Analysis of Coolant Purification Strategies for Tritium Control in DEMO Water Primary Coolant
Abstract
1. Introduction
2. Target Tritium Concentration in PHTS
2.1. CANDU Experience
2.2. The Case of DEMO WCLL BB Primary Heat Transport System
3. The Water Coolant Purification System
3.1. Off-Line Strategy
3.2. On-Line Strategy
3.3. Full Hybrid Strategy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Utili, M.; Bassini, S.; Cataldo, S.; Di Fonzo, F.; Kordac, M.; Hernandez, T.; Kunzova, K.; Lorenz, J.; Martelli, D.; Padino, B.; et al. Development of anti-permeation and corrosion barrier coatings for the WCLL breeding blanket of the European DEMO. Fusion Eng. Des. 2021, 170, 112453. [Google Scholar] [CrossRef]
- Spagnuolo, G.A.; Arredondo, R.; Boccaccini, L.V.; Chiovaro, P.; Ciattaglia, S.; Cismondi, F.; Coleman, M.; Cristescu, I.; D’amico, S.; Day, C.; et al. Integrated design of breeding blanket and ancillary systems related to the use of helium or water as a coolant and impact on the overall plant design. Fusion Eng. Des. 2021, 173, 112933. [Google Scholar] [CrossRef]
- Santucci, A.; Incelli, M.; Noschese, L.; Moreno, C.; Di Fonzo, F.; Utili, M.; Tosti, S.; Day, C. The issue of Tritium in DEMO coolant and mitigation strategies. Fusion Eng. Des. 2020, 158, 111759. [Google Scholar] [CrossRef]
- Santucci, A.; Farina, L.; Tosti, S.; Frattolillo, A. Novel Non-Evaporable Getter Materials and Their Possible Use in Fusion Application for Tritium Recovery. Molecules 2020, 25, 5675. [Google Scholar] [CrossRef]
- Cismondi, F.; Spagnuolo, G.A.; Boccaccini, L.V.; Chiovaro, P.; Ciattaglia, S.; Cristescu, I.; Day, C.; Del Nevo, A.; Di Maio, P.A.; Federici, F.; et al. Progress of the conceptual design of the European DEMO breeding blanket, tritium extraction and coolant purification systems. Fusion Eng. Des. 2020, 157, 111640. [Google Scholar] [CrossRef]
- Hernandez, F.A.; Pereslavtsev, P.; Zhou, G.; Kang, Q.; D’amico, S.; Neuberger, H.; Boccaccini, L.V.; Kiss, B.; Nadasi, G.; Maqueda, L.; et al. Consolidated design of the HCPB Breeding Blanket for the pre-Conceptual Design Phase of the EU DEMO and harmonization with the ITER HCPB TBM program. Fusion Eng. Des. 2020, 157, 111614. [Google Scholar] [CrossRef]
- Arena, P.; Del Nevo, A.; Moro, F.; Noce, S.; Mozzillo, R.; Imbriani, V.; Giannetti, F.; Edemetti, F.; Froio, A.; Savoldi, L.; et al. The DEMO Water-Cooled Lead–Lithium Breeding Blanket: Design Status at the End of the Pre-Conceptual Design Phase. Appl. Sci. 2021, 11, 11592. [Google Scholar] [CrossRef]
- Narcisi, V.; Santucci, A. Water Distillation for Coolant Purification System of DEMO Water-Cooled Lithium-Lead Breeding Blanket. Fusion Eng. Des. 2022. submitted. [Google Scholar]
- Wong, K.Y. Canadian Tritium Experience; Canadian Fusion Fuels Technology Project, 2700 Lakeshore Road West; CFFTP: Mississauga, ON, Canada, 1984. [Google Scholar]
- NEA. Radiological Significance and Management of Tritium, Carbon-14, Krypton-85, Iodine-129 Arising from the Nuclear Fuel Cycle; OECD Publications and Information Center, OECD Publishing: Paris, France, 1980. [Google Scholar]
- Holtslander, W.J.; Drolet, T.S.; Osborne, R.V. Recovery of Tritium from CANDU Reactors, Its Storage and Monitoring of Its Migration in the Environment; Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories: Chalk River, ON, Canada, 1979. [Google Scholar]
- Park, T.K.; Kim, S.K. Tritium: Its generation and pathways to the environment at CANDU 6 generating stations. Nucl. Eng. Des. 1996, 163, 405–411. [Google Scholar] [CrossRef]
- Gerchikov, M.; Glodeanu, F.; Patrascoiu, S.; Naum, M. Why a TRF shall be built on Cernavoda site. Prog. Cryog. Isot. Sep. 2015, 18, 17. [Google Scholar]
- Drolet, T.S.; Wong, K.Y.; Dinner, P.J.C. Canadian experience with Tritium—The basis of a new Fusion Project. Nucl. Technol. Fusion 1984, 5, 17–29. [Google Scholar] [CrossRef]
- Davidson, R.B.; Von Hatten, P. Commissioning and first operating experience at Darlington Tritium Removal Facility. Fusion Technol. 1988, 14, 472–479. [Google Scholar] [CrossRef]
- Song, K.M.; Lee, S.J.; Lee, S.K.; Sohn, S.H.; Eum, H.M.; Kim, C.S. The Prediction of Tritium Level Reduction of Wolsong NPPs by Heavy Water Detritiation with WTRF. Fusion Sci. Technol. 2005, 48, 290–293. [Google Scholar] [CrossRef]
- Stefan, L.; Trantea, N.; Bornea, A.; Zamfirache, M.; Bidica, N.; Stefan, I. Cernavoda tritium removal facility: A key tritium supplier for future fusion facilities. Fusion Eng. Des. 2019, 146, 1505–1509. [Google Scholar] [CrossRef]
- Bonnett, I.; Busigin, A.; Moledina, M. Best practices in management of heavy water and tritium. In Good Practices in Heavy Water Reactor Operation; IAEA-TECDOC-1650; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- Moscato, I.; Barucca, L.; Bubelis, E.; Caruso, G.; Ciattaglia, S.; Ciurluini, C.; Del Nevo, A.; Di Maio, P.A.; Giannetti, F.; Hering, W.; et al. Tokamak cooling systems and power conversion system options. Fusion Eng. Des. 2022, 178, 113093. [Google Scholar] [CrossRef]
- Hiwatari, R.; Katayama, K.; Nakamura, M.; Miyosi, Y.; Aoki, A.; Asakura, N.; Utoh, H.; Homma, Y.; Tokunaga, S.; Nakajima, N.; et al. Development of plant concept related to tritium handling in the water-cooling system for JA DEMO. Fusion Eng. Des. 2019, 143, 259–266. [Google Scholar] [CrossRef]
- Caruso, G.; Ciattaglia, S.; Colling, B.; Di Pace, L.; Dongiovanni, D.N.; D’Onorio, M.; Garcia, M.; Jin, X.Z.; Johnston, J.; Leichtle, D.; et al. DEMO—The main achievements of the Pre—Concept phase of the safety and environmental work package and the development of the GSSR. Fusion Eng. Des. 2022, 176, 113025. [Google Scholar] [CrossRef]
- Toledo Edison Company. Davis-Besse Nuclear Power Station Unit One Initial Start UP Report; Toledo Edison Company: Holland, OH, USA, 1979. [Google Scholar]
- Day, C.; Battes, K.; Butler, B.; Davies, S.; Farina, L.; Frattolillo, A.; George, R.; Giegerich, T.; Hanke, S.; Hartl, T.; et al. The pre-concept design of the DEMO tritium, matter injection and vacuum systems. Fusion Eng. Des. 2022, 179, 113139. [Google Scholar] [CrossRef]
- Santucci, A.; Frattolillo, A.; Incelli, M.; Tosti, S. The coolant purification system in DEMO: Interfaces and requirements. Fusion Eng. Des. 2017, 124, 744–747. [Google Scholar] [CrossRef]
- Federici, C.; Bachmann, C.; Barucca, L.; Biel, W.; Boccaccini, L.; Brown, R.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.; Coleman, M.; et al. DEMO design activity in Europe: Progress and updates. Fusion Eng. Des. 2018, 136, 729–741. [Google Scholar] [CrossRef]
- Available online: https://www.sulzer.com (accessed on 5 December 2022).
- Magomedbekov, E.P.; Belkin, D.Y.; Rastunova, I.L.; Sazonov, A.B.; Selivaneko, I.L.; Kulov, N.N. Water Distillation as a Method of Detritiation of Heavy-Water Moderator. Theor. Found. Chem. Eng. 2017, 51, 384–391. [Google Scholar] [CrossRef]
- Sood, S.; Kveton, O.; Spagnolo, D.; Gierszewski, P. ITER TASK D55: Design of Water Detritiation Plant, CFFTP G-9502; CFFTP: Mississauga, ON, Canada, 1995. [Google Scholar]
- Bhattacharyya, R.; Bhanja, K. Studies on the Dynamic Behaviour and Hydraulic Characteristics of a Water Distillation Column. Chem. Technol. Ind. J. 2018, 13, 125. [Google Scholar]
CANDU Reactor | Demonstrating FPP | ||||
---|---|---|---|---|---|
T Generation Rate | T Concentration in PHTS | T Generation Rate | T Concentration in PHTS | ||
Actual | Trend | JA-DEMO | EU-DEMO | ||
~0.57 g d−1 [18] | 2 Ci kg−1 taken from [8] | <1 Ci kg−1 taken from [17] | ~320 g d−1 [3] | 27 Ci kg−1 taken from [19] | 5 Ci kg−1 taken from [3] |
Target xF | F | Number of CLMs | HCLM | DCLM | Maximum xF | T Inventory | RBL Power | CND Power |
---|---|---|---|---|---|---|---|---|
Ci kg−1 | kg h−1 | -- | m | m | Ci kg−1 | g | MW | MW |
5 | 45 | 1 | 11.55 | 0.96 | 3.1 | 0.825 | 0.613 | 0.616 |
4 | 65 | 1 | 10.25 | 1.16 | 2.7 | 1.161 | 0.884 | 0.889 |
3 | 80 | 1 | 11.77 | 1.29 | 2.1 | 1.43 | 1.09 | 1.1 |
2 | 110 | 1 | 14.17 | 1.51 | 1.5 | 1.975 | 1.5 | 1.51 |
1 | 200 | 2 | 18.64 | 1.45 | 0.9 | 3.529 | 2.75 | 2.78 |
0.5 | 360 | 3 | 30.42 | 1.6 | 0.5 | 6.481 | 5.02 | 5.09 |
Target xF | WD xF Design | F | Storage 1 Feeding | RBLPowerSaving | CNDPowerSaving | Storage 1 Volume | Storage 2 Volume | Storage 1 Max Tritium | Storage 2 Max Tritium |
---|---|---|---|---|---|---|---|---|---|
Ci kg−1 | Ci kg−1 | kg h−1 | kg h−1 | MW | MW | m3 | m3 | g | g |
2 | 5 | 45 | 65 | 0.887 | 0.894 | 605 | 118 | 98 | 6.5 |
2 | 4 | 65 | 45 | 0.616 | 0.621 | 213 | 194 | 35 | 17.4 |
2 | 3 | 80 | 30 | 0.41 | 0.41 | 136 | 135 | 19.3 | 7.4 |
1 | 2 | 110 | 90 | 1.25 | 1.27 | 450 | 300 | 47 | 9 |
0.5 | 2 | 110 | 250 | 3.52 | 3.58 | 3000 | 300 | 160 | 7 |
0.5 | 1 | 200 | 160 | 2.27 | 2.31 | 800 | 550 | 42 | 5.5 |
0.3 | 0.5 | 360 | 214 | -- | -- | 1000 | 1000 | 30 | 1.3 |
0.2 | 0.5 | 360 | 500 | -- | -- | 4500 | 1000 | 95 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narcisi, V.; Quartararo, A.; Moscato, I.; Santucci, A. Analysis of Coolant Purification Strategies for Tritium Control in DEMO Water Primary Coolant. Energies 2023, 16, 617. https://doi.org/10.3390/en16020617
Narcisi V, Quartararo A, Moscato I, Santucci A. Analysis of Coolant Purification Strategies for Tritium Control in DEMO Water Primary Coolant. Energies. 2023; 16(2):617. https://doi.org/10.3390/en16020617
Chicago/Turabian StyleNarcisi, Vincenzo, Andrea Quartararo, Ivo Moscato, and Alessia Santucci. 2023. "Analysis of Coolant Purification Strategies for Tritium Control in DEMO Water Primary Coolant" Energies 16, no. 2: 617. https://doi.org/10.3390/en16020617
APA StyleNarcisi, V., Quartararo, A., Moscato, I., & Santucci, A. (2023). Analysis of Coolant Purification Strategies for Tritium Control in DEMO Water Primary Coolant. Energies, 16(2), 617. https://doi.org/10.3390/en16020617