The Role of Solar Spectral Beam Splitters in Enhancing the Solar-Energy Conversion of Existing PV and PVT Technologies
Abstract
:1. Introduction
2. Luminescent Solar Concentrators
3. Spectral Management of PV Systems
4. LSC Geometries
5. Hybrid Photovoltaic–Thermal Devices
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kılıç Depren, S.; Kartal, M.T.; Çoban Çelikdemir, N.; Depren, Ö. Energy Consumption and Environmental Degradation Nexus: A Systematic Review and Meta-Analysis of Fossil Fuel and Renewable Energy Consumption. Ecol. Inf. 2022, 70, 101747. [Google Scholar] [CrossRef]
- Mutezo, G.; Mulopo, J. A Review of Africa’s Transition from Fossil Fuels to Renewable Energy Using Circular Economy Principles. Renew. Sustain. Energy Rev. 2021, 137, 110609. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Kwakwa, P.A.; Adebayo, T.S. Energy Intensity among European Union Countries: The Role of Renewable Energy, Income and Trade. Int. J. Energy Sect. Manag. 2023, 17, 801–819. [Google Scholar] [CrossRef]
- Carfora, A.; Pansini, R.V.; Scandurra, G. Energy Dependence, Renewable Energy Generation and Import Demand: Are EU Countries Resilient? Renew. Energy 2022, 195, 1262–1274. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- Li, X.; Lepour, D.; Heymann, F.; Maréchal, F. Electrification and Digitalization Effects on Sectoral Energy Demand and Consumption: A Prospective Study towards 2050. Energy 2023, 279, 127992. [Google Scholar] [CrossRef]
- Fotis, P.; Karkalakos, S.; Asteriou, D. The Relationship between Energy Demand and Real GDP Growth Rate: The Role of Price Asymmetries and Spatial Externalities within 34 Countries across the Globe. Energy Econ. 2017, 66, 69–84. [Google Scholar] [CrossRef]
- Yu, Z.; Lanre Ridwan, I.; ur Rehman Irshad, A.; Tanveer, M.; Khan, S.A.R. Investigating the Nexuses between Transportation Infrastructure, Renewable Energy Sources, and Economic Growth: Striving towards Sustainable Development. Ain Shams Eng. J. 2023, 14, 101843. [Google Scholar] [CrossRef]
- Rezaei Sadr, N.; Bahrdo, T.; Taghizadeh, R. Impacts of Paris Agreement, Fossil Fuel Consumption, and Net Energy Imports on CO2 Emissions: A Panel Data Approach for Three West European Countries. Clean Technol Env. Policy 2022, 24, 1521–1534. [Google Scholar] [CrossRef]
- Wimbadi, R.W.; Djalante, R. From Decarbonization to Low Carbon Development and Transition: A Systematic Literature Review of the Conceptualization of Moving toward Net-Zero Carbon Dioxide Emission (1995–2019). J. Clean Prod. 2020, 256, 120307. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon Dioxide (CO2) Emissions and Economic Growth: A Systematic Review of Two Decades of Research from 1995 to 2017. Sci. Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Cibulka, S.; Giljum, S. Towards a Comprehensive Framework of the Relationships between Resource Footprints, Quality of Life, and Economic Development. Sustainability 2020, 12, 4734. [Google Scholar] [CrossRef]
- Maciejczyk, P.; Chen, L.C.; Thurston, G. The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere 2021, 12, 1086. [Google Scholar] [CrossRef]
- Romanello, M.; Di Napoli, C.; Drummond, P.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Arnell, N.; Ayeb-Karlsson, S.; Ford, L.B.; et al. The 2022 Report of the Lancet Countdown on Health and Climate Change: Health at the Mercy of Fossil Fuels. Lancet 2022, 400, 1619–1654. [Google Scholar] [CrossRef]
- Perera, F.; Nadeau, K. Climate Change, Fossil-Fuel Pollution, and Children’s Health. New Engl. J. Med. 2022, 386, 2303–2314. [Google Scholar] [CrossRef]
- Steffen, B. Estimating the Cost of Capital for Renewable Energy Projects. Energy Econ. 2020, 88, 104783. [Google Scholar] [CrossRef]
- Gervais, E.; Shammugam, S.; Friedrich, L.; Schlegl, T. Raw Material Needs for the Large-Scale Deployment of Photovoltaics–Effects of Innovation-Driven Roadmaps on Material Constraints until 2050. Renew. Sustain. Energy Rev. 2021, 137, 110589. [Google Scholar] [CrossRef]
- Ghaleb, B.; Asif, M. Assessment of Solar PV Potential in Commercial Buildings. Renew. Energy 2022, 187, 618–630. [Google Scholar] [CrossRef]
- Pablo-Romero, P.; Pozo-Barajas, R.; Sánchez, J.; García, R.; Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Bosio, A.; Pasini, S.; Romeo, N. The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings 2020, 10, 344. [Google Scholar] [CrossRef]
- Siva Ramkumar, M.; Felshiya Rajakumari, R.; Kannan, N.; Premkumar, R.; Mohanasundaram, S.; Purushotham, S.; Ramya, D.; Rajan, K.; Jerold, S.; Chelladurai, S. Semiconductor Materials for Solar PV Technology and Challenges towards Electrical. Adv. Mater. Sci. Eng. 2022, 2022, 7272489. [Google Scholar] [CrossRef]
- Fazal, M.A.; Rubaiee, S. Progress of PV Cell Technology: Feasibility of Building Materials, Cost, Performance, and Stability. Sol. Energy 2023, 258, 203–219. [Google Scholar] [CrossRef]
- Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Di Carlo, A.; Ducati, C. In Situ Observation of Heat-Induced Degradation of Perovskite Solar Cells. Nature Energy 2016, 1, 15012. [Google Scholar] [CrossRef]
- Kherici, Z.; Kahoul, N.; Cheghib, H.; Younes, M.; Chekal Affari, B. Main Degradation Mechanisms of Silicon Solar Cells in Algerian Desert Climates. Sol. Energy 2021, 224, 279–284. [Google Scholar] [CrossRef]
- Sato, D.; Yamada, N. Review of Photovoltaic Module Cooling Methods and Performance Evaluation of the Radiative Cooling Method. Renew. Sustain. Energy Rev. 2019, 104, 151–166. [Google Scholar] [CrossRef]
- Kumar, K.; Sharma, S.D.; Jain, L.; Al Khaimah, R. Standalone Photovoltaic (PV) Module Outdoor Testing Facility for UAE Climate; CSEM-UAE Innovation Center LLC: Ras Al Khaimah, United Arab Emirates, 2007. [Google Scholar]
- Haidar, Z.A.; Orfi, J.; Kaneesamkandi, Z. Experimental Investigation of Evaporative Cooling for Enhancing Photovoltaic Panels Efficiency. Results Phys. 2018, 11, 690–697. [Google Scholar] [CrossRef]
- Park, N.C.; Oh, W.W.; Kim, D.H. Effect of Temperature and Humidity on the Degradation Rate of Multicrystalline Silicon Photovoltaic Module. Int. J. Photoenergy 2013, 2013, 925280. [Google Scholar] [CrossRef]
- Kaplani, E. Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing. Int. J. Photoenergy 2012, 2012, 396792. [Google Scholar] [CrossRef]
- Kokul, S.R.; Bhowmik, S. Recycling of Crystalline Silicon Photovoltaic Solar Panel Waste to Modified Composite Products. Prog. Rubber Plast. Recycl. Technol. 2021, 37, 327–339. [Google Scholar] [CrossRef]
- Wang, X.; Tian, X.; Chen, X.; Ren, L.; Geng, C. A Review of End-of-Life Crystalline Silicon Solar Photovoltaic Panel Recycling Technology. Sol. Energy Mater. Sol. Cells 2022, 248, 111976. [Google Scholar] [CrossRef]
- Tao, M.; Fthenakis, V.; Ebin, B.; Steenari, B.M.; Butler, E.; Sinha, P.; Corkish, R.; Wambach, K.; Simon, E.S. Major Challenges and Opportunities in Silicon Solar Module Recycling. Prog. Photovolt. Res. Appl. 2020, 28, 1077–1088. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Yu, J.; Xu, C.; Wu, Y.; Pan, D.; Senthil, R.A. An Overview of the Comprehensive Utilization of Silicon-Based Solid Waste Related to PV Industry. Resour. Conserv. Recycl. 2021, 169, 105450. [Google Scholar] [CrossRef]
- Il Kwak, J.; Nam, S.H.; Kim, L.; An, Y.J. Potential Environmental Risk of Solar Cells: Current Knowledge and Future Challenges. J. Hazard Mater. 2020, 392, 122297. [Google Scholar] [CrossRef]
- Venkatachary, S.K.; Samikannu, R.; Murugesan, S.; Dasari, N.R.; Subramaniyam, R.U. Economics and Impact of Recycling Solar Waste Materials on the Environment and Health Care. Env. Technol. Innov. 2020, 20, 101130. [Google Scholar] [CrossRef]
- Klampaftis, E.; Ross, D.; McIntosh, K.R.; Richards, B.S. Enhancing the Performance of Solar Cells via Luminescent Down-Shifting of the Incident Spectrum: A Review. Sol. Energy Mater. Sol. Cells 2009, 93, 1182–1194. [Google Scholar] [CrossRef]
- Richards, B.S.; Howard, I.A. Luminescent Solar Concentrators for Building Integrated Photovoltaics: Opportunities and Challenges. Energy Env. Sci. 2023, 16, 3214–3239. [Google Scholar] [CrossRef]
- Kalluvettukuzhy, N.K.; Maciejczyk, M.R.; Underwood, I.; Robertson, N. Visually Attractive and Efficient Photovoltaics through Luminescent Downshifting. J. Mater. Chem. A Mater. 2023, 11, 13195–13200. [Google Scholar] [CrossRef]
- Debije, M.G.; Verbunt, P.P.C. Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment. Adv. Energy Mater. 2012, 2, 12–35. [Google Scholar] [CrossRef]
- Skouri, S.; Ben Haj Ali, A.; Bouadila, S.; Ben Salah, M.; Ben Nasrallah, S. Design and Construction of Sun Tracking Systems for Solar Parabolic Concentrator Displacement. Renew. Sustain. Energy Rev. 2016, 60, 1419–1429. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.X.; Peng, Y.D. Study on the Optical Performance of Novel Dish Solar Concentrator Formed by Rotating Array of Plane Mirrors with the Same Size. Renew. Energy 2022, 195, 416–430. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhang, Y. Luminescent Solar Concentrators Performing under Different Light Conditions. Sol. Energy 2019, 188, 1248–1255. [Google Scholar] [CrossRef]
- Debije, M.G.; Rajkumar, V.A. Direct versus Indirect Illumination of a Prototype Luminescent Solar Concentrator. Sol. Energy 2015, 122, 334–340. [Google Scholar] [CrossRef]
- Weber, W.H.; Lambe, J. Luminescent Greenhouse Collector for Solar Radiation. Appl. Opt. 1976, 15, 2299–2300. [Google Scholar] [CrossRef] [PubMed]
- Goetzberger, A.; Greube, W. Solar Energy Conversion with Fluorescent Collectors. Appl. Phys. 1977, 14, 123–139. [Google Scholar] [CrossRef]
- Makarov, N.S.; Korus, D.; Freppon, D.; Ramasamy, K.; Houck, D.W.; Velarde, A.; Parameswar, A.; Bergren, M.R.; McDaniel, H. Minimizing Scaling Losses in High-Performance Quantum Dot Luminescent Solar Concentrators for Large-Area Solar Windows. ACS Appl. Mater. Interfaces 2022, 14, 29679–29689. [Google Scholar] [CrossRef] [PubMed]
- Klampaftis, E.; Ross, D.; Kocher-Oberlehner, G.; Richards, B.S. Integration of Color and Graphical Design for Photovoltaic Modules Using Luminescent Materials. IEEE J. Photovolt. 2015, 5, 584–590. [Google Scholar] [CrossRef]
- Aste, N.; Buzzetti, M.; Del Pero, C.; Fusco, R.; Testa, D.; Leonforte, F. Visual Performance of Yellow, Orange and Red LSCs Integrated in a Smart Window. Energy Procedia 2017, 105, 967–972. [Google Scholar] [CrossRef]
- Reinders, A.; Kishore, R.; Slooff, L.; Eggink, W. Luminescent Solar Concentrator Photovoltaic Designs. Jpn. J. Appl. Phys. 2018, 57, 08RD10. [Google Scholar] [CrossRef]
- Mateen, F.; Ahsan Saeed, M.; Won Shim, J.; Hong, S.K. Indoor/Outdoor Light-Harvesting by Coupling Low-Cost Organic Solar Cell with a Luminescent Solar Concentrator. Sol. Energy 2020, 207, 379–387. [Google Scholar] [CrossRef]
- Aghaei, M.; Pelosi, R.; Wong, W.W.H.; Schmidt, T.; Debije, M.G.; Reinders, A.H.M.E. Measured Power Conversion Efficiencies of Bifacial Luminescent Solar Concentrator Photovoltaic Devices of the Mosaic Series. Prog. Photovolt. Res. Appl. 2022, 30, 726–739. [Google Scholar] [CrossRef]
- Smith, D.E.; Hughes, M.D.; Borca-Tasciuc, D.A. Towards a Standard Approach for Annual Energy Production of Concentrator-Based Building-Integrated Photovoltaics. Renew. Energy 2022, 186, 469–485. [Google Scholar] [CrossRef]
- Aste, N.; Buzzetti, M.; Del Pero, C.; Fusco, R.; Leonforte, F.; Testa, D. Triggering a Large Scale Luminescent Solar Concentrators Market: The Smart Window Project. J. Clean. Prod. 2019, 219, 35–45. [Google Scholar] [CrossRef]
- Debije, M.G.; Verbunt, P.P.C.; Nadkarni, P.J.; Velate, S.; Bhaumik, K.; Nedumbamana, S.; Rowan, B.C.; Richards, B.S.; Hoeks, T.L. Promising Fluorescent Dye for Solar Energy Conversion Based on a Perylene Perinone. Appl. Opt. 2011, 50, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Currie, M.J.; Mapel, J.K.; Heidel, T.D.; Goffri, S.; Baldo, M.A. High-Efficiency Organic Solar Concentrators for Photovoltaics. Science 2008, 321, 226–228. [Google Scholar] [CrossRef]
- van Sark, W.G.J.H.M. Luminescent Solar Concentrators—A Low Cost Photovoltaics Alternative. Renew. Energy 2013, 49, 207–210. [Google Scholar] [CrossRef]
- Griffini, G.; Levi, M.; Turri, S. Thin-Film Luminescent Solar Concentrators: A Device Study towards Rational Design. Renew. Energy 2015, 78, 288–294. [Google Scholar] [CrossRef]
- Vishwanathan, B.; Reinders, A.H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A.J.M.; Zahn, F.H.; Debije, M.G. A Comparison of Performance of Flat and Bent Photovoltaic Luminescent Solar Concentrators. Sol. Energy 2015, 112, 120–127. [Google Scholar] [CrossRef]
- Van Der Burgt, J.S.; Needell, D.R.; Veeken, T.; Polman, A.; Garnett, E.C.; Atwater, H.A. Unlocking Higher Power Efficiencies in Luminescent Solar Concentrators through Anisotropic Luminophore Emission. ACS Appl. Mater. Interfaces 2021, 13, 40742–40753. [Google Scholar] [CrossRef]
- Warner, T.; Ghiggino, K.P.; Rosengarten, G. A Critical Analysis of Luminescent Solar Concentrator Terminology and Efficiency Results. Sol. Energy 2022, 246, 119–140. [Google Scholar] [CrossRef]
- Rafiee, M.; Chandra, S.; Ahmed, H.; McCormack, S.J. An Overview of Various Configurations of Luminescent Solar Concentrators for Photovoltaic Applications. Opt. Mater. 2019, 91, 212–227. [Google Scholar] [CrossRef]
- Barik, P.; Pradhan, M. Plasmonic Luminescent Solar Concentrator. Sol. Energy 2021, 216, 61–74. [Google Scholar] [CrossRef]
- Cojocaru, L.; Uchida, S.; Tamaki, K.; Jayaweera, P.V.V.; Kaneko, S.; Nakazaki, J.; Kubo, T.; Segawa, H. Determination of Unique Power Conversion Efficiency of Solar Cell Showing Hysteresis in the I-V Curve under Various Light Intensities. Sci. Rep. 2017, 7, 11790. [Google Scholar] [CrossRef] [PubMed]
- Batchelder, J.S.; Zewai, A.H.; Cole, T. Luminescent Solar Concentrators. 1: Theory of Operation and Techniques for Performance Evaluation. Appl. Opt. 1979, 18, 3090. [Google Scholar] [CrossRef] [PubMed]
- Heidler, K. Efficiency and Concentration Ratio Measurements of Fluorescent Solar Concentrators Using a Xenon Measurement System. Appl. Opt. 1981, 20, 773. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.R.L.; Drake, J.M.; Lesiecki, M.L.; Sansregret, J. Organic Dyes in PMMA in a Planar Luminescent Solar Collector: A Performance Evaluation. Appl. Opt. 1982, 21, 2945–2952. [Google Scholar] [CrossRef]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent Solar Concentrators for Building-Integrated Photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Nie, Y.; He, W.; Liu, X.; Hu, Z.; Yu, H.; Liu, H. Smart Luminescent Solar Concentrator as a BICPV Window. Build Simul. 2022, 15, 1789–1798. [Google Scholar] [CrossRef]
- Vossen, F.M.; Aarts, M.P.J.; Debije, M.G. Visual Performance of Red Luminescent Solar Concentrating Windows in an Office Environment. Energy Build. 2016, 113, 123–132. [Google Scholar] [CrossRef]
- Lin, Y.; Firdaus, Y.; Insan Nugraha, M.; Liu, F.; Karuthedath, S.; Emwas, A.-H.; Zhang, W.; Seitkhan, A.; Neophytou, M.; Faber, H.; et al. 17.1% Efficient Single-Junction Organic Solar Cells Enabled by n-Type Doping of the Bulk-Heterojunction. Adv. Sci. 2020, 7, 1903419. [Google Scholar] [CrossRef]
- Nassiri Nazif, K.; Kumar, A.; Hong, J.; Lee, N.; Islam, R.; McClellan, C.J.; Karni, O.; Van De Groep, J.; Heinz, T.F.; Pop, E.; et al. High-Performance p-n Junction Transition Metal Dichalcogenide Photovoltaic Cells Enabled by MoOxDoping and Passivation. Nano Lett. 2021, 21, 3443–3450. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Zhu, Z.; Chueh, C.C.; Jen, A.K.Y. Designs from Single Junctions, Heterojunctions to Multijunctions for High-Performance Perovskite Solar Cells. Chem. Soc. Rev. 2021, 50, 13090–13128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, X.; Wang, H.; Cheng, M.; Zhao, J.; Sun, L. Structure Engineering of Hole-Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste as Cathode. ACS Appl. Mater. Interfaces 2014, 6, 16140–16146. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Pellet, N.; Zakeeruddin, S.M.; Dar, M.I.; Grätzel, M. A Fully Printable Hole-Transporter-Free Semi-Transparent Perovskite Solar Cell. Eur. J. Inorg. Chem. 2021, 2021, 3752–3760. [Google Scholar] [CrossRef]
- Walshe, J.; Carron, P.M.; McCormack, S.; Doran, J.; Amarandei, G. Organic Luminescent Down-Shifting Liquid Beam Splitters for Hybrid Photovoltaic-Thermal (PVT) Applications. Sol. Energy Mater. Sol. Cells 2021, 219, 110818. [Google Scholar] [CrossRef]
- Alonso-Álvarez, D.; Ross, D.; Richards, B.S. Luminescent Down-Shifting for CdTe Solar Cells: A Review of Dyes and Simulation of Performance. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 9–14. [Google Scholar] [CrossRef]
- Glenn, A.; McLoughlin, C.; Ahmed, H.; Akbari, H.; Chandra, S.; McCormack, S. The Viability of Organic Dyes in Luminescent Down-Shifting Layers for the Enhancement of Si Solar Cell Efficiency. Mater. Sci. Forum 2020, 995, 71–76. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Zeng, J.; Chen, J.; Chen, H. Enhance Short-Wavelength Response of CIGS Solar Cell by CdSe Quantum Disks as Luminescent down-Shifting Material. Sol. Energy 2019, 193, 303–308. [Google Scholar] [CrossRef]
- Ayala Barragan, M.F.; Chandra, S.; Cass, B.; McCormack, S.J. Defining Critical Parameters in a Luminescent Downshifting Layer for PV Enhancement. In Sustainable Energy Development and Innovation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 865–870. [Google Scholar] [CrossRef]
- Sekar, S.; Venkataprasad Bhat, S. BCNO Silica Gel-Based Green Transparent and Efficient Luminescent Downshifting Layer for Si Solar Cells. Sustain. Energy Fuels 2021, 5, 2046–2054. [Google Scholar] [CrossRef]
- Alexandre, M.; Chapa, M.; Haque, S.; Mendes, M.J.; Águas, H.; Fortunato, E.; Martins, R. Optimum Luminescent Down-Shifting Properties for High Efficiency and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 2930–2938. [Google Scholar] [CrossRef]
- Golesorkhi, B.; Nozary, H.; Fürstenberg, A.; Piguet, C. Erbium Complexes as Pioneers for Implementing Linear Light-Upconversion in Molecules. Mater. Horiz. 2020, 7, 1279–1296. [Google Scholar] [CrossRef]
- McKenna, B.; Evans, R.C. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices. Adv. Mater. 2017, 29, 1606491. [Google Scholar] [CrossRef]
- Ahmed, H.; Sethi, A.; Doran, J.; Mccormack, S.J. Plasmonic Interaction in Enhanced Luminescent Down-Shifting Layers for Photovoltaic Devices. In Plasmonics: Advances in Research and Applications; Nova Science Publishers: Hauppauge, NY, USA, 2017. [Google Scholar]
- Khan, F.; Kim, J.H. N-Functionalized Graphene Quantum Dots with Ultrahigh Quantum Yield and Large Stokes Shift: Efficient Downconverters for CIGS Solar Cells. ACS Photonics 2018, 5, 4637–4643. [Google Scholar] [CrossRef]
- Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing Solar Cell Efficiency: The Search for Luminescent Materials as Spectral Converters. Chem. Soc. Rev. 2012, 42, 173–201. [Google Scholar] [CrossRef] [PubMed]
- Sanguineti, A.; Sassi, M.; Turrisi, R.; Ruffo, R.; Vaccaro, G.; Meinardi, F.; Beverina, L. High Stokes Shift Perylene Dyes for Luminescent Solar Concentrators. Chem. Commun. 2013, 49, 1618–1620. [Google Scholar] [CrossRef]
- Guesmi, H.; Aissat, A.; Safi, M.; Berbezier, I. Efficiency Improvement of GaAs Quantum Dot in GaAs1-XPx Matrix for Solar Cell Applications. Microelectron. J. 2020, 99, 104738. [Google Scholar] [CrossRef]
- Sadeghi, S.; Bahmani Jalali, H.; Srivastava, S.B.; Melikov, R.; Baylam, I.; Sennaroglu, A.; Nizamoglu, S. High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. iScience 2020, 23, 101272. [Google Scholar] [CrossRef]
- Cappelluti, F.; Gioannini, M.; Khalili, A. Impact of Doping on InAs/GaAs Quantum-Dot Solar Cells: A Numerical Study on Photovoltaic and Photoluminescence Behavior. Sol. Energy Mater. Sol. Cells 2016, 157, 209–220. [Google Scholar] [CrossRef]
- Griffini, G.; Brambilla, L.; Levi, M.; Del Zoppo, M.; Turri, S. Photo-Degradation of a Perylene-Based Organic Luminescent Solar Concentrator: Molecular Aspects and Device Implications. Sol. Energy Mater. Sol. Cells 2013, 111, 41–48. [Google Scholar] [CrossRef]
- Essahili, O.; Ouafi, M.; Moudam, O. Recent Progress in Organic Luminescent Solar Concentrators for Agrivoltaics: Opportunities for Rare-Earth Complexes. Sol. Energy 2022, 245, 58–66. [Google Scholar] [CrossRef]
- Li, B.; Tian, F.; Cui, X.; Xiang, B.; Zhao, H.; Zhang, H.; Wang, D.; Li, J.; Wang, X.; Fang, X.; et al. Review for Rare-Earth-Modified Perovskite Materials and Optoelectronic Applications. Nanomaterials 2022, 12, 1773. [Google Scholar] [CrossRef]
- Kataria, V.; Mehta, D.S. Multispectral Harvesting Rare-Earth Oxysulphide Based Highly Efficient Transparent Luminescent Solar Concentrator. J. Rare Earths 2022, 40, 41–48. [Google Scholar] [CrossRef]
- Cardoso, M.A.; Correia, S.F.H.; Frias, A.R.; Gonçalves, H.M.R.; Pereira, R.F.P.; Nunes, S.C.; Armand, M.; André, P.S.; de Zea Bermudez, V.; Ferreira, R.A.S. Solar Spectral Conversion Based on Plastic Films of Lanthanide-Doped Ionosilicas for Photovoltaics: Down-Shifting Layers and Luminescent Solar Concentrators. J. Rare Earths 2020, 38, 531–538. [Google Scholar] [CrossRef]
- Cai, T.; Wang, J.; Li, W.; Hills-Kimball, K.; Yang, H.; Nagaoka, Y.; Yuan, Y.; Zia, R.; Chen, O.; Cai, T.; et al. Mn2+/Yb3+ Codoped CsPbCl3 Perovskite Nanocrystals with Triple-Wavelength Emission for Luminescent Solar Concentrators. Adv. Sci. 2020, 7, 2001317. [Google Scholar] [CrossRef]
- Darwish, A.M.; Sarkisov, S.S.; Patel, D.N.; Mele, P.; Latronico, G.; Wilson, S.; Cho, K.; Giri, A.; Koplitz, B.; Hui, D. Nanocolloid Simulators of Luminescent Solar Concentrator Photovoltaic Windows. Nanotechnol. Rev. 2022, 11, 1167–1180. [Google Scholar]
- Kataria, V.; Mehta, D.S. Shape Engineered Y2O3: Eu3+ Nanodots for Stokes Shifting High-Efficiency PMMA Based Transparent Luminescent Solar Concentrator. J. Lumin. 2022, 248, 118955. [Google Scholar] [CrossRef]
- Alonso-Álvarez, D.; Ross, D.; Klampaftis, E.; McIntosh, K.R.; Jia, S.; Storiz, P.; Stolz, T.; Richards, B.S. Luminescent Down-Shifting Experiment and Modelling with Multiple Photovoltaic Technologies. Prog. Photovolt. Res. Appl. 2015, 23, 479–497. [Google Scholar] [CrossRef]
- Rothemund, R. Optical Modelling of the External Quantum Efficiency of Solar Cells with Luminescent Down-Shifting Layers. Sol. Energy Mater. Sol. Cells 2014, 120, 616–621. [Google Scholar] [CrossRef]
- Volpi, G.; Galliano, S.; Buscaino, R.; Viscardi, G.; Barolo, C. Fluorescent Trifluoromethylated Imidazo[1,5-a]Pyridines and Their Application in Luminescent down-Shifting Conversion. J. Lumin. 2022, 242, 118529. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, G.Y.; Kim, B.; Kim, M.K.; Kim, C.; Park, S.Y.; Yoon, H.C.; Kim, W.; Min, B.K.; Do, Y.R. RGB-Colored Cu(In,Ga)(S,Se) 2 Thin-Film Solar Cells with Minimal Efficiency Loss Using Narrow-Bandwidth Stopband Nano-Multilayered Filters. ACS Appl. Mater. Interfaces 2019, 11, 9994–10003. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Z.; Masuda, T.; Kudo, Y.; Guo, L.J. Vivid-Colored Silicon Solar Panels with High Efficiency and Non-Iridescent Appearance. Nanoscale Horiz. 2019, 4, 874–880. [Google Scholar] [CrossRef]
- Kinderman, R.; Slooff, L.H.; Burgers, A.R.; Bakker, N.J.; Büchtemann, A.; Danz, R.; Van Roosmalen, J.A.M. I-V Performance and Stability Study of Dyes for Luminescent Plate Concentrators. J. Sol. Energy Eng. 2007, 129, 277–282. [Google Scholar] [CrossRef]
- Menéndez-Velázquez, A.; Torres-García, S.; García-Delgado, A.B.; Morales, D.; Medina-Alayón, M.; Acosta-Mora, P.; del-Castillo, J.; Esparza, P.; Borges, M.E.; Yanes, A.C.; et al. Towards a Luminescent Solar Concentrator with Ultra-Broadband Absorption and Spectral Conversion for Optimizing Photovoltaic Solar Cell Response: “The Photonic Cannon Shot”. Opt. Mater. 2023, 142, 114005. [Google Scholar] [CrossRef]
- Carbone, I.A.; Frawley, K.R.; McCann, M.K. Flexible, Front-Facing Luminescent Solar Concentrators Fabricated from Lumogen f Red 305 and Polydimethylsiloxane. Int. J. Photoenergy 2019, 2019, 8680931. [Google Scholar] [CrossRef]
- De Bruin, T.A.; Terricabres-Polo, R.; Kaul, A.; Zawacka, N.K.; Prins, P.T.; Gietema, T.F.J.; de Waal, A.C.; de Boer, D.K.G.; Vanmaekelbergh, D.A.M.; Leblans, P.; et al. Analysis of the 1 Year Outdoor Performance of Quantum Dot Luminescent Solar Concentrators. Sol. RRL 2023, 7, 2201121. [Google Scholar] [CrossRef]
- Jo, K.; Lee, S.; Choi, G.S.; Woo, B.H.; Jun, Y.C.; eun Song, H.; Jeon, T.Y.; Lee, H.H.; Kim, H.J. Soft Luminescent Solar Concentrator Film with Organic Dye and Rubbery Matrix. J. Polym. Sci. 2021, 59, 59–69. [Google Scholar] [CrossRef]
- Delgado-Sanchez, J.M. Luminescent Solar Concentrators: Photo-Stability Analysis and Long-Term Perspectives. Sol. Energy Mater. Sol. Cells 2019, 202, 110134. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Taylor, A.; Kenyon, A.J.; Tummeltshammer, C. Flexible and Fluorophore-Doped Luminescent Solar Concentrators Based on Polydimethylsiloxane. Opt. Lett. 2016, 41, 713–716. [Google Scholar] [CrossRef]
- Castelletto, S.; Boretti, A. Luminescence Solar Concentrators: A Technology Update. Nano Energy 2023, 109, 108269. [Google Scholar] [CrossRef]
- Walshe, J.; Girtan, M.; McCormack, S.; Doran, J.; Amarandei, G. Combined Experimental and Modeling Analysis for the Development of Optical Materials Suitable to Enhance the Implementation of Plasmonic-Enhanced Luminescent Down-Shifting Solutions on Existing Silicon-Based Photovoltaic Devices. ACS Appl. Electron. Mater. 2021, 3, 2512–2525. [Google Scholar] [CrossRef]
- Iasilli, G.; Francischello, R.; Lova, P.; Silvano, S.; Surace, A.; Pesce, G.; Alloisio, M.; Patrini, M.; Shimizu, M.; Comoretto, D.; et al. Luminescent Solar Concentrators: Boosted Optical Efficiency by Polymer Dielectric Mirrors. Mater. Chem. Front. 2019, 3, 429–436. [Google Scholar] [CrossRef]
- Goldschmidt, J.C.; Peters, M.; Bösch, A.; Helmers, H.; Dimroth, F.; Glunz, S.W.; Willeke, G. Increasing the Efficiency of Fluorescent Concentrator Systems. Sol. Energy Mater. Sol. Cells 2009, 93, 176–182. [Google Scholar] [CrossRef]
- Sethi, A.; Chandra, S.; Ahmed, H.; McCormack, S. Broadband Plasmonic Coupling and Enhanced Power Conversion Efficiency in Luminescent Solar Concentrator. Sol. Energy Mater. Sol. Cells 2019, 203, 110150. [Google Scholar] [CrossRef]
- El-Molla, S.; Mansour, A.F.; Hammad, A.E. Enhancement of Fluorescence and Photostability Based on Interaction of Fluorescent Dyes with Silver Nanoparticles for Luminescent Solar Concentrators. J. Nanomater. 2017, 2017, 9701251. [Google Scholar] [CrossRef]
- Hübner, K.; Joshi, H.; Aksimentiev, A.; Stefani, F.D.; Tinnefeld, P.; Acuna, G.P. Determining the In-Plane Orientation and Binding Mode of Single Fluorescent Dyes in DNA Origami Structures. ACS Nano 2021, 15, 5109–5117. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Su, G.; Deng, Z.; Zhou, X. Size-Dependent Photoluminescence of PbS QDs Embedded in Silicate Glasses. Opt. Mater. Express 2017, 7, 2194–2207. [Google Scholar] [CrossRef]
- Li, C.; Chen, W.; Wu, D.; Quan, D.; Zhou, Z.; Hao, J.; Qin, J.; Li, Y.; He, Z.; Wang, K. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots. Sci. Rep. 2015, 5, 17777. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli Dastjerdi, H.; Prochowic, D.; Yadav, P.; Tavakoli, M.M. Luminescence Down-Shifting Enables UV-Stable and Efficient ZnO Nanowire-Based PbS Quantum Dot Solar Cells with JSC Exceeding 33 MA Cm−2. Sustain. Energy Fuels 2019, 3, 3128–3134. [Google Scholar] [CrossRef]
- Shi, X.; Chen, S.; Luo, M.Y.; Huang, B.; Zhang, G.; Cui, R.; Zhang, M. Zn-Doping Enhances the Photoluminescence and Stability of PbS Quantum Dots for in Vivo High-Resolution Imaging in the NIR-II Window. Nano Res. 2020, 13, 2239–2245. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A. Recent Developments of Solar Cells from PbS Colloidal Quantum Dots. Appl. Sci. 2020, 10, 1743. [Google Scholar] [CrossRef]
- Inman, R.H.; Shcherbatyuk, G.V.; Medvedko, D.; Gopinathan, A.; Ghosh, S.; Weber, W.H.; Lambe, J.; Barnham, K.; Marques, J.L.; Hassard, J.; et al. Cylindrical Luminescent Solar Concentrators with Near-Infrared Quantum Dots. Opt. Express 2011, 19, 24308–24313. [Google Scholar] [CrossRef]
- Granchak, V.M.; Sakhno, T.V.; Kuchmy, S.Y. Light-Emitting Materials—Active Components of Luminescent Solar Concentrators. Theor. Exp. Chem. 2014, 50, 1–20. [Google Scholar] [CrossRef]
- Shcherbatyuk, G.V.; Inman, R.H.; Wang, C.; Winston, R.; Ghosh, S. Viability of Using near Infrared PbS Quantum Dots as Active Materials in Luminescent Solar Concentrators. Appl. Phys. Lett. 2010, 96, 191901. [Google Scholar] [CrossRef]
- Li, Y.; Miao, P.; Zhou, W.; Gong, X.; Zhao, X. N-Doped Carbon-Dots for Luminescent Solar Concentrators. J. Mater. Chem. A Mater. 2017, 5, 21452–21459. [Google Scholar] [CrossRef]
- Meinardi, F.; Ehrenberg, S.; Dhamo, L.; Carulli, F.; Mauri, M.; Bruni, F.; Simonutti, R.; Kortshagen, U.; Brovelli, S. Highly Efficient Luminescent Solar Concentrators Based on Earth-Abundant Indirect-Bandgap Silicon Quantum Dots. Nat. Photonics 2017, 11, 177–185. [Google Scholar] [CrossRef]
- Byambasuren, N.; Hong, A.R.; Lee, W.Y.; Byun, J.Y.; Kang, G.; Ko, H.; Jang, H.S. Environmentally Friendly, Highly Efficient, and Large Stokes Shift-Emitting ZnSe:Mn2+/ZnS Core/Shell Quantum Dots for Luminescent Solar Concentrators. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, G.; You, S.; Camargo, F.V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; et al. Gram-Scale Synthesis of Carbon Quantum Dots with a Large Stokes Shift for the Fabrication of Eco-Friendly and High-Efficiency Luminescent Solar Concentrators. Energy Env. Sci. 2021, 14, 396–406. [Google Scholar] [CrossRef]
- Huang, G.; Xu, J.; Markides, C.N. High-Efficiency Bio-Inspired Hybrid Multi-Generation Photovoltaic Leaf. Nat. Commun. 2023, 14, 1–10. [Google Scholar] [CrossRef]
- Chen, B.-M.; Fu, H.-Y.; Ying, S.-P.; Hsu, T.; Belen, A.; Garcia, M.; Chen, B.-M.; Fu, H.-Y.; Ying, S.-P.; Hsu, T.-W. Performance of Luminescent Solar Concentrators Integrated with Negative Replica Layers of Leaf Surface Microstructures. Materials 2022, 15, 2353. [Google Scholar] [CrossRef]
- McIntosh, K.R.; Yamada, N.; Richards, B.S. Theoretical Comparison of Cylindrical and Square-Planar Luminescent Solar Concentrators. Appl. Phys. B 2007, 88, 285–290. [Google Scholar] [CrossRef]
- Wang, T.; Yu, B.; Chen, B.; Hu, Z.; Luo, Y.; Zou, G.; Zhang, Q. A Theoretical Model of a Cylindrical Luminescent Solar Concentrator with a Dye-Doping Coating. J. Opt. 2013, 15, 055709. [Google Scholar] [CrossRef]
- Wang, C.; Abdul-Rahman, H.; Rao, S.P. A New Design of Luminescent Solar Concentrator and Its Trial Run. Int. J. Energy Res. 2010, 34, 1372–1385. [Google Scholar] [CrossRef]
- Banaei, E.H.; Abouraddy, A.F. Design of a Polymer Optical Fiber Luminescent Solar Concentrator. Prog. Photovolt. Res. Appl. 2015, 23, 403–416. [Google Scholar] [CrossRef]
- Mateen, F.; Oh, H.; Kang, J.G.; Lee, S.Y.; Hong, S.K. Improvement in the Performance of Luminescent Solar Concentrator Using Array of Cylindrical Optical Fibers. Renew. Energy 2019, 138, 691–696. [Google Scholar] [CrossRef]
- Jakubowski, K.; Huang, C.S.; Gooneie, A.; Boesel, L.F.; Heuberger, M.; Hufenus, R. Luminescent Solar Concentrators Based on Melt-Spun Polymer Optical Fibers. Mater. Des. 2020, 189, 108518. [Google Scholar] [CrossRef]
- Gajic, M.; Lisi, F.; Kirkwood, N.; Smith, T.A.; Mulvaney, P.; Rosengarten, G. Circular Luminescent Solar Concentrators. Sol. Energy 2017, 150, 30–37. [Google Scholar] [CrossRef]
- Schoeneberger, C.A.; McMillan, C.A.; Kurup, P.; Akar, S.; Margolis, R.; Masanet, E. Solar for Industrial Process Heat: A Review of Technologies, Analysis Approaches, and Potential Applications in the United States. Energy 2020, 206, 118083. [Google Scholar] [CrossRef]
- Ehsan, A.; Preece, R. Quantifying the Impacts of Heat Decarbonisation Pathways on the Future Electricity and Gas Demand. Energy 2022, 254, 124229. [Google Scholar] [CrossRef]
- Victoria, M.; Zhu, K.; Brown, T.; Andresen, G.B.; Greiner, M. Early Decarbonisation of the European Energy System Pays Off. Nat. Commun. 2020, 11, 6223. [Google Scholar] [CrossRef]
- Lowes, R.; Rosenow, J.; Qadrdan, M.; Wu, J. Hot Stuff: Research and Policy Principles for Heat Decarbonisation through Smart Electrification. Energy Res. Soc. Sci. 2020, 70, 101735. [Google Scholar] [CrossRef]
- Buffa, S.; Cozzini, M.; D’Antoni, M.; Baratieri, M.; Fedrizzi, R. 5th Generation District Heating and Cooling Systems: A Review of Existing Cases in Europe. Renew. Sustain. Energy Rev. 2019, 104, 504–522. [Google Scholar] [CrossRef]
- Mäki, E.; Kannari, L.; Hannula, I.; Shemeikka, J. Decarbonization of a District Heating System with a Combination of Solar Heat and Bioenergy: A Techno-Economic Case Study in the Northern European Context. Renew. Energy 2021, 175, 1174–1199. [Google Scholar] [CrossRef]
- Holzleitner, M.; Moser, S.; Puschnigg, S. Evaluation of the Impact of the New Renewable Energy Directive 2018/2001 on Third-Party Access to District Heating Networks to Enforce the Feed-in of Industrial Waste Heat. Util. Policy 2020, 66, 101088. [Google Scholar] [CrossRef]
- Alvarez, A.; Cabeza, O.; Muñiz, M.C.; Varela, L.M. Experimental and Numerical Investigation of a Flat-Plate Solar Collector. Energy 2010, 35, 3707–3716. [Google Scholar] [CrossRef]
- Hashim, W.M.; Shomran, A.T.; Jurmut, H.A.; Gaaz, T.S.; Kadhum, A.A.H.; Al-Amiery, A.A. Case Study on Solar Water Heating for Flat Plate Collector. Case Stud. Therm. Eng. 2018, 12, 666–671. [Google Scholar] [CrossRef]
- Alawi, O.A.; Kamar, H.M.; Mallah, A.R.; Mohammed, H.A.; Kazi, S.N.; Che Sidik, N.A.; Najafi, G. Nanofluids for Flat Plate Solar Collectors: Fundamentals and Applications. J. Clean Prod. 2021, 291, 125725. [Google Scholar] [CrossRef]
- Algarni, S.; Mellouli, S.; Alqahtani, T.; Almutairi, K.; khan, A.; Anqi, A. Experimental Investigation of an Evacuated Tube Solar Collector Incorporating Nano-Enhanced PCM as a Thermal Booster. Appl. Therm. Eng. 2020, 180, 115831. [Google Scholar] [CrossRef]
- Olfian, H.; Mousavi Ajarostaghi, S.S.; Ebrahimnataj, M.; Farhadi, M.; Arıcı, M. On the Thermal Performance of Evacuated Tube Solar Collector Integrated with Phase Change Material. Sustain. Energy Technol. Assess. 2022, 53, 102437. [Google Scholar] [CrossRef]
- Abid, M.; Khan, M.S.; Ratlamwala, T.A.H.; Malik, M.N.; Ali, H.M.; Cheok, Q. Thermodynamic Analysis and Comparison of Different Absorption Cycles Driven by Evacuated Tube Solar Collector Utilizing Hybrid Nanofluids. Energy Convers. Manag. 2021, 246, 114673. [Google Scholar] [CrossRef]
- Vishnu, S.K.; Senthil, R. Experimental Performance Evaluation of a Solar Parabolic Dish Collector Using Spiral Flow Path Receiver. Appl. Therm. Eng. 2023, 231, 120979. [Google Scholar] [CrossRef]
- Vengadesan, E.; Gurusamy, P.; Senthil, R. Thermal Performance Analysis of Flat Surface Solar Receiver with Square Tubular Fins for a Parabolic Dish Collector. Renew. Energy 2023, 216, 119048. [Google Scholar] [CrossRef]
- Sopian, K.; Al-Waeli, A.H.A.; Kazem, H.A. Energy, Exergy and Efficiency of Four Photovoltaic Thermal Collectors with Different Energy Storage Material. J. Energy Storage 2020, 29, 101245. [Google Scholar] [CrossRef]
- Naghdbishi, A.; Yazdi, M.E.; Akbari, G. Experimental Investigation of the Effect of Multi-Wall Carbon Nanotube—Water/Glycol Based Nanofluids on a PVT System Integrated with PCM-Covered Collector. Appl. Therm. Eng. 2020, 178, 115556. [Google Scholar] [CrossRef]
- Huang, J.; Han, X.; Zhao, X.; Meng, C. Facile Preparation of Core-Shell Ag@SiO2 Nanoparticles and Their Application in Spectrally Splitting PV/T Systems. Energy 2021, 215, 119111. [Google Scholar] [CrossRef]
- Yazdanifard, F.; Ameri, M.; Taylor, R.A. Numerical Modeling of a Concentrated Photovoltaic/Thermal System Which Utilizes a PCM and Nanofluid Spectral Splitting. Energy Convers. Manag. 2020, 215, 112927. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Saidur, R.; Al-Sulaiman, F.A. Investigation of the Performance of a Hybrid PV/Thermal System Using Water/Silver Nanofluid-Based Optical Filter. Energy 2021, 215, 119172. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Wang, Q.; Alelyani, S.M.; Qu, J. Investigation of CoSO4-Based Ag Nanofluids as Spectral Beam Splitters for Hybrid PV/T Applications. Sol. Energy 2019, 177, 387–394. [Google Scholar] [CrossRef]
- Huaxu, L.; Fuqiang, W.; Dong, Z.; Ziming, C.; Chuanxin, Z.; Bo, L.; Huijin, X. Experimental Investigation of Cost-Effective ZnO Nanofluid Based Spectral Splitting CPV/T System. Energy 2020, 194, 116913. [Google Scholar] [CrossRef]
- Huang, G.; Wang, K.; Curt, S.R.; Franchetti, B.; Pesmazoglou, I.; Markides, C.N. On the Performance of Concentrating Fluid-Based Spectral-Splitting Hybrid PV-Thermal (PV-T) Solar Collectors. Renew. Energy 2021, 174, 590–605. [Google Scholar] [CrossRef]
- Joshi, S.S.; Dhoble, A.S. Experimental Investigation of Solar Photovoltaic Thermal System Using Water, Coconut Oil and Silicone Oil as Spectrum Filters. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 3227–3236. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, D.; Zhang, B.; Yao, P.; Wang, Z. SiNx/Cu Spectral Beam Splitting Films for Hybrid Photovoltaic and Concentrating Solar Thermal Systems. ACS Omega 2021, 6, 21709–21718. [Google Scholar] [CrossRef]
- Irshad, M.S.; Arshad, N.; Wang, X. Revival of Functional Nanofluid Photothermal Materials for Solar Still Applications. In Nanotechnology Applications for Solar Energy Systems; Wiley: Hoboken, NJ, USA, 2023; pp. 381–402. [Google Scholar] [CrossRef]
- Walshe, J.; Doran, J.; Amarandei, G. Evaluation of the Potential of Nanofluids Containing Different Ag Nanoparticle Size Distributions for Enhanced Solar Energy Conversion in Hybrid Photovoltaic-Thermal (PVT) Applications. Nano Express 2022, 3, 015001. [Google Scholar] [CrossRef]
- Coldrick, K.; Walshe, J.; Doran, J.; Amarandei, G. Evaluation of the Photon Contributions to the Solar Energy Conversion for Organic Luminescent Down-Shifting Liquid Beam Splitters in Hybrid Photovoltaic-Thermal (PVT) Applications Using Raytracing Monte Carlo Simulations. Sol. Energy Mater. Sol. Cells 2023, 254, 112201. [Google Scholar] [CrossRef]
- Wang, G.; Yao, Y.; Chen, Z.; Hu, P. Thermodynamic and Optical Analyses of a Hybrid Solar CPV/T System with High Solar Concentrating Uniformity Based on Spectral Beam Splitting Technology. Energy 2019, 166, 256–266. [Google Scholar] [CrossRef]
- Ni, J.; Li, J.; An, W.; Zhu, T. Performance Analysis of Nanofluid-Based Spectral Splitting PV/T System in Combined Heating and Power Application. Appl. Therm. Eng. 2018, 129, 1160–1170. [Google Scholar] [CrossRef]
- Liang, H.; Wang, F.; Yang, L.; Cheng, Z.; Shuai, Y.; Tan, H. Progress in Full Spectrum Solar Energy Utilization by Spectral Beam Splitting Hybrid PV/T System. Renew. Sustain. Energy Rev. 2021, 141, 110785. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, Z.; Shi, Y.; Yu, X.; Yang, B. Size Optimization of Nanoparticle and Stability Analysis of Nanofluids for Spectral Beam Splitting Hybrid PV/T System. Mater. Res. Bull. 2023, 162, 112184. [Google Scholar] [CrossRef]
- Lu, K.; Yu, Q.; Zhao, B.; Pei, G. Performance Analysis of a Novel PV/T Hybrid System Based on Spectral Beam Splitting. Renew. Energy 2023, 207, 398–406. [Google Scholar] [CrossRef]
- Coldrick, K.; Walshe, J.; McCormack, S.; Doran, J.; Amarandei, G. Experimental and Theoretical Evaluation of a Commercial Luminescent Dye for PVT Systems. Energies 2023, 16, 6294. [Google Scholar] [CrossRef]
- Hossain, F.; Karim, M.R.; Bhuiyan, A.A. A Review on Recent Advancements of the Usage of Nano Fluid in Hybrid Photovoltaic/Thermal (PV/T) Solar Systems. Renew. Energy 2022, 188, 114–131. [Google Scholar] [CrossRef]
- Fudholi, A.; Sopian, K.; Yazdi, M.H.; Ruslan, M.H.; Ibrahim, A.; Kazem, H.A. Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors. Energy Convers. Manag. 2014, 78, 641–651. [Google Scholar] [CrossRef]
- Huang, G.; Wang, K.; Markides, C.N. Efficiency Limits of Concentrating Spectral-Splitting Hybrid Photovoltaic-Thermal (PV-T) Solar Collectors and Systems. Light Sci. Appl. 2021, 10, 28. [Google Scholar] [CrossRef]
- Crisostomo, F.; Taylor, R.A.; Surjadi, D.; Mojiri, A.; Rosengarten, G.; Hawkes, E.R. Spectral Splitting Strategy and Optical Model for the Development of a Concentrating Hybrid PV/T Collector. Appl. Energy 2015, 141, 238–246. [Google Scholar] [CrossRef]
- Hashemian, M.; Jafarmadar, S.; Khalilarya, S.; Faraji, M. Energy Harvesting Feasibility from Photovoltaic/Thermal (PV/T) Hybrid System with Ag/Cr2O3-Glycerol Nanofluid Optical Filter. Renew. Energy 2022, 198, 426–439. [Google Scholar] [CrossRef]
- Hassani, S.; Taylor, R.A.; Mekhilef, S.; Saidur, R. A Cascade Nanofluid-Based PV/T System with Optimized Optical and Thermal Properties. Energy 2016, 112, 963–975. [Google Scholar] [CrossRef]
- Zhao, X.; Han, X.; Yao, Y.; Huang, J. Stability Investigation of Propylene Glycol-Based Ag@SiO2 Nanofluids and Their Performance in Spectral Splitting Photovoltaic/Thermal Systems. Energy 2022, 238, 122040. [Google Scholar] [CrossRef]
- Walshe, J.; Carron, P.M.; McLoughlin, C.; McCormack, S.; Doran, J.; Amarandei, G. Nanofluid Development Using Silver Nanoparticles and Organic-Luminescent Molecules for Solar-Thermal and Hybrid Photovoltaic-Thermal Applications. Nanomaterials 2020, 10, 1201. [Google Scholar] [CrossRef]
- Ju, X.; Abd El-Samie, M.M.; Xu, C.; Yu, H.; Pan, X.; Yang, Y. A Fully Coupled Numerical Simulation of a Hybrid Concentrated Photovoltaic/ Thermal System That Employs a Therminol VP-1 Based Nanofluid as a Spectral Beam Filter. Appl. Energy 2020, 264, 114701. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, R. Future of Photovoltaic Technologies: A Comprehensive Review. Sustain. Energy Technol. Assess. 2021, 47, 101410. [Google Scholar] [CrossRef]
- Seck, G.S.; Hache, E.; Sabathier, J.; Guedes, F.; Reigstad, G.A.; Straus, J.; Wolfgang, O.; Ouassou, J.A.; Askeland, M.; Hjorth, I.; et al. Hydrogen and the Decarbonization of the Energy System in Europe in 2050: A Detailed Model-Based Analysis. Renew. Sustain. Energy Rev. 2022, 167, 112779. [Google Scholar] [CrossRef]
- Durakovic, G.; Zhang, H.; Knudsen, B.R.; Tomasgard, A.; del Granado, P.C. Decarbonizing the European Energy System in the Absence of Russian Gas: Hydrogen Uptake and Carbon Capture Developments in the Power, Heat and Industry Sectors. arXiv 2023, arXiv:2308.08953. [Google Scholar]
- Tarpani, E.; Piselli, C.; Fabiani, C.; Pigliautile, I.; Kingma, E.J.; Pioppi, B.; Pisello, A.L. Energy Communities Implementation in the European Union: Case Studies from Pioneer and Laggard Countries. Sustainability 2022, 14, 12528. [Google Scholar] [CrossRef]
- Loik, M.E.; Carter, S.A.; Alers, G.; Wade, C.E.; Shugar, D.; Corrado, C.; Jokerst, D.; Kitayama, C. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus. Earths Future 2017, 5, 1044–1053. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Kumar, M.; Haillot, D.; Gibout, S. Survey and Evaluation of Solar Technologies for Agricultural Greenhouse Application. Sol. Energy 2022, 232, 18–34. [Google Scholar] [CrossRef]
- Siripurapu, M.; Meinardi, F.; Brovelli, S.; Carulli, F. Environmental Effects on the Performance of Quantum Dot Luminescent Solar Concentrators. ACS Photonics 2023, 10, 2987–2993. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy Saving Techniques for Reducing the Heating Cost of Conventional Greenhouses. Biosyst. Eng. 2019, 178, 9–33. [Google Scholar] [CrossRef]
- Mostefaoui, Z.; Amara, S. Renewable Energy Analysis in the Agriculture–Greenhouse Farms: A Case Study in the Mediterranean Region (Sidi Bel Abbes, Algeria). Environ. Prog. Sustain. Energy 2019, 38, e13029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coldrick, K.; Walshe, J.; McCormack, S.J.; Doran, J.; Amarandei, G. The Role of Solar Spectral Beam Splitters in Enhancing the Solar-Energy Conversion of Existing PV and PVT Technologies. Energies 2023, 16, 6841. https://doi.org/10.3390/en16196841
Coldrick K, Walshe J, McCormack SJ, Doran J, Amarandei G. The Role of Solar Spectral Beam Splitters in Enhancing the Solar-Energy Conversion of Existing PV and PVT Technologies. Energies. 2023; 16(19):6841. https://doi.org/10.3390/en16196841
Chicago/Turabian StyleColdrick, Kenneth, James Walshe, Sarah J. McCormack, John Doran, and George Amarandei. 2023. "The Role of Solar Spectral Beam Splitters in Enhancing the Solar-Energy Conversion of Existing PV and PVT Technologies" Energies 16, no. 19: 6841. https://doi.org/10.3390/en16196841
APA StyleColdrick, K., Walshe, J., McCormack, S. J., Doran, J., & Amarandei, G. (2023). The Role of Solar Spectral Beam Splitters in Enhancing the Solar-Energy Conversion of Existing PV and PVT Technologies. Energies, 16(19), 6841. https://doi.org/10.3390/en16196841