Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission
Abstract
1. Introduction
2. Fundamentals of FDA and WPT
3. Comparative Analysis
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCE | Beam Collection Efficiency |
FDA | Frequency Diverse Array |
PA | Phased Array |
WPT | Wireless Power Transmission |
References
- Huang, X.; Zhang, C.; Cong, L.; Cai, R.; Yang, F.; Lu, C. Development and prospects of metamaterial in wireless power transfer. IET Power Electron. 2021, 14, 2423–2440. [Google Scholar] [CrossRef]
- Stankiewicz, J.M.; Choroszucho, A. Efficiency of the wireless power transfer system with planar coils in the periodic and aperiodic systems. Energies 2022, 15, 115. [Google Scholar] [CrossRef]
- Gu, X.; Hemour, S.; Wu, K. Far-field wireless power harvesting: Nonlinear modeling, rectenna design, and emerging applications. Proc. IEEE 2022, 110, 56–73. [Google Scholar] [CrossRef]
- Simonazzi, M.; Campanini, A.; Sandrolini, L.; Rossi, C. Design procedure based on maximum efficiency for wireless power transfer battery chargers with lightweight vehicle assembly. Energies 2022, 15, 70. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.-H.; Kim, J.; Park, Y.-J. Wireless power transfer between two self-resonant coils over medium distance supporting optimal impedance matching using ferrite core transformers. Energies 2021, 14, 8540. [Google Scholar] [CrossRef]
- Seo, D.-W. Wireless power transfer and RF technologies. Energies 2021, 14, 8301. [Google Scholar] [CrossRef]
- Brown, W.C. The history of wireless power transmission. Sol. Energy 1996, 56, 3–21. [Google Scholar] [CrossRef]
- Tesla, N. The transmission of electrical energy without wires as a means for furthering peace. Elect. World Eng. 1905, 1, 21–24. [Google Scholar]
- Wang, B.; Yerazunis, W.; Teo, K.H. Wireless power transfer: Metamaterials and array of coupled resonators. Proc. IEEE 2013, 101, 1359–1368. [Google Scholar] [CrossRef]
- Alberto, J.; Reggiani, U.; Sandrolini, L.; Albuquerque, H. Accurate calculation of the power transfer and efficiency in resonator arrays for inductive power transfer. Prog. Electromagn. Res. 2019, 83, 61–76. [Google Scholar] [CrossRef]
- Stankiewicz, J.M.; Choroszucho, A.; Steckiewicz, A. Estimation of the maximum efficiency and the load power in the periodic WPT systems using numerical and circuit models. Energies 2021, 14, 1151. [Google Scholar] [CrossRef]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Frequency diverse array radars. In Proceedings of the IEEE Radar Conference, Verona, NY, USA, 24–27 April 2006; pp. 215–217. [Google Scholar]
- Ahmad, Z.; Chen, M.; Bao, S.-D. Beampattern analysis of frequency diverse array radar: A review. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 189. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Y. A waveform design method for frequency diverse array systems based on diversity linear chirp waveforms. Int. J. Microw. Wirel. Technol. 2021, 13, 1031–1038. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, C.; Jin, L.; Ouyang, S. Detection of subsurface target based on FDA-MIMO radar. Int. J. Antennas Propag. 2018, 2018, 8629806. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Gui, R.; Wang, W.-Q.; Wu, W. Search-free DOD, DOA and range estimation for bistatic FDA-MIMO radar. IEEE Access 2018, 6, 15431–15445. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, G.; Hu, G. A combined ESPRIT-MUSIC method for FDA-MIMO radar with extended range ambiguity using staggered frequency increment. Int. J. Antennas Propag. 2019, 2019, 3056074. [Google Scholar] [CrossRef]
- Basit, A.; Nusenu, S.Y.; Khan, S.U.; Khan, M.A.; Farooq, M. Adaptive detection and correction of faulty elements in frequency diverse array. In Proceedings of the 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019; pp. 1010–1016. [Google Scholar]
- Wen, C.; Tao, M.; Peng, J.; Wu, J.; Wang, T. Clutter suppression for airborne FDA-MIMO radar using multi-waveform adaptive processing and auxiliary channel STAP. Signal Process. 2019, 154, 280–293. [Google Scholar] [CrossRef]
- Lan, L.; Liao, G.; Xu, J.; Zhang, Y.; Fioranelli, F. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection. IEEE Access 2018, 6, 34582–34597. [Google Scholar] [CrossRef]
- Li, G.-M.; Zhang, Q.; Liu, Q.-Y.; Liang, J.; Wang, D.; Zhu, F. Mainlobe jamming suppression using improved frequency diverse array with MIMO radar. J. Sens. 2019, 2019, 3948597. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, J.; Fusco, V. Frequency diverse array OFDM transmitter for secure wireless communication. Electron. Lett. 2015, 51, 1374–1376. [Google Scholar] [CrossRef]
- Nusenu, S.Y.; Basit, A. Frequency diverse array antennas: From their origin to their application in wireless communication systems. J. Comput. Netw. Commun. 2018, 2018, 5815678. [Google Scholar] [CrossRef]
- Xiong, J.; Nusenu, S.Y.; Wang, W.-Q. Directional modulation using frequency diverse array for secure communications. Wirel. Pers. Commun. 2017, 95, 2679–2689. [Google Scholar] [CrossRef]
- Nusenu, S.Y.; Wang, W.-Q.; Ji, S. Secure directional modulation using frequency diverse array antenna. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017; pp. 0378–0382. [Google Scholar]
- Yao, A.-M.; Wu, W.; Fang, D.-G. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern. IEEE Trans. Antennas Propag. 2016, 64, 4434–4446. [Google Scholar] [CrossRef]
- Yao, A.-M.; Wu, W.; Fang, D.-G. Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays. IEEE Trans. Antennas Propag. 2017, 65, 552–566. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, X.; Xu, J.; Li, P. Range-angle-dependent beamforming of pulsed frequency diverse array. IEEE Trans. Antennas Propag. 2015, 63, 3262–3267. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhu, J.; Xie, T.; Luo, J.; Xu, Z. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays. IEEE Access 2017, 5, 26279–26290. [Google Scholar] [CrossRef]
- Yao, A.-M.; Rocca, P.; Wu, W.; Massa, A. On the design of frequency diverse arrays for wireless power transmission. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 900–903. [Google Scholar]
- Yao, A.-M.; Anselmi, N.; Rocca, P.; Massa, A. A multi-carrier frequency diverse array design method for wireless power transmission. In Proceedings of the 12th European Conference on Antennas and Propagation (EUCAP), London, UK, 9–13 April 2018; pp. 1–4. [Google Scholar]
- Yang, Y.-Q.; Wang, H.; Gu, S.-Q. Optimization of multi-carrier frequency diverse array for wireless power transmission. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 43–45. [Google Scholar]
- Yao, A.-M.; Anselmi, N.; Rocca, P. A novel planar frequency diverse array design approach for far-field wireless power transmission. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1807–1808. [Google Scholar]
- Jones, A.M.; Rigling, B.D. Planar frequency diverse array receiver architecture. In Proceedings of the IEEE Radar Conference, Atlanta, GA, USA, 7–11 May 2012; pp. 0145–0150. [Google Scholar]
- Wang, W.-Q. Retrodirective frequency diverse array focusing for wireless information and power transfer. IEEE J. Sel. Areas Commun. 2019, 37, 61–73. [Google Scholar] [CrossRef]
- Moriyama, T.; Poli, L.; Rocca, P. On the design of clustered planar phased arrays for wireless power transmission. IEICE Electron. Express 2015, 12, 20150028. [Google Scholar] [CrossRef]
- Li, X.; Zhou, J.; Du, X. Planar arrays synthesis for optimal wireless power transmission. IEICE Electron. Express 2015, 12, 20150346. [Google Scholar] [CrossRef][Green Version]
- Rocca, P.; Oliveri, G.; Massa, A. Innovative array designs for wireless power transmission. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto, Japan, 12–13 May 2011; pp. 279–282. [Google Scholar]
- Chen, B.; Chen, X.; Huang, Y.; Guan, J. Transmit beampattern synthesis for the FDA radar. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 98–101. [Google Scholar] [CrossRef]
- Chen, K.; Yang, S.; Chen, Y.; Qu, S.-W. Accurate models of time-invariant beampatterns for frequency diverse arrays. IEEE Trans. Antennas Propag. 2019, 67, 3022–3029. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shi, Z.; Zhou, C. Time-variant focusing range-angle dependent beampattern synthesis by uniform circular frequency diverse array radar. IET Radar Sonar Navig. 2021, 15, 62–74. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shi, Z.; Zhou, C.; Gu, Y. Time-variant focused range-angle dependent beampattern synthesis by frequency diverse array radar. IET Signal Process. 2020, 14, 352–360. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Y.; Mu, T.; Ahmad, Z. A short-range range-angle dependent beampattern synthesis by frequency diverse array. IEEE Access 2018, 6, 22664–22669. [Google Scholar] [CrossRef]
- Fazzini, E.; Costanzo, A.; Masotti, D. Ranging on-demand microwave power transfer in real-time. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 791–793. [Google Scholar] [CrossRef]
- Fazzini, E.; Shanawani, M.; Costanzo, A.; Masotti, D. A logarithmic frequency-diverse array system for precise wireless power transfer. In Proceedings of the 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 646–649. [Google Scholar]
- Fu, D.; Wen, J.; Xu, J.; Liao, G.; Ouyang, S. STAP-based airborne radar system for maneuvering target detection. IEEE Access 2019, 7, 62071–62079. [Google Scholar] [CrossRef]
- Jaffri, Z.; Ahmad, Z.; Kabir, A.; Bukhari, S. A novel miniaturized Koch-Minkowski hybrid fractal antenna. Microelectron. Int. 2022, 39, 22–37. [Google Scholar] [CrossRef]
- Ahmad, Z.; Song, Y.; Du, Q. Wideband DOA estimation based on incoherent signal subspace method. Compel-Int. J. Comp. Math. Electr. Electron. Eng. 2018, 37, 1271–1289. [Google Scholar] [CrossRef]
- Jaffri, Z.; Ahmad, Z.; Kabir, A.; Bukhari, S. A novel compact stair-shaped multiband fractal antenna for wireless communication systems. J. Electr. Eng. 2021, 72, 306–314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, Z.; Wang, Z.; Jaffri, Z.u.A.; Bao, S. Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission. Energies 2022, 15, 1588. https://doi.org/10.3390/en15041588
Ahmad Z, Wang Z, Jaffri ZuA, Bao S. Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission. Energies. 2022; 15(4):1588. https://doi.org/10.3390/en15041588
Chicago/Turabian StyleAhmad, Zeeshan, Zhonghan Wang, Zain ul Abidin Jaffri, and Shudi Bao. 2022. "Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission" Energies 15, no. 4: 1588. https://doi.org/10.3390/en15041588
APA StyleAhmad, Z., Wang, Z., Jaffri, Z. u. A., & Bao, S. (2022). Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission. Energies, 15(4), 1588. https://doi.org/10.3390/en15041588