Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control
Abstract
:1. Introduction
1.1. Motivation and Incitement
1.2. Literature Review
1.3. Contribution and Paper Organization
2. Model System
2.1. Model System
2.2. DFIG System
2.3. ES System
3. Proposed Method
3.1. Virtual Inertial Control
3.2. SOC Recovery Strategy
3.3. Coordinated Control
4. Evaluating Indicator
5. Simulation Results
5.1. The Dynamic Response at Different Wind Speeds
5.2. System Dynamic Response during Load Surges
6. Conclusions
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
DFIG | Double fed induction generation |
ES | Energy storage |
MPPT | Maximum power point tracking |
SOC | ES system state of charge |
References
- Ahmed, M.; Abderrezak, G.; Hocine, B.; Adel, M. New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy 2016, 106, 137–146. [Google Scholar]
- Ayyarao, T.S.L.V.; Ayyarao, V. Modified vector controlled DFIG wind energy system based on barrier function adaptive sliding mode control. Prot. Control. Mod. Power Syst. 2019, 4, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Liu, Z.; Liang, N. Nonlinear adaptive robust control strategy of doubly fed induction generator based on virtual synchronous generator. IEEE Access 2020, 8, 159887–159896. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, F.; Liang, J.; Ding, L.; Liang, Z.; Wu, Q. Coordinated control strategy for the short-term frequency response of a DFIG-ES system based on wind speed zone classification and fuzzy logic control. Int. J. Electr. Power Energy Syst. 2019, 107, 363–378. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, W.; Li, Y.; Tan, Y.; Chen, C.; He, L.; Häger, U.; Rehtanz, C. A virtual synchronous generator control strategy for VSC-MTDC systems. IEEE Trans. Energy Convers. 2017, 33, 750–761. [Google Scholar] [CrossRef]
- Hurtado, S.; Gostales, G.; De Lara, A.; Moreno, N.; Carrasco, J.M.; Galvan, E.; Sanchez, J.A.; Franquelo, L.G. A new power stabilization control system based on making use of mechanical inertia of a variable-speed wind-turbine for stand-alone wind-diesel applications. In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, Seville, Spain, 5–8 November 2002; Volume 9, pp. 3326–3331. [Google Scholar]
- Ghosh, S.; Kamalasadan, S.; Senroy, N.; Enslin, J. Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application. IEEE Trans. Power Syst. 2015, 31, 1861–1871. [Google Scholar] [CrossRef]
- Chen, T.; Feng, D.; Wu, X.; Lu, C.; Xu, B. Modeling and stability analysis of interaction between converters in AC-DC distribution systems. Front. Energy Res. 2023, 10, 1035193. [Google Scholar] [CrossRef]
- Cui, S.; Yan, X.; Siddique, A. Inertia and primary frequency modulation strategy for a doubly fed induction generator based on supercapacitor energy storage control. Int. J. Green Energy 2022, 19, 941–955. [Google Scholar] [CrossRef]
- Xin, H.; Liu, Y.; Wang, Z.; Gan, D.; Yang, T. A new frequency regulation strategy for photovoltaic systems without energy storage. IEEE Trans. Sustain. Energy 2013, 4, 985–993. [Google Scholar] [CrossRef]
- Yuan, X.; Li, Y. Control of variable pitch and variable speed direct-drive wind turbines in weak grid systems with active power balance. IET Renew. Power Gener. 2014, 8, 119–131. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, J.; Mei, Y. Study on frequency control strategy of wind farm-energy storage system. ICIC Express Lett. 2015, 9, 2657–2663. [Google Scholar]
- Qu, L.; Wei, Q. Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans. Ind. Appl. 2010, 47, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yateendra, M.; Mohammad, S. Fuzzy-logic based frequency controller for wind farms augmented with energy storage systems. IEEE Trans. Power Syst. 2015, 31, 1595–1603. [Google Scholar] [CrossRef]
- Miao, L.; Wen, J.; Xie, H.; Yue, C.; Lee, W.J. Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support. IEEE Trans. Ind. Appl. 2015, 51, 2732–2742. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Li, J.; Ma, Y.; Zou, J. Design of Control Strategy and Effect Evaluation for Primary Frequency Regulation of Wind Storage System. Front. Energy Res. 2021, 9, 739439. [Google Scholar] [CrossRef]
- Hua, X.; Xu, H.; Li, N. Control strategy of DFIG wind turbine in primary frequency regulation. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; Volume 5, pp. 1751–1755. [Google Scholar]
- Peng, Z.; Wang, J.; Wen, Y.; Bi, D.; Dai, Y.; Ning, Y. Virtual synchronous generator control strategy incorporating improved governor control and coupling compensation for AC microgrid. IET Power Electron. 2019, 12, 1455–1461. [Google Scholar] [CrossRef]
- Tu, S.; Zhang, B.; Jin, X. Research on DFIG-ES system to enhance the fast-frequency response capability of wind farms. Energies 2019, 12, 3581. [Google Scholar] [CrossRef] [Green Version]
- Pandzic, H.; Bobanac, V. An Accurate Charging Model of Battery Energy Storage. IEEE Trans. Power Syst. 2019, 34, 1416–1426. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Z.; Li, W. Analysis and comparison of primary frequency control technology for wind power and thermal power unit. Electr. Power Autom. Equip. 2017, 37, 92–101. [Google Scholar]
- Mohammad, D.; Mokhlis, H.; Mekhilef, S. Inertia response and frequency control techniques for renewable energy sources: A review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [Google Scholar]
- Vidyanandan, K.V.; Senroy, N. Primary Frequency Regulation by Deloaded Wind Turbines Using Variable Droop. IEEE Trans. Power Syst. 2013, 28, 837–846. [Google Scholar] [CrossRef]
- Liu, J.; Yao, W.; Wen, J.; Ai, X.; Luo, W.; Huang, Y. A wind farm virtual inertia compensation strategy based on energy storage system. Chin. J. Electr. Eng. 2015, 35, 1596–1605. [Google Scholar]
- Zhou, Q.; Wang, C.; Bu, J. Coordinated control strategy for improving the two drops of the wind storage combined system. IOP Conf. Ser. Earth Environ. Sci. 2018, 153, 022041. [Google Scholar] [CrossRef]
- Zhao, J.; Li, M.; He, X.; Zhu, R. Coordinated Control Strategy of Wind Power and Energy Storage in Frequency Regulation Based on Torque Limit Control. Trans. China Electrotech. Soc. 2019, 34, 4982–4990. [Google Scholar]
- Li, J.; Ma, H.; Yuan, X.; Wang, Z.; Ge, L. Overview on Key Applied Technologies of Large-Scale Distributed Energy Storage. Power Grid Technol. 2017, 41, 3365–3375. [Google Scholar]
- Lu, M.S.; Chang, C.L.; Lee, W.J.; Wang, L. Combining the Wind Power Generation System with Energy Storage Equipment. IEEE Trans. Ind. Appl. 2009, 45, 2109–2115. [Google Scholar]
- Gevorgian, V.; Zhang, Y.; Ela, E. Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response. IEEE Trans. Sustain. Energy 2015, 6, 1004–1012. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, M.; Lin, W.; Loparo, K.A. Voltage and Frequency Regulation of Microgrid With Battery Energy Storage Systems. IEEE Trans. Smart Grid 2019, 10, 414–424. [Google Scholar] [CrossRef]
Variable | Meaning | Variable | Meaning |
---|---|---|---|
f/Hz | Frequency | Qn/pu | Rated capacity of ES |
Δfm/Hz | Maximum frequency deviation | PES/pu | Charge and discharge power of ES |
t/s | time | vw/m/s | Wind speed |
Δtm/s | Time for maximum frequency deviation | dΔf/Δt | Frequency change rate |
PMPPT/pu | Output power instruction of MPPT control link | IBRE/A | Charge and discharge current of the ES battery |
ΔPv/pu | Active signal of virtual inertial control | QSOC/pu | SOC value |
Kf | Virtual inertia proportional coefficient | ΔQSOC/pu | SOC deviation |
ΔPc/pu | Power provided by the ES system | ΔPE/pu | Primary frequency modulation output |
Δf(s)/Hz | Frequency deviation signal at the input signal end of the grid | α, β | Weight factors |
kpf | Primary frequency modulation coefficient | 2Δfset/Hz | Set frequency deviation critical value |
Tc/s | Response time constant of the ES | ΔPw/pu | Rotor kinetic energy variation |
S0/% | Initial value of SOC of ES battery | Δωr/pu | Wind wheel speed variation |
Kf | vw | |||||||
---|---|---|---|---|---|---|---|---|
FL | FM | FS | F0 | ZS | ZM | ZL | ||
dΔf/Δt | NL | VL | M | SH | MH | VH | VH | VH |
NM | VL | SL | M | MH | VH | VH | VH | |
NS | VL | SL | M | SH | VH | VH | VH | |
Z0 | VL | ML | SL | SH | MH | VH | VH | |
PS | VL | ML | SL | M | MH | MH | VH | |
PM | VL | VL | ML | SL | SH | MH | MH | |
PL | VL | VL | ML | SL | M | SH | MH |
Wind Speeds | Δf/Hz | Δt/s | Kf |
---|---|---|---|
8 m/s | 0.27 | 0.85 | 0.17 |
10 m/s | 0.23 | 0.95 | 0.6 |
12 m/s | 0.194 | 1.14 | 0.85 |
Control Strategies | ΔPw/pu | Δωr/pu | Δfm/Hz | Δtm/s | ΔQSOC |
---|---|---|---|---|---|
Case 1 | 0 | 0 | 0.3792 | 0.900 | - |
Case 2 | 0.152 | 7.5 × 10−3 | 0.3652 | 0.910 | - |
Case 3 | - | - | 0.2449 | 1.025 | 0.5684 |
Case 4 | 0.218 | 10.8 × 10−3 | 0.1938 | 1.144 | 0.4260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yuan, T.; Li, X.; Li, W.; Wang, X. Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control. Energies 2023, 16, 4770. https://doi.org/10.3390/en16124770
Chen J, Yuan T, Li X, Li W, Wang X. Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control. Energies. 2023; 16(12):4770. https://doi.org/10.3390/en16124770
Chicago/Turabian StyleChen, Jianghong, Teng Yuan, Xuelian Li, Weiliang Li, and Ximu Wang. 2023. "Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control" Energies 16, no. 12: 4770. https://doi.org/10.3390/en16124770
APA StyleChen, J., Yuan, T., Li, X., Li, W., & Wang, X. (2023). Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control. Energies, 16(12), 4770. https://doi.org/10.3390/en16124770