
- Fiki, H. Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir. Alex. Eng. J. 2022, 61, 2408–2417. [Google Scholar]
- Ivšinović, J.; Litvić, N. Application of the bootstrap method on a large input data set-case study western part of the Sava Depression. Rud.-Geološko-Naft. Zb. 2021, 36, 13–19. [Google Scholar] [CrossRef]
- Chen, C.; Breiman, L. Using Random Forest to Learn Imbalanced Data; University of California: Berkeley, CA, USA, 2004. [Google Scholar]
Parameter | Value |
---|---|
Average burial depth/m | 1959 |
Average effective thickness/m | 8.7 |
Average porosity/% | 8.9 |
Average permeability/(10−3 μm2) | 0.13 |
Average oil saturation/% | 65 |
Average initial formation pressure/MPa | 15.8 |
Saturation pressure/MPa | 9.09 |
Gas–oil ratio/(m3/m3) | 107.2 |
Average reservoir temperature/°C | 58.9 |
Crude oil density/(g/cm3) | 0.85 |
Crude oil viscosity/(mPa·s) | 1.27 |
Crude oil volume coefficient | 1.24 |
Parameter | Value |
---|---|
effective thickness/m | 8.7 |
porosity/% | 8.9 |
permeability/(10−3 μm2) | 0.13 |
initial oil saturation/% | 65 |
initial formation pressure/MPa | 15.8 |
horizontal section length/m | 400 |
well spacing/m | 400 |
array pitch/m | 240 |
fracture half-length/m | 160 |
fracture conductivity coefficient of fracturing/(10−3 μm2·m) | 100 |
Horizon | Rock Density/(g/cm3) | Elastic Modulus/GPa | Poisson’s Ratio | Tensile Strength/MPa | Cohesive Strength/MPa |
---|---|---|---|---|---|
Chang 71 | <2.52 | 20.00 | 0.27 | 9.20 | 40.92 |
2.54 | 20.52 | 0.27 | 9.62 | 42.36 | |
2.56 | 21.03 | 0.26 | 10.04 | 43.80 | |
>2.58 | 21.54 | 0.26 | 10.45 | 45.24 | |
Chang 72 | <2.52 | 19.49 | 0.27 | 8.79 | 39.49 |
2.53 | 20.26 | 0.27 | 9.41 | 41.64 | |
2.56 | 21.03 | 0.26 | 10.04 | 43.80 | |
>2.59 | 21.80 | 0.26 | 10.66 | 45.96 | |
Average | 2.55 | 20.71 | 0.27 | 9.78 | 42.90 |
Component | Mole Fraction/% | Component | Mole Fraction/% |
---|---|---|---|
CO2 | 0.16 | C16 | 2.37 |
N2 | 2.03 | C17 | 2.27 |
C1 | 36.87 | C18 | 2.14 |
C2 | 6.00 | C19 | 2.34 |
C3 | 5.54 | C20 | 2.06 |
C4 | 2.53 | C21 | 1.88 |
C5 | 1.64 | C22 | 1.74 |
C6 | 1.44 | C23 | 1.67 |
C7 | 1.60 | C24 | 1.40 |
C8 | 1.93 | C25 | 1.40 |
C9 | 2.02 | C26 | 1.11 |
C10 | 1.84 | C27 | 1.02 |
C11 | 2.01 | C28 | 0.77 |
C12 | 2.17 | C29 | 0.77 |
C13 | 2.44 | C30 | 0.58 |
C14 | 2.92 | C31 | 0.41 |
C15 | 2.61 | C32+ | 0.32 |
Sum | 100 |
Component | C1 | C2–C4 | C5–C10 | C11–C19 | C20+ | CO2 | N2 |
---|---|---|---|---|---|---|---|
Content/% | 36.87 | 14.07 | 10.47 | 21.27 | 15.13 | 0.16 | 2.03 |
Permeability /×10−3 μm2 | Recovery /% | Recovery Increment /% | Gas Breakthrough Time /Years |
---|---|---|---|
0.01 | 6.28 | 2.28 | - |
0.02 | 7.64 | 3.33 | - |
0.05 | 16.26 | 8.21 | - |
0.1 | 29.52 | 13.62 | 9.46 |
0.2 | 34.50 | 16.16 | 5.73 |
0.5 | 38.57 | 20.25 | 2.98 |
1 | 39.56 | 20.31 | 2.04 |
Thickness/m | Recovery/% | Recovery Rate Increase/% | Single Well Cumulative Oil Production/(×104 m3/d) |
---|---|---|---|
4 | 31.89 | 26.25 | 2.02 |
8 | 31.58 | 25.89 | 4.00 |
12 | 30.48 | 24.76 | 5.59 |
16 | 29.01 | 23.26 | 6.88 |
20 | 27.51 | 21.71 | 8.07 |
Fractures Half-Length/m | Recovery (10 Years)/% | Recovery (20 Years)/% | Gas Breakthrough Time/Years |
---|---|---|---|
120 | 17.58 | 33.96 | 10.11 |
140 | 19.51 | 32.81 | 9.03 |
160 | 20.98 | 31.42 | 7.98 |
180 | 21.86 | 29.98 | 7.35 |
Fracture Conductivity Coefficient /(×10−3 μm2·m) | Recovery (10 Years)/% | Recovery (20 Years)/% | Gas Breakthrough Time/Years |
---|---|---|---|
20 | 15.08 | 33.86 | 10.53 |
40 | 17.28 | 33.26 | 9.36 |
60 | 19.02 | 32.25 | 8.54 |
80 | 20.21 | 31.63 | 7.98 |
100 | 20.66 | 31.49 | 7.64 |
Daily Gas Injection Amount/m3 | Recovery (10 Years)/% | Recovery (20 Years)/% | Gas Breakthrough Time/Years |
---|---|---|---|
2000 | 17.72 | 28.22 | 8.51 |
3000 | 18.76 | 29.96 | 8.42 |
4000 | 21.01 | 31.42 | 7.98 |
5000 | 23.12 | 32.45 | 7.88 |
Bottom Hole Pressures/MPa | Recovery (10 Years)/% | Recovery (20 Years)/% | Gas Breakthrough Time/Years |
---|---|---|---|
9 | 21.00 | 31.42 | 7.98 |
11 | 17.25 | 30.38 | 9.48 |
13 | 12.95 | 28.91 | 11.17 |
Parameter | Oil Saturation | Permeability | Fracture Half-Length | Thickness | Daily Gas Injection Amount | Bottom Hole Flowing Pressure | Conductivity Coefficient |
---|---|---|---|---|---|---|---|
Weight/% | 48.16 | 47.04 | 1.58 | 1.33 | 0.89 | 0.87 | 0.14 |
Parameter | Permeability | Oil Saturation | Fracture Half-Length | Thickness | Daily Gas Injection Amount | Conductivity Coefficient | Bottom Hole Flowing Pressure |
---|---|---|---|---|---|---|---|
Weight/% | 64.72 | 32.32 | 1.47 | 0.65 | 0.64 | 0.13 | 0.07 |
Recovery/% | Limiting Properties (Permeability, Oil Saturation) /(×10−3 μm2%) | |
---|---|---|
15 | (0.064, 70) | (1, 46.37) |
20 | (0.083, 70) | (1, 49.43) |
25 | (0.162, 70) | (1, 53.48) |
30 | (0.179, 70) | (1, 57.25) |
35 | (0.204, 70) | (1, 62.80) |
40 | (0.412, 70) | (1, 67.76) |
Recovery/% | Limiting Properties (Permeability, Oil Saturation) /(×10−3 μm2, %) | |
---|---|---|
15 | (0.029, 70) | (1, 45.61) |
20 | (0.039, 70) | (1, 48.56) |
25 | (0.051, 70) | (1, 52.63) |
30 | (0.074, 70) | (1, 56.81) |
35 | (0.108, 70) | (1, 69.93) |
40 | (0.282, 70) | (1, 66.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Q.; Song, P.; Cao, L.; Shi, J.; Yang, W.; Abdullah, M.A.; Song, J.; Yu, H. Investigation of Key Controlling Factors and Applicability Boundaries of Natural Gas Injection for Shale Oil Development: A Case Study of Chang 7 Reservoir, Ordos Basin, China. Energies 2023, 16, 7377. https://doi.org/10.3390/en16217377
Xie Q, Song P, Cao L, Shi J, Yang W, Abdullah MA, Song J, Yu H. Investigation of Key Controlling Factors and Applicability Boundaries of Natural Gas Injection for Shale Oil Development: A Case Study of Chang 7 Reservoir, Ordos Basin, China. Energies. 2023; 16(21):7377. https://doi.org/10.3390/en16217377
Chicago/Turabian StyleXie, Qichao, Peng Song, Likun Cao, Jian Shi, Weiguo Yang, Muhammad Adil Abdullah, Jiabang Song, and Haiyang Yu. 2023. "Investigation of Key Controlling Factors and Applicability Boundaries of Natural Gas Injection for Shale Oil Development: A Case Study of Chang 7 Reservoir, Ordos Basin, China" Energies 16, no. 21: 7377. https://doi.org/10.3390/en16217377
APA StyleXie, Q., Song, P., Cao, L., Shi, J., Yang, W., Abdullah, M. A., Song, J., & Yu, H. (2023). Investigation of Key Controlling Factors and Applicability Boundaries of Natural Gas Injection for Shale Oil Development: A Case Study of Chang 7 Reservoir, Ordos Basin, China. Energies, 16(21), 7377. https://doi.org/10.3390/en16217377