NOx Emission Limits in a Fuel-Flexible and Defossilized Industry—Quo Vadis?
Abstract
:1. Introduction
2. Fundamentals and Current Standards
2.1. Basic Equations of Combustion
- Spec. volume of dry off-gas for .
- Net calorific value;
- Thermal power of the combustion system;
- Net calorific value for species j in the fuel mixture.
2.2. Fundamentals and Legislation of Industrial NOx Emissions
- Nitrogen oxides ();
- Non-methane volatile organic compounds ();
- Ammonia ();
- Sulfur dioxide ();
- Fine particulate matter ().
- Thermal NO (Zeldovich-NO);
- Prompt NO (Fenimore-NO);
- Fuel NO;
- NO formation from reactions of -radicals;
- NO formation from reactions of .
3. Problem Statement
3.1. Combustion with Air
- Natural gas: 350.14 mg/h
- Hydrogen: 256.74 mg/h
- DME: 350.21 mg/h
3.2. Combustion with Oxygen
4. Alternative Approaches for the Specification of NOx Limits
- Spec. volume of moist off-gas for = 1.
5. Discussion
- concentration: The measurement of the concentration has to be carried out in moist off-gas. In theory, and as shown in Section 4, the moist concentration could be calculated from the dry measurement. However, as indicated above, the measurement in dry off-gas is not possible for the special case of - combustion. Therefore, the general formulation of a universal emission limit requires measurement in moist off-gas. Another option would be to measure the concentration in the dry off-gas in combination with a quantitative analysis of the nitrate in the condensate. But this would pose additional challenges as it would require measurement of the condensate mass flow and additional chemical analytics on nitrate concentration.
- concentration: The oxygen concentration has to be measured in the moist off-gas. There are several issues to consider: On the one hand, the air ratio cannot be determined by measuring dry off-gas for the special case of - combustion, which will lead to significant uncertainties. On the other hand, the use of calculated concentrations is not applicable in reality because leaking air may influence NO formation and subsequently the resulting emissions. Therefore, the theoretical calculation underlies uncertainties that cannot be quantified.
- Fuel mixture composition: In order to calculate the relevant theoretical specific minimum volume of off-gas and the net calorific value for further conversion of the measured concentration, the measurement of the fuel mixture composition is necessary. Here, gas chromatography is the most common measurement technology in the field. Due to the significant cost of operating these devices, other measurement techniques may be considered in the future. As an alternative to an exact measurement, approximated values for and may be standardized for common fuels, e.g., in EN 676 [46]. The latter results in shortcomings concerning the fuel-flexible operation of a plant.
- Net calorific value: The calculation of the net calorific value of a gaseous fuel is standardized in EN ISO 6796 [47]. The corresponding calculation is described in Equation (17).
- Minimum specific volume of moist off-gas: To calculate from Equation (10), other basic combustion characteristics have to be calculated from the measured fuel composition. Therefore, Equations (3)–(10) are considered. They describe the calculation of the minimum amount of oxygen , the minimum amount of oxidizer and the specific amounts of , , and within the off-gas. It has to be noted that the calculation of basic combustion characteristics is not defined in any current standard.
6. Example for the Application of the Proposed NOx Limit Definition
7. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Variable | Unit | Description |
Net calorific value for species in the fuel mixture | ||
Net calorific value (volumetric) | ||
air ratio | ||
specific oxidizer volume | ||
minimum specific oxidizer volume for = 1 | ||
mass flow | ||
vol. concentration of oxygen in the fuel mixture (assumption in this paper: all gases behave ideally.) | ||
specific oxygen volume for species j in the fuel mixture for = 1 | ||
specific oxygen volume of the fuel mixture for = 1 | ||
Thermal power of the combustion system | ||
mass concentration of in the dry off-gas at reference -concentration | ||
mass concentration of in the dry off-gas | ||
mass concentration of in the moist off-gas at reference -concentration | ||
mass concentration of in the moist off-gas | ||
density of nitrogen dioxide () | ||
specific volume of in the off-gas of species j | ||
specific volume of in the off-gas of the fuel mixture | ||
specific volume of in the off-gas of species j | ||
specific volume of in the off-gas of the fuel mixture | ||
specific volume of in the off-gas of the fuel mixture | ||
specific volume of in the off-gas of the fuel mixture | ||
specific volume of dry off-gas | ||
specific volume of dry off-gas for = 1 | ||
specific volume of moist off-gas | ||
specific volume of moist off-gas for = 1 | ||
volume flow of the fuel mixture | ||
volume flow of dry off-gas | ||
volume flow of moist off-gas | ||
vol. concentration of species within the fuel mixture | ||
vol. concentration of in the combustion air | ||
vol. concentration of in the oxidizer | ||
vol. concentration of in the combustion air | ||
measured vol. concentration of in the dry off-gas | ||
reference vol. concentration of in the dry off-gas | ||
vol. concentration of in the moist off-gas | ||
vol. concentration of in the dry off-gas | ||
measured vol. concentration of in the dry off-gas | ||
reference vol. concentration of in the dry off-gas | ||
measured vol. concentration of in the moist off-gas | ||
measured vol. concentration of in the moist off-gas | ||
equivalence ratio |
References
- European Commission. The European Green Deal: COM(2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- United Nations. Framework Convention on Climate Change. The Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Commission. A Hydrogen Strategy for A Climate-Neutral Europe: COM(2020) 301 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. ‘Fit for 55′: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality: COM(2021) 550 Final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- European Commission. REPowerEU Plan: COM(2022) 230 Final; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Pfeifer, H. Industrial Furnaces—Status and Research Challenges. Energy Procedia 2017, 120, 28–40. [Google Scholar] [CrossRef]
- Zaini, I.N.; Svanberg, R.; Sundberg, D.; Bölke, K.; Granqvist, J.; Lille, C.; Tarantino, N.; Yang, W. A pilot-scale test of plasma torch application for decarbonising the steel reheating furnaces. Therm. Sci. Eng. Prog. 2023, 40, 101766. [Google Scholar] [CrossRef]
- Zaini, I.N.; Svanberg, R.; Yang, W. Bilaga 3: Applications of thermal plasma torches for industrial furnaces: A review. In PLATIS—Plasma Technology in Steel Industry Furnaces; Tarantino, N., Malmqvist, H., Eds.; PLATIS: Stockholm, Sweden, 2021. [Google Scholar]
- Zaini, I.N.; Svanberg, R.; Yang, W. Bilaga 5: Applications of thermal plasma torch for steel heat-treatment furnaces: Results from the pilot-scale test. In PLATIS—Plasma Technology in Steel Industry Furnaces; Tarantino, N., Malmqvist, H., Eds.; PLATIS: Stockholm, Sweden, 2021. [Google Scholar]
- Zaini, I.N.; Svanberg, R.; Yang, W. Bilaga 8: Techno-economic analysis of thermal plasma torch application for heating furnaces. In PLATIS—Plasma Technology in Steel Industry Furnaces; Tarantino, N., Malmqvist, H., Eds.; PLATIS: Stockholm, Sweden, 2021. [Google Scholar]
- Shahabuddin, M.; Brooks, G.; Rhamdhani, M.A. Decarbonisation and hydrogen integration of steel industries: Recent development, challenges and technoeconomic analysis. J. Clean. Prod. 2023, 395, 136391. [Google Scholar] [CrossRef]
- Marocco, P.; Gandiglio, M.; Audisio, D.; Santarelli, M. Assessment of the role of hydrogen to produce high-temperature heat in the steel industry. J. Clean. Prod. 2023, 388, 135969. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, H.; Wang, J.; Xue, Q.; Ren, B.; Yang, F. The production and application of hydrogen in steel industry. Int. J. Hydrogen Energy 2021, 46, 10548–10569. [Google Scholar] [CrossRef]
- Röben, F.T.; Schöne, N.; Bau, U.; Reuter, M.A.; Dahmen, M.; Bardow, A. Decarbonizing copper production by power-to-hydrogen: A techno-economic analysis. J. Clean. Prod. 2021, 306, 127191. [Google Scholar] [CrossRef]
- Peppas, A.; Politi, C.; Kottaridis, S.; Taxiarchou, M. LCA Analysis Decarbonisation Potential of Aluminium Primary Production by Applying Hydrogen and CCUS Technologies. Hydrogen 2023, 4, 338–356. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Env. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Griffiths, S.; Sovacool, B.K.; Del Furszyfer Rio, D.D.; Foley, A.M.; Bazilian, M.D.; Kim, J.; Uratani, J.M. Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renew. Sustain. Energy Rev. 2023, 180, 113291. [Google Scholar] [CrossRef]
- Lansdorf, T. Hydrogen—A Game Changer for the Ceramic Industry. Interceram. Int. Ceram. Rev. 2022, 71, 48–54. [Google Scholar] [CrossRef]
- Del Furszyfer Rio, D.D.; Sovacool, B.K.; Foley, A.M.; Griffiths, S.; Bazilian, M.; Kim, J.; Rooney, D. Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renew. Sustain. Energy Rev. 2022, 157, 112081. [Google Scholar] [CrossRef]
- Zier, M.; Stenzel, P.; Kotzur, L.; Stolten, D. A review of decarbonization options for the glass industry. Energy Convers. Manag. X 2021, 10, 100083. [Google Scholar] [CrossRef]
- Fruzza, F.; Lamioni, R.; Tognotti, L.; Galletti, C. Flashback of H2-enriched premixed flames in perforated burners: Numerical prediction of critical velocity. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Schmitz, N.; Sankowski, L.; Kaiser, F.; Schwotzer, C.; Echterhof, T.; Pfeifer, H. Towards CO2-neutral process heat generation for continuous reheating furnaces in steel hot rolling mills—A case study. Energy 2021, 224, 120155. [Google Scholar] [CrossRef]
- Sankowski, L.; Kaiser, F.; Schmitz, N.; Schwotzer, C.; Pfeifer, H. CO2-neutral Process Heating for Carburizing Furnaces—An Ecological Analysis. HTM J. Heat Treat. Mater. 2023, 78, 3–16. [Google Scholar] [CrossRef]
- Community Research and Development Information Service. Hydrogen Technologies for Decarbonization of Industrial Heating Processes (HyInHeat)—Fact Sheet; Publications Office of the European Union: Brussels, Belgium, 2023. [Google Scholar]
- Community Research and Development Information Service. Advancing Hydrogen (H2) Technologies and Smart Production Systems to Decarbonise the Glass and Aluminium Sectors (H2Glass)—Fact Sheet; Publications Office of the European Union: Brussels, Belgium, 2023. [Google Scholar]
- Community Research and Development Information Service. HYbrid Technologies for Sustainable Steel reHEATing (HyTecHeat)—Fact Sheet; Publications Office of the European Union: Brussels, Belgium, 2022. [Google Scholar]
- Community Research and Development Information Service. Gradual Integration of REnewable Non-Fossil ENergy Sources and Modular HEATing Technologies in EAF for Progressive CO2 Decrease (GreenHeatEAF)—Fact Sheet; Publications Office of the European Union: Brussels, Belgium, 2023. [Google Scholar]
- European Steel Technology Platform. FullH2Reheat. Available online: https://www.estep.eu/clean-steel-partnership/list-of-csp-projects/fullh2reheat/ (accessed on 20 July 2023).
- RINA Consulting. DevH2forEAF. Available online: https://www.devh2eaf.eu (accessed on 20 July 2023).
- Kandilli, C.; Ayna, O.M.; Sahin, M. Evaluation of the performance of a hydrogen enriched combustion system for ceramic sector. Int. J. Hydrogen Energy 2015, 40, 11195–11206. [Google Scholar] [CrossRef]
- Busson, E.; Mühlbach, M.; Schmitz, N.; Wünning, J.G.; Pfeifer, H. An experimental study on the flexible use of hydrogen as fuel in radiant tubes for steel annealing lines. In Proceedings of the European Combustion Meeting 2023 11th European Combustion Meeting, Rouen, France, 26–28 April 2023. [Google Scholar]
- Philipp, M.; Schmitz, N.; Pfeifer, H.; Kowert, A. Development of a Low-Emission Combustion Concept for Hydrogen in Multi-Fuel-Burners. In Proceedings of the European Combustion Meeting 2023 11th European Combustion Meeting, Rouen, France, 26–28 April 2023. [Google Scholar]
- Cirrilli, F.; Luzzo, I.; Bendotti, M.; Venturi, A. Characterization of side burners of reheating furnace. In Proceedings of the H2 for Green Steel. Hydrogen Route for a Green Steelmaking Process and Applications, Paris, France, 30 November–1 December 2022. [Google Scholar]
- Bissoli, E.; Malfa, E.; Astesiano, D.; Della Rocca, A.; Wuppermann, C. Flexible hydrogen heating technologies with low environmental impact. In Proceedings of the H2 for Green Steel. Hydrogen Route for a Green Steelmaking Process and Applications, Paris, France, 30 November–1 December 2022. [Google Scholar]
- AGC Inc. Ammonia Combustion Technology Development Project including AGC Selected as NEDO-Commissioned Project: Aiming to Achieve Net Zero Carbon by 2050 with Innovative Glass Melting Technology. Available online: https://www.agc.com/en/news/detail/1202704_2814.html (accessed on 20 July 2023).
- Kikuchi, K.; Murai, R.; Hori, T.; Akamatsu, F. Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets. Processes 2022, 10, 23. [Google Scholar] [CrossRef]
- Murai, R.; Nakatsuka, N.; Higashino, H.; Akamatsu, F. Review of Fundamental Study on Ammonia Direct Combustion in Industrial Furnaces. In CO2 Free Ammonia as an Energy Carrier; Aika, K., Kobayashi, H., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 627–640. ISBN 978-981-19-4766-7. [Google Scholar]
- Ariemma, G.B.; Sorrentino, G.; Sabia, P.; Joannon, M.D.; Ragucci, R. Ammonia/Hydrogen blends MILD Combustion. In Proceedings of the European Combustion Meeting 2023 11th European Combustion Meeting, Rouen, France, 26–28 April 2023. [Google Scholar]
- Biebl, M.; Leicher, J.; Giese, A.; Görner, K. Experimental and simulation investigations of the combustion of blends of ammonia with hydrogen and natural gas in industrial non-premixed burners. In Proceedings of the European Combustion Meeting 2023 11th European Combustion Meeting, Rouen, France, 26–28 April 2023. [Google Scholar]
- Sharma, S.; Savarese, M.; Coussement, A.; Parente, A. Decarbonisation potential of dimethyl ether/hydrogen mixtures in a flameless furnace: Reactive structures and pollutant emissions. Int. J. Hydrogen Energy 2023, 48, 2401–2427. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K. Combustion in the future: The importance of chemistry. Proc. Combust. Inst. 2020, 38, 1–56. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Baukal, C.E. Oxygen-Enhanced Combustion, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781439862285. [Google Scholar]
- Pfeifer, H. Fuels and Combustion. In Handbook of Thermoprocessing Technologies, 2nd ed.; Beneke, F., Nacke, B., Pfeifer, H., Eds.; Vulkan-Verlag: Essen, Germany, 2015; pp. 204–242. ISBN 9783802724749. [Google Scholar]
- DIN EN 267:2021-09; Forced Draught Burners for Liquid Fuels. Beuth Verlag: Berlin, Germany, 2021.
- DIN EN 676:2023-03; Forced Draught Burners for Gaseous Fuels. Beuth Verlag: Berlin, Germany, 2023.
- DIN EN ISO 6976:2016-12; Natural Gas—Calculation of Calorific Values, Density, Relative Density and Wobbe Indices from Composition. Beuth Verlag: Berlin, Germany, 2016.
- Technical Rule DVGW G 260 (A)—Gas Quality; DVGW e. V.: Bonn, Germany, 2021.
- Directive 2010/75/EU on Industrial Emissions (Integrated Pollution Prevention and Control); European Parliament and the Council: Strasbourg, France, 2010.
- Directive (EU) 2016/2284 on the Reduction of National Emissions of Certain Atmospheric Pollutants; European Parliament and the Council: Strasbourg, France, 2016.
- Gesetz zum Schutz vor Schädlichen Umwelteinwirkungen Durch Luftverunreinigungen, Geräusche, Erschütterungen und Ähnliche Vorgänge: Bundes-Immissionsschutzgesetz—BImSchG; Federal Government of Germany: Berlin, Germany, 2013.
- Federal Ministry for Environment, Nature Conservation, Nuclear Safety and Consumer Protection. Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft). Gemeinsames Minist. 2021, 72, 1050–1191. [Google Scholar]
- Joos, F. Technische Verbrennung: Verbrennungstechnik, Verbrennungsmodellierung, Emissionen; mit 65 Tabellen; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-34334-9. [Google Scholar]
- WHO. Air Quality Guidelines: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006; ISBN 9289021926. [Google Scholar]
- Glarborg, P.; Miller, J.A.; Ruscic, B.; Klippenstein, S.J. Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 2018, 67, 31–68. [Google Scholar] [CrossRef] [Green Version]
- Zeldovich, J. The Oxidation of Nitrogen in Combustion and Explosions. Acta Physicochim. U.R.S.S 1946, XXI, 577–628. [Google Scholar]
- Fenimore, C.P. Formation of nitric oxide in premixed hydrocarbon flames. Symp. Int. Combust. 1971, 13, 373–380. [Google Scholar] [CrossRef]
- Gaber, C.; Schluckner, C.; Wachter, P.; Demuth, M.; Hochenauer, C. Experimental study on the influence of the nitrogen concentration in the oxidizer on NOx and CO emissions during the oxy-fuel combustion of natural gas. Energy 2021, 214, 118905. [Google Scholar] [CrossRef]
- Lyon, R.K. The NH3-NO-O2 reaction. Int. J. Chem. Kinet. 1976, 8, 315–318. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hayakawa, A.; Somarathne, K.K.A.; Okafor, E.C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Bozzelli, J.W.; Dean, A.M. O + NNH: A possible new route for NOX formation in flames. Int. J. Chem. Kinet. 1995, 27, 1097–1109. [Google Scholar] [CrossRef]
- Konnov, A.A.; Colson, G.; Ruyck, J.d. The new route forming NO via NNH. Combust. Flame 2000, 121, 548–550. [Google Scholar] [CrossRef]
- Klippenstein, S.J.; Harding, L.B.; Glarborg, P.; Miller, J.A. The role of NNH in NO formation and control. Combust. Flame 2011, 158, 774–789. [Google Scholar] [CrossRef] [Green Version]
- Hayhurst, A.N.; Hutchinson, E.M. Evidence for a New Way of Producing NO via NNH in Fuel-Rich Flames at Atmospheric Pressure. Combust. Flame 1998, 114, 274–279. [Google Scholar] [CrossRef]
- Haworth, N.L.; Mackie, J.C.; Bacskay, G.B. An Ab Initio Quantum Chemical and Kinetic Study of the NNH + O Reaction Potential Energy Surface: How Important Is This Route to NO in Combustion? J. Phys. Chem. A 2003, 107, 6792–6803. [Google Scholar] [CrossRef]
- Malte, P.C.; Pratt, D.T. Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion. Symp. Int. Combust. 1975, 15, 1061–1070. [Google Scholar] [CrossRef]
- Durocher, A.; Meulemans, M.; Versailles, P.; Bourque, G.; Bergthorson, J.M. Back to basics—NO concentration measurements in atmospheric lean-to-rich, low-temperature, premixed hydrogen–air flames diluted with argon. Proc. Combust. Inst. 2021, 38, 2093–2100. [Google Scholar] [CrossRef]
- Cavaliere, A.; Joannon, M.d. Mild Combustion. Prog. Energy Combust. Sci. 2004, 30, 329–366. [Google Scholar] [CrossRef]
- Wünning, J. Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 1997, 23, 81–94. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R.T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catal. Today 2011, 175, 147–156. [Google Scholar] [CrossRef]
- Aries, E.; Gómez Benavides, J.; Mavromatis, S.; Klein, G.; Chronopoulos, G.; Roudier, S. Best Available Techniques (BAT) Reference Document for the Ferrous Metals Processing Industry: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control); Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- DIN EN 14792:2017-05; Stationary Source Emissions—Determination of Mass Concentration of Nitrogen Oxides—Standard Reference Method: Chemiluminescence. Beuth Verlag: Berlin, Germany, 2017.
- DIN EN 15267-1:2009-07; Air Quality—Certification of Automated Measuring Systems—Part 1: General Principles. Beuth Verlag: Berlin, Germany, 2009.
- DIN EN 15267-2:2009-07; Air Quality—Certification of Automated Measuring Systems—Part 2: Initial Assessment of the AMS Manufacturer’s Quality Management System and Post Certification Surveillance for the Manufacturing Process. Beuth Verlag: Berlin, Germany, 2009.
- DIN EN 15267-3:2008-03; Air Quality—Certification of Automated Measuring Systems—Part 3: Performance Criteria and Test Procedures for Automated Measuring Systems for Monitoring Emissions from Stationary Sources. Beuth Verlag: Berlin, Germany, 2008.
- DIN EN 15267-4:2017-05; Air Quality—Certification of Automated Measuring Systems—Part 4: Performance Criteria and Test Procedures for Automated Measuring Systems for Periodic Measurements of Emissions from Stationary Sources. Beuth Verlag: Berlin, Germany, 2017.
- DIN EN 14181:2015-02; Stationary Source Emissions—Quality Assurance of Automated Measuring Systems. Beuth Verlag: Berlin, Germany, 2015.
- DIN EN 15259:2008-01; Air Quality—Measurement of Stationary Source Emissions—Requirements for Measurement Sections and Sites and for The measurement Objective, Plan and Report. Beuth Verlag: Berlin, Germany, 2008.
- Leicher, J. Hydrogen for industrial process heating: Challenges and opportunities. In Proceedings of the ToTEM—Topic Oriented Technical Meeting H2 Hydrogen for Industrial Decarbonization, Paris, France, 13 October 2022. [Google Scholar]
- Leicher, J.; Giese, A.; Görner, K. Vergleichbarkeit von Stickoxid-Emissionen bei wasserstoffreichen Brenngasen. Prozesswärme 2023, 52–56. [Google Scholar]
- Baukal, C.E.; Eleazer, P.B. Quantifying NOx for industrial combustion processes. J. Air Waste Manag. Assoc. 1998, 48, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Douglas, C.M.; Shaw, S.L.; Martz, T.D.; Steele, R.C.; Noble, D.R.; Emerson, B.L.; Lieuwen, T.C. Pollutant Emissions Reporting and Performance Considerations for Hydrogen–Hydrocarbon Fuels in Gas Turbines. J. Eng. Gas Turbines Power 2022, 144, 91003. [Google Scholar] [CrossRef]
- Dutka, M.; Ditaranto, M.; Løvås, T. NOx emissions and turbulent flow field in a partially premixed bluff body burner with CH4 and H2 fuels. Int. J. Hydrogen Energy 2016, 41, 12397–12410. [Google Scholar] [CrossRef]
- Mariani, A.; Unich, A.; Minale, M. Methane/hydrogen Blends in Controlled Auto Ignition Engines with Egr: Evaluation of NOx Emissions. Chem. Eng. Trans. 2019, 74, 301–306. [Google Scholar]
- Glanville, P.; Fridlyand, A.; Sutherland, B.; Liszka, M.; Zhao, Y.; Bingham, L.; Jorgensen, K. Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance. Energies 2022, 15, 1706. [Google Scholar] [CrossRef]
- Gersen, S.; van der Stel, J.; Bsibsi, M. Hydrogen as a fuel for the metal industry. In Proceedings of the H2 for Green Steel. Hydrogen Route for a Green Steelmaking Process and Applications, Paris, France, 30 November–1 December 2022. [Google Scholar]
- Schluckner, C.; Gaber, C.; Demuth, M.; Hochenauer, C. Scrutiny of residual nitrogen content and different nozzle designs on NOx formation during oxy-fuel combustion of natural gas. Fuel 2020, 277, 118065. [Google Scholar] [CrossRef]
- German Environment Agency. Reinhaltung der Luft/Luftüberwachung in Deutschland—Messeinrichtungen: Eignungsgeprüfte Kontinuierlich Arbeitende Emissionsmesseinrichtungen—Messobjekt: Feuchte; German Environment Agency: Dessau-Rosslau, Germany, 2021.
- DIN EN 14790:2017-05; Stationary Source Emissions—Determination of the Water Vapour in Ducts—Standard Reference Method. Beuth Verlag: Berlin, Germany, 2017.
- Wiegleb, G. Gas Measurement Technology in Theory and Practice; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2023; ISBN 978-3-658-37231-6. [Google Scholar]
- Sankowski, L. Influence of H2 and H2-blends on NOx-emissions of a cold air high velocity burner in flame and flameless operation. In Proceedings of the ToTEM—Topic Oriented Technical Meeting H2 Hydrogen for industrial decarbonization, Paris, France, 13 October 2022. [Google Scholar]
Species | Chemical Formula | Composition in vol% |
---|---|---|
Methane | 88.71 | |
Ethane | 6.93 | |
Propane | 1.25 | |
n-Butane and higher hydrocarbons | + | 0.35 |
Nitrogen | 0.82 | |
Carbon dioxide | 1.94 |
Property | Symbol | Unit | Natural Gas H (North Sea) | Hydrogen | DME |
---|---|---|---|---|---|
Net calorific value | kWh/m3 | 10.53 | 3.00 | 15.52 | |
Gross calorific value | kWh/m3 | 11.65 | 3.54 | 17.08 | |
Higher Wobbe index | kWh/m3 | 14.69 | 13.39 | 13.52 | |
Relative density | - | 0.63 | 0.07 | 1.60 | |
Min. -requirement | m3/m3 | 2.10 | 0.50 | 3.00 | |
Min. air requirement | m3/m3 | 10.01 | 2.74 | 16.43 | |
Min spec. off-gas volume (moist) | m3/m3 | 11.06 | 2.88 | 16.29 | |
m3/kWh | 1.05 | 0.96 | 1.05 | ||
Min. spec off-gas volume (dry) | m3/m3 | 9.01 | 1.88 | 13.29 | |
m3/kWh | 0.86 | 0.63 | 0.86 |
Relation to | NOx Limit Specification | NG | DME | Equation | |
---|---|---|---|---|---|
Dry off-gas | 180.00 | 180.00 | 180.00 | meas. | |
370.08 | 370.08 | 370.08 | (20) | ||
(ref.) | 350.60 | 350.60 | 350.60 | (21) | |
Moist off-gas | 149.28 | 121.54 | 149.46 | (23) | |
306.93 | 249.88 | 307.30 | (24) | ||
(ref.) | 293.58 | 235.26 | 293.96 | (25) | |
Net calorific value | mg/kWh | 350.14 | 256.74 | 350.21 | (26), (27) |
mass flow | mg/h ( = 1 kW) | 350.14 | 256.74 | 350.21 | (22) |
Relation to | NOx Limit Specification | NG | DME | Equation | |
---|---|---|---|---|---|
Moist off-gas | 180.00 | 180.00 | 180.00 | meas. | |
370.08 | 370.08 | 370.08 | (24) | ||
(ref.) | 370.08 | 370.08 | 370.08 | (25) | |
Net calorific value | mg/kWh | 113.72 | 126.66 | 122.30 | (26), (27) |
mass flow | = 1 kW) | 113.72 | 126.66 | 122.30 | (22) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, N.; Sankowski, L.; Busson, E.; Echterhof, T.; Pfeifer, H. NOx Emission Limits in a Fuel-Flexible and Defossilized Industry—Quo Vadis? Energies 2023, 16, 5663. https://doi.org/10.3390/en16155663
Schmitz N, Sankowski L, Busson E, Echterhof T, Pfeifer H. NOx Emission Limits in a Fuel-Flexible and Defossilized Industry—Quo Vadis? Energies. 2023; 16(15):5663. https://doi.org/10.3390/en16155663
Chicago/Turabian StyleSchmitz, Nico, Lukas Sankowski, Elsa Busson, Thomas Echterhof, and Herbert Pfeifer. 2023. "NOx Emission Limits in a Fuel-Flexible and Defossilized Industry—Quo Vadis?" Energies 16, no. 15: 5663. https://doi.org/10.3390/en16155663