Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach 1: Penman–Monteith (PM)-Based MODELS
2.2. Approach 2: Land Surface Models (LSMs)
- Two temperatures (i.e., the temperature of the canopy vegetation, and the temperature of both the ground cover and the soil surface, ):
- The evapotranspiration from the canopy, , has two parts: (1) , evaporation from the wetted fraction of the canopy, and (2) , transpiration of the soil water extracted by the root zone and water lost from the dry fraction of the canopy.
- The evapotranspiration from the ground cover and soil surface, , has three parts: (1) and (2) , which correspond to and for the ground cover, and (3) , direct evaporation from the soil surface.
2.3. Approach 3: Surface Energy Balance (SEB) Models
2.3.1. Retrieval of LST from Satellite TIR Observations
2.3.2. SEB Algorithms
One-Source (or One-Layer) Models
Two-Source (or Two-Layer) Models
3. Limitations and Challenges
3.1. Land Surface Temperature
3.2. Energy Balance Closure
3.3. Resistance Network
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Acronyms | |
SEB | Surface Energy Balance |
LSM | Land Surface Model |
ET | Evapotranspiration |
SF | Sap Flow |
EC | Eddy Covariance |
BR | Bowen Ratio |
PM | Penman–Monteith |
MT | Mass Transfer |
VIC | Variable Infiltration Capacity |
FEST-EWB | Flash-Flood Event-Based Spatially Distributed Rainfall-Runoff Transformation Energy Water Balance |
TIR | Thermal Infrared |
SEBS | Surface Energy Balance System |
METRIC | Mapping Evapotranspiration at High Resolution with Internalized Calibration |
SEBAL | Surface Energy Balance Algorithm for Land |
SEBI | Surface Energy Balance Index |
S-SEBI | Simplified Surface Energy Balance Index |
SSEB | Simplified Surface Energy Balance |
SSEBop | Operational Simplified Surface Energy Balance |
TSEB | Two Source Energy Balance |
TTME | Two-source Trapezoid Model for Evapotranspiration |
ALEXI | Atmosphere–Land Exchange Inverse |
DTD | Dual Temperature Difference |
ETEML | Enhanced Two-Source Evapotranspiration Model for Land |
TSTIM | Two-Source Time-Integrated Model |
HTEM | Hybrid dual-source scheme and Trapezoid framework–based Evapotranspiration Model |
FAO | Food and Agricultural Organization |
PROMET | Process Oriented Models for Evapotranspiration |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSG | Meteosat Second Generation |
GOES | Geostationary Operational Environmental Satellites |
DisALEXI | Disaggregated ALEXI |
VI | Vegetation Index |
PML | Penman–Monteith–Leuning |
ISBA | Interaction Soil–Biosphere–Atmosphere |
SEWAB | Surface Energy and Water Balance |
EASS | Ecosystem–Atmosphere Simulation Scheme |
DLM | Dynamic Land Model |
MOST | Monin–Obukhov Similarity Theory |
EEBT | Equilibrium Energy Balance Temperature |
BATS | Biosphere–Atmosphere Transfer Scheme |
TOPLATS | TOPMODEL-Based Land Surface–Atmosphere Transfer Scheme |
SVAT | Soil–Vegetation–Atmosphere Transfer |
SiB | Simple Biosphere Model |
NCEP | National Centers for Environmental Prediction |
AVHRR | Advanced Very High Resolution Radiometer |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
RTE | Radiative Transfer Equation |
D/N | Day/Night |
VPD | Vapor Pressure Deficit |
LST | Land Surface Temperature |
EF | Evaporative Fraction |
SWDI | Soil Water Deficit Index |
CWSI | Crop Water Stress Index |
DoY | Day of Year |
NDVI | Normalized Difference Vegetation Index |
LAI | Leaf Area Index |
LULC | Land Use Land Cover |
RH | Relative Humidity |
Symbols | |
E | Evaporation rate |
Actual evaporation | |
Potential evaporation | |
Evaporation rate due to net radiation | |
Slope of the saturation vapor pressure curve at air temperature T | |
Psychrometric constant | |
Evaporation rate due to mass transfer | |
Latent heat flux for wet condition | |
Bowen ratio | |
H | Sensible heat flux |
Sensible heat fluxes for dry boundaries | |
Sensible heat fluxes for wet boundaries | |
LE | Latent heat flux |
Potential latent heat flux | |
Net radiation flux | |
G | Soil heat flux |
Air density | |
Specific heat capacity of air at constant pressure | |
Surface resistance | |
Aerodynamic resistance to heat and/or vapor transport | |
Actual vapor pressure of air | |
Presents vapor pressure within the leaf | |
Air temperature | |
T | Surface temperature |
Saturation vapor pressure at Ta | |
Net radiation flux | |
Net radiation for canopy | |
Net radiation for soil | |
Aerodynamic conductance | |
Canopy conductance | |
f | Factor related to potential evaporation of soil surface |
Tr | Transpiration |
C | Heat capacity |
Canopy internal resistance | |
Canopy external resistance | |
Evaporation from intercepted water | |
Evaporation and sublimation from the soil | |
Canopy transpiration | |
Surface heat capacity | |
Change in land surface temperature of the system over time | |
Diffusion-limited maximum evaporation | |
Saturation specific humidity | |
Canopy temperature | |
Fractional area of canopy occupied by water | |
Transpiration by atmospheric demand | |
Water supply by roots | |
Evaporation from the wetted fraction of the canopy | |
Evaporation from the wetted fraction of the ground cover | |
Evapotranspiration from the ground cover and soil surface | |
, | Direct evaporation from the soil surface |
λ | Latent heat of vaporization |
Bulk boundary layer resistance | |
Aerodynamic resistance between ground and canopy airflow | |
Bulk stomatal resistance of upper story vegetation | |
Bulk stomatal resistance of ground vegetation | |
Bare soil surface resistance | |
Relative humidity within pore space of surface soil layer | |
Fractional cover of the ground cover | |
Wetness fraction of canopy | |
Wetness fraction of ground cover | |
Saturation vapor pressure at surface temperature | |
ϵ | Ratio of the molecular weight of water vapor to that of dry air |
Surface pressure | |
Single effective resistance | |
Aerodynamic resistance | |
n | Surface cover class index |
Maximum canopy evaporation | |
Architectural resistance | |
Intercepted water amount | |
Maximum amount of intercepted water | |
z | Depth of soil layer |
Θ | Volumetric soil water content |
D | Soil water diffusivity |
Fraction of green vegetation | |
Evaporation from the top shallow soil layer | |
Embodies canopy resistance | |
Average temperature of planetary boundary layer | |
Temperature for dry conditions controlled by radiation | |
Temperature for wet conditions controlled by evaporation | |
Surface albedo | |
Reference ET | |
Bleftness temperature at a viewing angle | |
Thermal emissivity at | |
Tsky | Hemispherical bleftness temperature of sky |
Trad | Radiometric surface temperature |
Incoming shortwave radiation | |
outgoing shortwave radiation | |
Incoming longwave radiation | |
outgoing longwave radiation | |
Potential ET for soil | |
Potential ET for canopy | |
Isoline slope | |
P | Surface atmospheric pressure |
Standard atmospheric pressure at sea level | |
w | Atmospheric precipitable water |
A variable for calculating w | |
Solar constant | |
Solar zenith angle | |
d | Sun–earth distance |
Atmospheric transmissivity | |
z | Elevation above mean sea level |
Extraterrestrial radiation | |
Empirical turbidity coefficient | |
Daily average of sun angle above the horizon | |
KBo | Transparency index for direct solar radiation |
KDo | Transparency index for diffuse sky radiation |
Kt | Empirical turbidity coefficient |
Geographical latitude | |
Turbidity coefficient | |
M | Optical length of atmosphere |
J | Parameter for considering the surface albedo effect |
I | Vapor optical parameter |
A variable for calculating I | |
Dew point temperature | |
b | Parameter for considering the air pressure effect on w |
c | Cloudiness percentage |
Incoming shortwave radiation for clear-sky conditions | |
Amount of low clouds | |
coth | Amount of other clouds |
Difference of minimum and maximum air temperatures | |
QFE | Average air pressure at desired location |
QFF | Average air pressure at sea level |
n | Actual sunshine hours |
N | Maximum possible sunshine hours |
Precipitation | |
e | Actual vapor pressure |
Stefan–Boltzmann constant | |
Incoming shortwave radiation for clear-sky conditions. | |
Solar declination | |
ωs | Sunset hour angle |
Atmospheric emissivity | |
Ratio of G to for areas with fully vegetated cover | |
Γs | Ratio of G to for bare soil areas |
Standard heights for measuring the wind speed | |
Standard heights for measuring the humidity | |
k | Von Karman constant |
Wind speed at the standard height | |
Moisture content at depth z | |
Rs,min,L | Limit value of incident radiation |
wcr | Field capacity |
wwilt | Soil moisture at the wilting point |
Stomatal resistance for a well-conditioned leaf | |
Fraction of LAI that contributes to the transfer of vapor and heat |
Appendix B
- 1.
- Net radiation flux ()
Row | Mathematical Structure | Sky Condition | Explanation | References |
---|---|---|---|---|
1 | Clear-sky condition | It is the simplest method, which uses the average atmospheric transmissivity. The model does not consider atmospheric transmissivity decrease in proportion to solar zenith angle increase; therefore, it is not recommended to use for data with an hourly basis. | [289] | |
2 | Clear-sky condition | This method has been developed using average hourly measurements for flux in Australia. | [290] | |
3 | Clear-sky condition | The method is based on the model provided by Lumb [291], which is usable for hourly, daily, and monthly scales. Since Lumb’s model is sensitive to local conditions, the coefficients of this relationship are obtained from a new fitness by measured fluxes in Canada. | [292] | |
4 | Clear-sky condition | The model has been calibrated by radiation data in Indian Ocean Islands. Saturation vapor pressure is applied to the model as an input, which leads to the improvement of resulting fluxes’ accuracy. However, seasonal changes in the sun–earth distance are not considered in the model. | [293] | |
5 | Clear-sky condition | It is a modified version of Zillman’s model due to considering seasonal changes in sun–earth distance. | [294] | |
6 | Clear-sky condition | This model has better performance than previous models because it uses surface albedo and cloud thickness data. Seasonal variability of sun–earth distance is also ignored in the model. | [295] | |
7 | Clear-sky condition | By adding seasonal variations of sun–earth distance, this model improved the performance of the previous method. | [294] | |
8 | Clear-sky condition | The model assumes that linearly increases in proportion to height. | [296] | |
9 | Clear-sky condition | The basis of the model is linearizing the law of radiation attenuation of Beer with an assumption of a sun angle above the horizon of 50 degrees, and it is valid for the stations where have a height of fewer than 6000 m with low air turbidity. Therefore, the model should be revised for conditions with high air turbidity. | [297] | |
10 | Clear-sky condition | Direct and diffuse radiations are differentiated in this model; therefore, detailed information is required to estimate fluxes. In addition, considering the effects of water vapor on shortwave radiation absorption leads to the improvement of estimates. | [298] | |
11 | −0.21 | Clear-sky condition | This model uses an empirical coefficient for turbidity (equal to 1 in clear-sky conditions), and it is complicated in comparison to other models. | [299] |
12 | All-sky condition | It is the simplest structure for calculating the radiation flux under all-sky conditions, which uses an average atmospheric transmissivity for estimating monthly fluxes. However, it is inappropriate for calculating radiation fluxes with an hourly temporal scale because changes of atmospheric transmissivity in proportion to solar zenith angle are not considered. | [300] | |
13 | All-sky condition | The used data are related to oceans with mid-latitude, and the cloudiness coefficient is a cubic function of total cloudiness. | [301] | |
14 | All-sky condition | In comparison to other models, this model uses more information such as total cloudiness I, low clouds (clow), and other clouds (coth = c-clow). | [271] | |
15 | All-sky condition | It is one of the simplest models for estimating which uses the difference of minimum and maximum air temperatures | [302] | |
16 | All-sky condition | This model is a modified form of the previous model (i.e., Hargreaves and Samani [302]) in which the average air pressure at the desired location (QFE) and the average air pressure at the sea level (QFF) are used. | [303] | |
17 | All-sky condition | Similar to the model introduced by Hargreaves and Samani [302], this model utilizes the difference between the maximum and minimum air temperatures. | [304] | |
18 | All-sky condition | It is the modified form of Hargreaves and Samani’s model, which depends on z. | [305] | |
19 | All-sky condition | It is another air temperature-based model that uses the difference between the maximum and minimum air temperatures. | [306] | |
20 | All-sky condition | It is the simplest sunshine hours-based model which utilizes the empirical coefficients and . | [307] | |
21 | All-sky condition | This model is a polynomial form of sunshine hours-based models. | [308] | |
22 | All-sky condition | It is a combined model which estimates the radiation flux using air temperature and sunshine hours. | [306] | |
23 | All-sky condition | It is a combined model in which air temperature, relative humidity, and sunshine hours are used to estimate the radiation flux. | [309] | |
24 | All-sky condition | It is a combined model in which air temperature, relative humidity, precipitation, and sunshine hours (actual and maximum) are used to estimate the radiation flux. | [310] |
Row | Mathematical Structure | Sky Condition | Explanation | References |
---|---|---|---|---|
1 | Clear-sky condition | The model has an empirical structure and is sensitive to local conditions. | [311] | |
2 | Clear-sky condition | Similar to the previous method, this empirical model is sensitive to local conditions. | [312] | |
3 | Clear-sky condition | The model is based on radiation transfer theory and is recommended for dry and humid weather conditions. | [313] | |
4 | Clear-sky condition | It is an empirical method, which only depends on air temperature. | [314] | |
5 | Clear-sky condition | This model follows an empirical structure, and it leads to overestimating under strictly dry weather conditions. | [315] | |
6 | Clear-sky condition | It is a model based on radiation transfer theory, which has been calibrated by ground observations. According to Prata [316], this model has provided the best estimation for compared to other models. | [316] | |
7 | Clear-sky condition | An empirical model that depends on and Ta. | [299] | |
8 | = 0.75 + 2 z | Clear-sky condition | It is an empirical method that is used in SEBAL and METRIC models. | [317] |
9 | Clear-sky condition | It is an empirical mode that only depends on air temperature. | [318] | |
10 | Clear-sky condition | This model underestimates under inversion conditions. | [319] | |
11 | Clear-sky condition | An empirical model that depends on and Ta. | [320] | |
12 | = 46.5(/) | Clear-sky condition | The model has shown better results than the models presented in rows 3, 4, 5, 9, and 11. | [316] |
13 | Clear-sky condition | [321] | ||
14 | All-sky condition | The model has been calibrated by data collected in Canada, and it has shown the best performance in Alaska and the Northern areas. | [322] | |
15 | All-sky condition | Since the data for calibrating the model have been collected from Alaska, this method is appropriate for cold weather conditions. | [323] | |
16 | All-sky condition | The data for calibrating the model have been collected in the summer. | [313] |
- 2.
- Soil heat flux ( )
- 3.
- Sensible heat flux ()
- 4.
- Latent heat flux ( or LE)
Inputs | Latitude = 0.55 (rad) DoY = 166 (-) 0.0820 (MJ·m−2·day−1) = 0.25 (-) = 0.5 (-) n = 11.38 (h) N = 14.045 (h) | |
From Equation (A5) | 0.968 | rad |
From Equation (A6) | 0.407 | rad |
From Equation (A7) | 1.838 | rad |
From Equation (A8) | 14.045 | hour |
From Equation (A4) | MJ·m−2·day−1 | |
From Equation (A3) | 314.063 | W·m−2 |
Inputs | 314.063 (W·m−2) = 0.25 (-) = 0.5 (-) n = 11.38 (h) N = 14.045 (h) = 41.327 (MJ·m−2·day−1) Ta,min24.47 Ta,max43.09 = 5.67 × 10−8 (W·m−2·K−4) RH = (%) | |
8.683 | kPa | |
3.07 | kPa | |
From Equation (A13) | = 0.777 | kPa |
359.544 | W·m−2 | |
From Equation (A12) | 5.67×10−8 = 74.206 | W·m−2 |
Inputs | = 0.24 (-) Rs,in = 314.063 (W·m−2) = 74.206 (W·m−2) | |
From Equation (A1) | 164.481 | W·m−2 |
Inputs | NDVI = 0.11 (-) NDVImax = 0.1 (-) NDVImin = 0.31 (-) = 0.05 (-) = 0.315 (-) 164.481 (W·m−2) | |
From Equation (A19) | 0.002268 | - |
From Equation (A15) | 51.71 | W·m−2 |
Inputs | = 287 (J·kg−1·K−1) 164.481 (W·m−2) 51.71 (W·m−2) Z = 695 (m) 8.683 (kPa) 3.07 (kPa) Ta = 33.78 = 1004 (J·kg−1·K−1) = 0.777 (kPa) = 0.062 (kPa·) = 100 (s·m−1) LAI = 0.19 (-) = = 2 (m) [329] [329] = 0.1 × = [81] For crop: d = 0.666 × h = 0.666 × 0.5 = 0.333 (m) For soil: d = 0.666 × h = 0.666 × 0 = 0.0 (m) k = 0.41 (-) = 1.138 (m·s−1) = 0.5276 (m3/m3) = 0.03 (m3/m3) | |
From Equation (A32) | = 5.876 | kPa |
From Equation (A18) | = 1.04 | Kg·m−3 |
From Equation (A21) | = 0.85 | m·s−1 |
From Equation (A20) | = 76.06 | s·m−1 |
From Equation (A20) | = 525.83 | s·m−1 |
From Equation (A33) | 1052.632 | s·m−1 |
From Equation (A24) | = 2875.71 | s·m−1 |
From Equation (A31) | 0.293 | kPa·°C−1 |
= 0.062 | kPa. | |
From Equation (A30) | W·m−2 |
Inputs | n = 11.38 (h) N = 14.045 (h) Pr = 0 (mm) RH = 13.23 (%) Ta = 33.78 = 41.327 (MJ·m−2·day−1) | |
From Equation (A2) | 11.6 = 301.361 | W·m−2 |
Inputs | = 5.67 × 10−8 (W·m−2·K−4) Ta = 33.78 | |
= 0.866 | - | |
From Equation (A9) | 436.1209 | W·m−2 |
Inputs | NDVI = 0.11 (-) LAI = 0.19 (-) = 5.67 × 10−8 (W·m−2·K−4) LST = unknown (K) | |
From Equation (A11) | 0.9519 | - |
From Equation (A10) | 5.397 × 10−8 | W·m−2 |
Inputs | = 0.24 (-) Rs,in = 301.361 (W·m−2) Rl,in = 436.1209 (W·m−2) Rl,out = 5.397 × 10−8 (W·m−2) | |
From Equation (A1) | 5.397 e−8 = 665.1555.397 × 10−8 | W·m−2 |
Inputs | = 0.05 (-) = 0.315 (-) 0.002268 (-) = 665.1555.397 × 10−8 (W·m−2) | |
From Equation (A15) | G = (665.1555.397 × 10−8 209.124–1.6968 × 10−8 LST4 | W·m−2 |
Inputs | 0.002268 (-) = 1.04 (Kg.m−3) Ta = 33.78 = 1004 (J·kg−1·K−1) LST = unknown = 76.06 (s·m−1) = 525.83 (s·m−1) | |
From Equation (A17) | (LST) | W·m−2 |
Inputs | = 0.062 (kPa.) 0.002268 (-) = 0.5276 (m3/m3) = 0.03 (m3/m3) = 1.04 (Kg.m−3) Ta = 33.78 = 1004 (J.kg−1.K−1) LST = unknown = 76.06 (s·m−1) = 525.83 (s·m−1) rc,min = 100 (s·m−1) rc,max = 5000 (s·m−1) Rs,min,L = 100 (W/m2) LAI = 0.19 (-) = 301.361 (W/m2) = 0.1624 (m3/m3) = = 0.3957 (m3/m3) g = 0.025 (h/pa) = 2875.71 (s·m−1) = 0.777 (kPa) | |
From Equation (A23) | kPa | |
From Equation (A26) | 0.9468 | - |
From Equation (A27) | = 0 | - |
From Equation (A28) | - | |
From Equation (A29) | 0.872 | - |
From Equation (A25) | = ∞ | s·m−1 |
From Equation (A22) | W/m2 |
Inputs | (volumetric heat capacity of soil) = 1268828.50 (J.) (LST at month t) = unknown+273.15 (K) (LST at month t-1) = 39.45+273.15 (K) (soil depth) = 0.1 m 665.1555.397 × 10−8 G = 209.124–1.6968 × 10−8 LST4 1.948 × (LST-33.78) | |
→ Newton Raphson → LST = 45.27 | W/m2 | |
From Equation (A22) | W/m2 |
Inputs | n = 11.38 (h) N = 14.045 (h) Pr = 0 (mm) RH = 13.23 (%) Ta = 33.78 = 41.327 (MJ·m−2·day−1) | |
From Equation (A2) | W·m−2 |
Inputs | = 5.67 × 10−8 (W·m−2·K−4) Ta = 33.78 | |
= 0.866 | - | |
From Equation (A9) | 436.1209 | W·m−2 |
Inputs | NDVI = 0.11 (-) LAI = 0.19 (-) = 5.67 × 10−8 (W·m−2·K−4) LST = 42.53 | |
From Equation (A11) | 0.9519 | - |
From Equation (A10) | 535.99 | W·m−2 |
Inputs | = 0.24 (-) Rs,in = 301.361 (W·m−2) Rl,in = 436.1209 (W·m−2) Rl,out = 490.013 (W·m−2) | |
From Equation (A1) | 129.157 | W·m−2 |
Inputs | NDVI = 0.11 (-) NDVImax = 0.1 (-) NDVImin = 0.31 (-) = 0.05 (-) = 0.315 (-) 0.002268 (-) | |
From Equation (A15) | 40.6 | W·m−2 |
Inputs | Ta = 33.78 = 1004 (J. kg−1.K−1) LST = 42.53 For crop → = 76.06 (s·m−1) For soil → = 525.83 (s·m−1) = 1.04 (Kg.m−3) 0.002268 (-) | |
From Equation (A17) | W·m−2 |
Inputs | 129.157 (W·m−2) = 13.58 (W·m−2) 40.6 (W·m−2) | |
Residual approach | 74.96 | W·m−2 |
References
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Doorenbos, J. Guidelines for Predicting Crop Water Requirements; Food and Agriculture organization: Rome, Italy, 1975; Irrig. Drainage paper; Volume 24. [Google Scholar]
- Singh, R.K.; Senay, G.B. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States. Water 2016, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Hassaballa, A.A.; Patil, V.C. Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrol. Earth Syst. Sci. 2017, 21, 6135–6151. [Google Scholar] [CrossRef] [Green Version]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Kairu, E. A review of methods for estimating evapotranspiration. GeoJournal 1991, 25, 371–376. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Singh, V. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour. Manag. 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Wróblewski, P.; Drożdż, W.; Lewicki, W.; Miązek, P. Methodology for assessing the impact of aperiodic phenomena on the energy balance of propulsion engines in vehicle electromobility systems for given areas. Energies 2021, 14, 2314. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Monteith, J. Evaporation and environment. The state and movement of water in living organisms. In Symposium of the Society of Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Luo, X.; Chen, J.M.; Liu, J.; Black, T.A.; Croft, H.; Staebler, R.; He, L.; Arain, M.A.; Chen, B.; Mo, G. Comparison of big-leaf, two-big-leaf, and two-leaf upscaling schemes for evapotranspiration estimation using coupled carbon-water modeling. J. Geophys. Res. Biogeosci. 2018, 123, 207–225. [Google Scholar] [CrossRef]
- Alves, I.; Perrier, A.; Pereira, L. Aerodynamic and surface resistances of complete cover crops: How good is the “big leaf”? Trans. ASAE 1998, 41, 345. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [Green Version]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Overgaard, J.; Rosbjerg, D.; Butts, M. Land-surface modelling in hydrological perspective–a review. Biogeosciences 2006, 3, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Schultz, K.; Franks, S.; Beven, K. TOPUP–A TOPMODEL based SVAT Model to Calculate Evaporative Fluxes between the Land Surface and the Atmosphere, Version 1.1, Program Documentation; Department of Environmental Science, Lancaster University: Lancaster, UK, 1998. [Google Scholar]
- Mauser, W.; Schädlich, S. Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data. J. Hydrol. 1998, 212, 250–267. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Corbari, C.; Mancini, M. Calibration and validation of a distributed energy–water balance model using satellite data of land surface temperature and ground discharge measurements. J. Hydrometeorol. 2014, 15, 376–392. [Google Scholar] [CrossRef]
- Corbari, C.; Ravazzani, G.; Mancini, M. A distributed thermodynamic model for energy and mass balance computation: FEST–EWB. Hydrol. Process. 2011, 25, 1443–1452. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, W.; Yan, N.; Xing, Q.; Xu, J.; Ma, Z.; Wang, L. Regional actual evapotranspiration estimation with land and meteorological variables derived from multi-source satellite data. Remote Sens. 2020, 12, 332. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Wood, E.F. The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using ensemble Kalman filtering: A case study based on ESTAR measurements during SGP97. Adv. Water Resour. 2003, 26, 137–149. [Google Scholar] [CrossRef]
- Famiglietti, J.; Wood, E.F. Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res. 1994, 30, 3061–3078. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, V. A simple surface temperature assimilation scheme for use in land surface models. Water Resour. Res. 2000, 36, 3687–3700. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kaleita, A.L. Assimilation of Surface Temperature in a Land-Surface Model; IAHS-AISH Publications: Wallingford, UK, 2000; pp. 197–201. [Google Scholar]
- Gutmann, E.D.; Small, E.E. A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models. Water Resour. Res. 2010, 46, 46. [Google Scholar] [CrossRef] [Green Version]
- Corbari, C.; Sobrino, J.; Mancini, M.; Hidalgo, V. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data. Hydrol. Earth Syst. Sci. 2010, 14, 2141–2151. [Google Scholar] [CrossRef] [Green Version]
- Corbari, C.; Sobrino, J.A.; Mancini, M.; Hidalgo, V. Mass and energy flux estimates at different spatial resolutions in a heterogeneous area through a distributed energy–water balance model and remote-sensing data. Int. J. Remote Sens. 2013, 34, 3208–3230. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Calcagno, G.; Mendicino, G.; Monacelli, G.; Senatore, A.; Versace, P. Distributed estimation of actual evapotranspiration through remote sensing techniques. In Methods and Tools for Drought Analysis and Management; Springer: Berlin/Heidelberg, Germany, 2007; pp. 125–147. [Google Scholar]
- Taheri, M.; Emadzadeh, M.; Gholizadeh, M.; Tajrishi, M.; Ahmadi, M.; Moradi, M. Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin. Agric. Water Manag. 2019, 213, 782–791. [Google Scholar] [CrossRef]
- Shilpakar, R.L.; Bastiaanssen, W.G.; Molden, D.J. A remote sensing-based approach for water accounting in the East Rapti River Basin, Nepal. Himal. J. Sci. 2011, 7, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.; Hulbert, S.; Murrihy, E.; Bastiaanssen, W.M.R.; Molloy, R. Using satellite imagery to measure evaporation from storages–solving the great unknown in water accounting. In Proceedings of the Irrigation and Drainage Conference; Irrigation Australia Ltd.: Swan Hill, VIC, Australia, 2009. [Google Scholar]
- Karimi, P.; Bastiaanssen, W.G. Spatial evapotranspiration, rainfall and land use data in water accounting–Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef] [Green Version]
- Zwart, S.J.; Bastiaanssen, W.G.; de Fraiture, C.; Molden, D.J. WATPRO: A remote sensing based model for mapping water productivity of wheat. Agric. Water Manag. 2010, 97, 1628–1636. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Roerink, G.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Diak, G.R.; Anderson, M.C.; Norman, J.M. Estimating fluxes on continental scales using remotely sensed data in an atmospheric–land exchange model. J. Appl. Meteorol. 1999, 38, 1352–1369. [Google Scholar] [CrossRef]
- Norman, J.; Kustas, W.; Prueger, J.; Diak, G. Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors. Water Resour. Res. 2000, 36, 2263–2274. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Su, H.; Zhang, R.; Tian, J.; Li, L. An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation. Remote Sens. Environ. 2015, 168, 54–65. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X. Energy balance closures in diverse ecosystems of an endorheic river basin. Agric. For. Meteorol. 2019, 274, 118–131. [Google Scholar] [CrossRef]
- Grachev, A.A.; Fairall, C.W.; Blomquist, B.W.; Fernando, H.J.; Leo, L.S.; Otárola-Bustos, S.F.; Wilczak, J.M.; McCaffrey, K.L. On the surface energy balance closure at different temporal scales. Agric. For. Meteorol. 2020, 281, 107823. [Google Scholar] [CrossRef]
- Foken, T.; Oncley, S. Workshop on instrumental and methodical problems of land surface flux measurements. Bull. Am. Meteorol. Soc. 1995, 1191–1193. [Google Scholar] [CrossRef] [Green Version]
- Foken, T. The energy balance closure problem: An overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef] [PubMed]
- Foken, T.; Mauder, M.; Liebethal, C.; Wimmer, F.; Beyrich, F.; Leps, J.-P.; Raasch, S.; DeBruin, H.A.; Meijninger, W.M.; Bange, J. Energy balance closure for the LITFASS-2003 experiment. Theor. Appl. Climatol. 2010, 101, 149–160. [Google Scholar] [CrossRef]
- Leuning, R.; Van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity. Agric. For. Meteorol. 2013, 171, 137–152. [Google Scholar] [CrossRef] [Green Version]
- McGloin, R.; Šigut, L.; Havránková, K.; Dušek, J.; Pavelka, M.; Sedlák, P. Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agric. For. Meteorol. 2018, 248, 418–431. [Google Scholar] [CrossRef]
- Mauder, M.; Desjardins, R.L.; Pattey, E.; Worth, D. An attempt to close the daytime surface energy balance using spatially-averaged flux measurements. Bound. Layer Meteorol. 2010, 136, 175–191. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, Y.; Liu, S.; Shi, W.; Wang, J. Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. J. Appl. Meteorol. Climatol. 2017, 56, 127–140. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T.; Cuxart, J. Surface-energy-balance closure over land: A review. Bound. Layer Meteorol. 2020, 177, 395–426. [Google Scholar] [CrossRef]
- Katerji, N.; Rana, G.; Fahed, S. Parameterizing canopy resistance using mechanistic and semi-empirical estimates of hourly evapotranspiration: Critical evaluation for irrigated crops in the Mediterranean. Hydrol. Process. 2011, 25, 117–129. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, C.; Oue, H.; Sugimoto, H. Comparison of different methods for estimating soil surface evaporation in a bare field. Meteorol. Atmos. Phys. 2012, 118, 143–149. [Google Scholar] [CrossRef]
- Yan, H.; Shi, H.; Hiroki, O.; Zhang, C.; Xue, Z.; Cai, B.; Wang, G. Modeling bulk canopy resistance from climatic variables for predicting hourly evapotranspiration of maize and buckwheat. Meteorol. Atmos. Phys. 2015, 127, 305–312. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N.; Mastrorilli, M.; El Moujabber, M.; Brisson, N. Validation of a model of actual evapotranspiration for water stressed soybeans. Agric. For. Meteorol. 1997, 86, 215–224. [Google Scholar] [CrossRef]
- Alves, I.; Pereira, L.S. Modelling surface resistance from climatic variables? Agric. Water Manag. 2000, 42, 371–385. [Google Scholar] [CrossRef]
- Steduto, P.; Todorovic, M.; Caliandro, A.; Rubino, P. Daily reference evapotranspiration estimates by the Penman-Monteith equation in Southern Italy. Constant vs. variable canopy resistance. Theor. Appl. Climatol. 2003, 74, 217–225. [Google Scholar] [CrossRef]
- Farahani, H.J.; Howell, T.A.; Shuttleworth, W.J.; Bausch, W.C. Evapotranspiration: Progress in measurement and modeling in agriculture. Trans. ASABE 2007, 50, 1627–1638. [Google Scholar] [CrossRef]
- Jarvis, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 273, 593–610. [Google Scholar]
- Stewart, J.B. Modelling surface conductance of pine forest. Agric. For. Meteorol. 1988, 43, 19–35. [Google Scholar] [CrossRef]
- Dolman, A. A multiple-source land surface energy balance model for use in general circulation models. Agric. For. Meteorol. 1993, 65, 21–45. [Google Scholar] [CrossRef]
- Liu, S.; Lu, L.; Mao, D.; Jia, L. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrol. Earth Syst. Sci. 2007, 11, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J. Principles of Environmental Physics; Edward Arnold: London, UK, 1973; 214p. [Google Scholar]
- Seguin, B.; Baelz, S.; Monget, J.-M.; Petit, V. Utilisation de la thermographie IR pour l’estimation de l’évaporation régionale II.-Résultats obtenus à partir des données de satellite. Agronomie 1982, 2, 113–115. [Google Scholar] [CrossRef]
- Hatfield, J. Evapotranspiration obtained from remote sensing methods. In Advances in Irrigation; Elsevier: Amsterdam, The Netherlands, 1983; Volume 2, pp. 395–416. [Google Scholar]
- Choudhury, B.; Reginato, R.; Idso, S. An analysis of infrared temperature observations over wheat and calculation of latent heat flux. Agric. For. Meteorol. 1986, 37, 75–88. [Google Scholar] [CrossRef]
- Moran, M.; Clarke, T.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Thom, A.S. Momentum, mass, and heat exchange of plant communities. Veg. Atmos. 1975, 1, 57–109. [Google Scholar]
- Brutsaert, W.H. Evaporation into the Atmosphere; D. Reidel: London, UK, 1982. [Google Scholar]
- Monteith, J.; Unsworth, M. 1990: Principles of Environmental Physics; Edward Arnold: London, UK, 1990. [Google Scholar]
- Manabe, S. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Weather Rev. 1969, 97, 739–774. [Google Scholar] [CrossRef]
- Budyko, M.I. The heat balance of the earth’s surface. Sov. Geogr. 1961, 2, 3–13. [Google Scholar] [CrossRef]
- Milly, P. Potential evaporation and soil moisture in general circulation models. J. Clim. 1992, 5, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Delworth, T.; Manabe, S. The influence of soil wetness on near-surface atmospheric variability. J. Clim. 1989, 2, 1447–1462. [Google Scholar] [CrossRef]
- Webb, E. Evaluation of evapotranspiration and canopy resistance: An alternative combination approach. In Developments in Agricultural and Managed Forest Ecology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 13, pp. 151–166. [Google Scholar]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Beven, K.J.; Quinn, P. Similarity and scale effects in the water balance of heterogeneous area. In Proceedings of the Conference on the Balance of Water--Present and Future, AGMET, Dublin, Ireland, 7–9 September 1994. [Google Scholar]
- Franks, S.; Beven, K.J.; Quinn, P.; Wright, I. On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: Equifinality and the problem of robust calibration. Agric. For. Meteorol. 1997, 86, 63–75. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Leuning, R.; Zhang, Y.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [Green Version]
- Avissar, R.; Pielke, R.A. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Weather Rev. 1989, 117, 2113–2136. [Google Scholar] [CrossRef] [Green Version]
- Noilhan, J.; Planton, S. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Mengelkamp, H.-T.; Warrach, K.; Raschke, E. SEWAB–a parameterization of the surface energy and water balance for atmospheric and hydrologic models. Adv. Water Resour. 1999, 23, 165–175. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Heilman, J.; McInnes, K.; Savage, M.; Gesch, R.; Lascano, R. Soil and canopy energy balances in a west Texas vineyard. Agric. For. Meteorol. 1994, 71, 99–114. [Google Scholar] [CrossRef]
- Ham, J.; Heilman, J. Aerodynamic and surface resistances affecting energy transport in a sparse crop. Agric. For. Meteorol. 1991, 53, 267–284. [Google Scholar] [CrossRef]
- Beven, K. Changing ideas in hydrology—the case of physically-based models. J. Hydrol. 1989, 105, 157–172. [Google Scholar] [CrossRef]
- Demarty, J.; Ottle, C.; Braud, I.; Olioso, A.; Frangi, J.; Bastidas, L.; Gupta, H. Using a multiobjective approach to retrieve information on surface properties used in a SVAT model. J. Hydrol. 2004, 287, 214–236. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Cheema, M.; Immerzeel, W.; Miltenburg, I.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Shugart, H.H.; Fuentes, J.D.; Black, T.; Shewchuk, S.R. Micrometeorology, biophysical exchanges and NEE decomposition in a two-story boreal forest—Development and test of an integrated model. Agric. For. Meteorol. 1999, 94, 123–148. [Google Scholar] [CrossRef]
- Baldocchi, D.; Harley, P. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application. Plant Cell Environ. 1995, 18, 1157–1173. [Google Scholar] [CrossRef]
- Stanghellini, C. Transpiration of GREENHOUSE Crops: An Aid to Climate Management; Wageningen University and Research: Wageningen, The Netherlands, 1987. [Google Scholar]
- Chen, B.; Chen, J.M.; Ju, W. Remote sensing-based ecosystem–atmosphere simulation scheme (EASS)—Model formulation and test with multiple-year data. Ecol. Model. 2007, 209, 277–300. [Google Scholar] [CrossRef]
- Govind, A.; Chen, J.M.; Margolis, H.; Ju, W.; Sonnentag, O.; Giasson, M.-A. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2. 0): Model description and test in a boreal ecosystem in Eastern North America. J. Hydrol. 2009, 367, 200–216. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A. A review on land surface processes modelling over complex terrain. Adv. Meteorol. 2015, 2015, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, B.; Black, T.A.; Innes, J.L.; Wang, G.; Kiely, G.; Hirano, T.; Wohlfahrt, G. Comparison of terrestrial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models. J. Geophys. Res. Biogeosci. 2013, 118, 1715–1731. [Google Scholar] [CrossRef]
- Deardorff, J.W. Dependence of air-sea transfer coefficients on bulk stability. J. Geophys. Res. 1968, 73, 2549–2557. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Deardorff, J.W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. Ocean. 1978, 83, 1889–1903. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Jaeger, J.; Washington, W.M.; Wolski, R. Boundary Subroutine for the NCAR Global Climate Model; National Center for Atmospheric Research: Boulder, CO, USA, 1981. [Google Scholar]
- Dickinson, R.E. Modeling evapotranspiration for three-dimensional global climate models. Clim. Process. Clim. Sensit. 1984, 29, 58–72. [Google Scholar]
- Dickinson, R.E. Biosphere/Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model; Technical; NCAR: Boulder, CO, USA, 1986. [Google Scholar]
- Yang, Z.-L.; Dickinson, R.E. Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance. Glob. Planet. Chang. 1996, 13, 117–134. [Google Scholar] [CrossRef]
- Sellers, P.; Mintz, Y.; Sud, Y.e.a.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef] [Green Version]
- Koster, R.D.; Suarez, M.J. Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res. Atmos. 1992, 97, 2697–2715. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Bowling, L.C.; Lettenmaier, D.P. Variable infiltration capacity cold land process model updates. Glob. Planet. Chang. 2003, 38, 151–159. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Shuttleworth, W. Evaporation in: Maidment, DR Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Franchini, M.; Pacciani, M. Comparative analysis of several conceptual rainfall-runoff models. J. Hydrol. 1991, 122, 161–219. [Google Scholar] [CrossRef]
- Zhao, R. The Xinganjiang Model. In Proceedings of the Hydrological Forecasting Proceedings Oxford Symposium, IASH 129; IAHS-AISH Publications: Wallingford, UK, 1980; pp. 351–356. [Google Scholar]
- Mahrt, L.; Ek, M. The influence of atmospheric stability on potential evaporation. J. Appl. Meteorol. Climatol. 1984, 23, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Prata, A.; Caselles, V.; Coll, C.; Sobrino, J.; Ottle, C. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sens. Rev. 1995, 12, 175–224. [Google Scholar] [CrossRef]
- Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 43, 67–85. [Google Scholar] [CrossRef]
- Hook, S.J.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Susskind, J.; Rosenfield, J.; Reuter, D.; Chahine, M. Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N. J. Geophys. Res. Atmos. 1984, 89, 4677–4697. [Google Scholar] [CrossRef]
- Chedin, A.; Scott, N.; Wahiche, C.; Moulinier, P. The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series. J. Appl. Meteorol. Climatol. 1985, 24, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Price, J.C. Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect. Remote Sens. Environ. 1983, 13, 353–361. [Google Scholar] [CrossRef]
- Mushkin, A.; Balick, L.K.; Gillespie, A.R. Extending surface temperature and emissivity retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote Sens. Environ. 2005, 98, 141–151. [Google Scholar] [CrossRef]
- Li, F.; Jackson, T.J.; Kustas, W.P.; Schmugge, T.J.; French, A.N.; Cosh, M.H.; Bindlish, R. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens. Environ. 2004, 92, 521–534. [Google Scholar] [CrossRef]
- Dash, P.; Göttsche, F.-M.; Olesen, F.-S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Abbott, E.A.; Gilson, L.; Hulley, G.; Jiménez-Muñoz, J.-C.; Sobrino, J.A. Residual errors in ASTER temperature and emissivity standard products AST08 and AST05. Remote Sens. Environ. 2011, 115, 3681–3694. [Google Scholar] [CrossRef]
- Sobrino, J.; Sòria, G.; Prata, A. Surface temperature retrieval from Along Track Scanning Radiometer 2 data: Algorithms and validation. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of sea surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Price, J.C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. Atmos. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.-L. Towards a local split window method over land surfaces. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Sobrino, J.A.; Valor, E. On the atmospheric dependence of the split-window equation for land surface temperature. Remote Sens. 1994, 15, 105–122. [Google Scholar] [CrossRef]
- Ulivieri, C.; Castronuovo, M.; Francioni, R.; Cardillo, A. A split window algorithm for estimating land surface temperature from satellites. Adv. Space Res. 1994, 14, 59–65. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Sobrino, J.; Coll, C.; Caselles, V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sens. Environ. 1991, 38, 19–34. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Sobrino, J.; Li, Z.; Stoll, M.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Tang, B.; Bi, Y.; Li, Z.-L.; Xia, J. Generalized split-window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) data. Sensors 2008, 8, 933–951. [Google Scholar] [CrossRef] [Green Version]
- Atitar, M.; Sobrino, J.A. A split-window algorithm for estimating LST from Meteosat 9 data: Test and comparison with in situ data and MODIS LSTs. IEEE Geosci. Remote Sens. Lett. 2008, 6, 122–126. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Zhou, W.; Liu, R. Development of split-window algorithm for land surface temperature estimation from the VIRR/FY-3A measurements. IEEE Geosci. Remote Sens. Lett. 2013, 10, 952–956. [Google Scholar] [CrossRef]
- Francois, C.; Ottlé, C. Atmospheric corrections in the thermal infrared: Global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data. IEEE Trans. Geosci. Remote Sens. 1996, 34, 457–470. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison. J. Geophys. Res. Atmos. 1997, 102, 16697–16713. [Google Scholar] [CrossRef]
- Sobrino, J.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R. Implementation of GOES-based land surface temperature diurnal cycle to AVHRR. Int. J. Remote Sens. 2005, 26, 3975–3984. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R. Retrieval of surface temperature from the MSG-SEVIRI observations: Part I. Methodology. Int. J. Remote Sens. 2007, 28, 5255–5272. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R.T. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES-8). J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Chedin, A.; Scott, N.; Berroir, A. A single-channel, double-viewing angle method for sea surface temperature determination from coincident Meteosat and TIROS-N radiometric measurements. J. Appl. Meteorol. Climatol. 1982, 21, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.J. Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer: 1. Theory. J. Geophys. Res. Atmos. 1993, 98, 16689–16702. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C. Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Cuenca, J. Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt. 1999, 38, 3931–3936. [Google Scholar] [CrossRef]
- Watson, K. Spectral ratio method for measuring emissivity. Remote Sens. Environ. 1992, 42, 113–116. [Google Scholar] [CrossRef]
- Caselles, V.; Coll, C.; Valor, E. Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. Int. J. Remote Sens. 1997, 18, 1009–1027. [Google Scholar] [CrossRef]
- Wan, Z. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD). Inst. Comput. Earth Syst. Sci. St. Barbar. 1999, 75, 18. [Google Scholar]
- Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar]
- Choudhury, B.J.; Menenti, M. Parameteraization of Land Surface Evaporation by Means of Location Dependent Potential Evaporation and Surface Temperature Range; Department for Environment, Food and Rural Affairs (Defra): London, UK, 1993; Volume 212, pp. 561–568. [Google Scholar]
- Jackson, R.D.; Idso, S.; Reginato, R.; Pinter Jr, P. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Idso, S.; Jackson, R.; Pinter Jr, P.; Reginato, R.; Hatfield, J. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Van den Hurk, B. Energy balance based surface flux estimation from satellite data, and its application for surface moisture assimilation. Meteorol. Atmos. Phys. 2001, 76, 43–52. [Google Scholar] [CrossRef]
- Kilic, A.; Allen, R.; Trezza, R.; Ratcliffe, I.; Kamble, B.; Robison, C.; Ozturk, D. Sensitivity of evapotranspiration retrievals from the METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature. Remote Sens. Environ. 2016, 185, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-G.; Wang, W.; Huang, D.; Yong, B.; Chen, X. Modifying SEBAL model based on the trapezoidal relationship between land surface temperature and vegetation index for actual evapotranspiration estimation. Remote Sens. 2014, 6, 5909–5937. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.; Anderson, M.; Kustas, W. Are Single-Source, Remote-Sensing Surface-Flux Models Too Simple? In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2006; pp. 170–177. [Google Scholar]
- Brutsaert, W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions. Rev. Geophys. 1999, 37, 439–451. [Google Scholar] [CrossRef]
- Byun, K.; Liaqat, U.W.; Choi, M. Dual-model approaches for evapotranspiration analyses over homo-and heterogeneous land surface conditions. Agric. For. Meteorol. 2014, 197, 169–187. [Google Scholar] [CrossRef]
- Webster, E.; Ramp, D.; Kingsford, R.T. Incorporating an iterative energy restraint for the Surface Energy Balance System (SEBS). Remote Sens. Environ. 2017, 198, 267–285. [Google Scholar] [CrossRef] [Green Version]
- McShane, R.R.; Driscoll, K.P.; Sando, R. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents. In Scientific Investigations Report 2017–5087; US Geological Survey: Reston, VA, USA, 2017; p. 19. [Google Scholar]
- Sobrino, J.; Gómez, M.; Jiménez-Muñoz, J.; Olioso, A. Application of a simple algorithm to estimate daily evapotranspiration from NOAA–AVHRR images for the Iberian Peninsula. Remote Sens. Environ. 2007, 110, 139–148. [Google Scholar] [CrossRef]
- Rocha, N.S.d.; Käfer, P.S.; Skokovic, D.; Veeck, G.; Diaz, L.R.; Kaiser, E.A.; Carvalho, C.M.; Cruz, R.C.; Sobrino, J.A.; Roberti, D.R. The Influence of Land Surface Temperature in Evapotranspiration Estimated by the S-SEBI Model. Atmosphere 2020, 11, 1059. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Prakash Mohan, M.; Rajitha, K.; Varma, M.R. Integration of soil moisture as an auxiliary parameter for the anchor pixel selection process in SEBAL using Landsat 8 and Sentinel-1A images. Int. J. Remote Sens. 2020, 41, 1214–1231. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Silva, A.M.; da Silva, R.M.; Santos, C.A.G. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 1–11. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sens. Environ. 2017, 196, 178–192. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R.; Kjaersgaard, J. Mapping evapotranspiration at high resolution, applications manual for landsat satellite imagery. Version 2010, 2, 248. [Google Scholar]
- Senay, G.B.; Budde, M.E.; Verdin, J.P. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model. Agric. Water Manag. 2011, 98, 606–618. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’Shaughnessy, S.A. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv. Water Resour. 2012, 50, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Komatsu, T.S. Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. J. Appl. Meteorol. 2003, 42, 1330–1334. [Google Scholar] [CrossRef]
- Anderson, M.; Norman, J.; Diak, G.; Kustas, W.; Mecikalski, J. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- McNaughton, K.; Spriggs, T. A mixed-layer model for regional evaporation. Bound.-Layer Meteorol. 1986, 34, 243–262. [Google Scholar] [CrossRef]
- Norman, J.; Anderson, M.; Kustas, W.; French, A.; Mecikalski, J.; Torn, R.; Diak, G.; Schmugge, T.; Tanner, B. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T. An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Nishida, K.; Nemani, R.R.; Running, S.W.; Glassy, J.M. An operational remote sensing algorithm of land surface evaporation. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- Owen, T.; Carlson, T.; Gillies, R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- PRiCE, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Gillies, R.; Kustas, W.; Humes, K. A verification of the’triangle’method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S.; Guo, W.; Jutla, A.S.; Senarath, S.U.; Ramsay, B.H.; Eltahir, E. A satellite-based daily actual evapotranspiration estimation algorithm over South Florida. Glob. Planet. Chang. 2009, 67, 62–77. [Google Scholar] [CrossRef]
- Nemani, R.; Pierce, L.; Running, S.; Goward, S. Developing satellite-derived estimates of surface moisture status. J. Appl. Meteorol. Climatol. 1993, 32, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shang, S. A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: Algorithm and model test. J. Geophys. Res. Atmos. 2013, 118, 2284–2300. [Google Scholar] [CrossRef]
- Petropoulos, G.; Carlson, T.; Wooster, M.; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 2009, 33, 224–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Tian, J.; Su, H.; Sun, X.; Chen, S.; Xia, J. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval. Sensors 2008, 8, 6165–6187. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Tian, J.; Su, H.; Sun, X.; Chen, S.; He, H.; Zhao, L. Impact of the spatial domain size on the performance of the Ts-VI triangle method in terrestrial evapotranspiration estimation. Remote Sens. 2013, 5, 1998–2013. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.R.; Hain, C.R.; Crow, W.T.; Anderson, M.C.; Kustas, W.P. Microwave implementation of two-source energy balance approach for estimating evapotranspiration. Hydrol. Earth Syst. Sci. 2018, 22, 1351–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brutsaert, W.; Sugita, M. Sensible heat transfer parameterization for surfaces with anisothermal dense vegetation. J. Atmos. Sci. 1996, 53, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Hall, F.G.; Huemmrich, K.F.; Goetz, S.J.; Sellers, P.J.; Nickeson, J.E. Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. J. Geophys. Res. Atmos. 1992, 97, 19061–19089. [Google Scholar] [CrossRef]
- Vining, R.; Blad, B. Estimation of sensible heat flux from remotely sensed canopy temperatures. J. Geophys. Res. Atmos. 1992, 97, 18951–18954. [Google Scholar] [CrossRef]
- Sun, J.; Mahrt, L. Relationship of surface heat flux to microscale temperature variations: Application to BOREAS. Bound.-Layer Meteorol. 1995, 76, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Massman, W.; Grantz, D.A. Aerodynamic variables in the bulk formulation of turbulent fluxes. Bound.-Layer Meteorol. 1999, 91, 109–125. [Google Scholar] [CrossRef]
- Qualls, R.J.; Brutsaert, W. Effect of vegetation density on the parameterization of scalar roughness to estimate spatially distributed sensible heat fluxes. Water Resour. Res. 1996, 32, 645–652. [Google Scholar] [CrossRef]
- Kustas, W.P. Estimates of evapotranspiration with a one-and two-layer model of heat transfer over partial canopy cover. J. Appl. Meteorol. Climatol. 1990, 29, 704–715. [Google Scholar] [CrossRef]
- Kustas, W.P.; Choudhury, B.J.; Moran, M.S.; Reginato, R.J.; Jackson, R.D.; Gay, L.W.; Weaver, H.L. Determination of sensible heat flux over sparse canopy using thermal infrared data. Agric. For. Meteorol. 1989, 44, 197–216. [Google Scholar] [CrossRef]
- Stewart, J.B.; Kustas, W.P.; Humes, K.S.; Nichols, W.D.; Moran, M.S.; de Bruin, H.A. Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas. J. Appl. Meteorol. Climatol. 1994, 33, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Lhomme, J.-P.; Troufleau, D.; Monteny, B.; Chehbouni, A.; Bauduin, S. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the kB− 1 parameter. J. Hydrol. 1997, 188, 839–854. [Google Scholar] [CrossRef]
- Chehbouni, A.; Seen, D.L.; Njoku, E.; Monteny, B. Examination of the difference between radiative and aerodynamic surface temperatures over sparsely vegetated surfaces. Remote Sens. Environ. 1996, 58, 177–186. [Google Scholar] [CrossRef]
- Troufleau, D.; Lhomme, J.-P.; Monteny, B.; Vidal, A. Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of the kB− 1 parameter. J. Hydrol. 1997, 188, 815–838. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, B.; Yan, N.; Zhu, W.; Xing, Q. A method for sensible heat flux model parameterization based on radiometric surface temperature and environmental factors without involving the parameter KB− 1. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 50–59. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar] [CrossRef]
- Guzinski, R.; Anderson, M.; Kustas, W.; Nieto, H.; Sandholt, I. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night MODIS observations. Hydrol. Earth Syst. Sci. 2013, 17, 2809–2825. [Google Scholar] [CrossRef] [Green Version]
- Leuning, R.; Denmead, O.; Lang, A.; Ohtaki, E. Effects of heat and water vapor transport on eddy covariance measurement of CO 2 fluxes. Bound.-Layer Meteorol. 1982, 23, 209–222. [Google Scholar] [CrossRef]
- Koitzsch, R.; Dzingel, M.; Foken, T.; Mücket, G. Probleme der experimentellen Erfassung des Energieaustausches über Winterweizen. Z. Für Meteorol. 1988, 38, 150–155. [Google Scholar]
- Desjardins, R. Carbon dioxide budget of maize. Agric. For. Meteorol. 1985, 36, 29–41. [Google Scholar] [CrossRef]
- Tsvang, L.; Fedorov, M.; Kader, B.; Zubkovskii, S.; Foken, T.; Richter, S.; Zeleny, Y. Turbulent exchange over a surface with chessboard-type inhomogeneities. Bound.-Layer Meteorol. 1991, 55, 141–160. [Google Scholar] [CrossRef]
- Panin, G.; Tetzlaff, G.; Raabe, A. Inhomogeneity of the Land Surface and Problems in theParameterization of Surface Fluxes in Natural Conditions. Theor. Appl. Climatol. 1998, 60, 163–178. [Google Scholar] [CrossRef]
- Kanemasu, E.; Verma, S.; Smith, E.; Fritschen, L.; Wesely, M.; Field, R.; Kustas, W.; Weaver, H.; Stewart, J.; Gurney, R. Surface flux measurements in FIFE: An overview. J. Geophys. Res. Atmos. 1992, 97, 18547–18555. [Google Scholar] [CrossRef]
- Van der Molen, M.; Gash, J.; Elbers, J. Sonic anemometer (co) sine response and flux measurement: II. The effect of introducing an angle of attack dependent calibration. Agric. For. Meteorol. 2004, 122, 95–109. [Google Scholar] [CrossRef]
- Nakai, T.; Van Der Molen, M.; Gash, J.; Kodama, Y. Correction of sonic anemometer angle of attack errors. Agric. For. Meteorol. 2006, 136, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Halldin, S.; Lindroth, A. Errors in net radiometry: Comparison and evaluation of six radiometer designs. J. Atmos. Ocean. Technol. 1992, 9, 762–783. [Google Scholar] [CrossRef] [Green Version]
- Peters-Lidard, C.; Blackburn, E.; Liang, X.; Wood, E.F. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmos. Sci. 1998, 55, 1209–1224. [Google Scholar] [CrossRef]
- Culf, A.D.; Foken, T.; Gash, J.H. The energy balance closure problem. In Vegetation, Water, Humans and the Climate; Springer: Berlin/Heidelberg, Germany, 2004; pp. 159–166. [Google Scholar]
- Rannik, Ü.; Vesala, T. Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Bound.-Layer Meteorol. 1999, 91, 259–280. [Google Scholar] [CrossRef]
- Finnigan, J.J.; Clement, R.; Malhi, Y.; Leuning, R.; Cleugh, H. A re-evaluation of long-term flux measurement techniques part I: Averaging and coordinate rotation. Bound. Layer Meteorol. 2003, 107, 1–48. [Google Scholar] [CrossRef]
- Wang, W. The influence of topography on single-tower-based carbon flux measurements under unstable conditions: A modeling perspective. Theor. Appl. Climatol. 2010, 99, 125–138. [Google Scholar] [CrossRef]
- Foken, T.; Leuning, R.; Oncley, S.R.; Mauder, M.; Aubinet, M. Corrections and data quality control. In Eddy Covariance; Springer: Berlin/Heidelberg, Germany, 2012; pp. 85–131. [Google Scholar]
- Segal, M.; Arritt, R. Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Am. Meteorol. Soc. 1992, 73, 1593–1604. [Google Scholar] [CrossRef] [Green Version]
- Etling, D.; Brown, R.A. Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteorol. 1993, 65, 215–248. [Google Scholar] [CrossRef]
- Haverd, V.; Cuntz, M.; Leuning, R.; Keith, H. Air and biomass heat storage fluxes in a forest canopy: Calculation within a soil vegetation atmosphere transfer model. Agric. For. Meteorol. 2007, 147, 125–139. [Google Scholar] [CrossRef]
- Moderow, U.; Aubinet, M.; Feigenwinter, C.; Kolle, O.; Lindroth, A.; Mölder, M.; Montagnani, L.; Rebmann, C.; Bernhofer, C. Available energy and energy balance closure at four coniferous forest sites across Europe. Theor. Appl. Climatol. 2009, 98, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Lindroth, A.; Mölder, M.; Lagergren, F. Heat storage in forest biomass improves energy balance closure. Biogeosciences 2010, 7, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Kracher, D.; Mengelkamp, H.-T.; Foken, T. The residual of the energy balance closure and its influence on the results of three SVAT models. Meteorol. Z. 2009, 18, 647. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, C.; Hiroki, O. Parameterization of canopy resistance for modeling the energy partitioning of a paddy rice field. Paddy Water Environ. 2018, 16, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Ershadi, A.; McCabe, M.; Evans, J.P.; Chaney, N.W.; Wood, E.F. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. [Google Scholar] [CrossRef]
- Swenson, S.; Lawrence, D. Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res. Atmos. 2014, 119, 10–299. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Gurney, R.J. The theoretical relationship between foliage temperature and canopy resistance in sparse crops. Q. J. R. Meteorol. Soc. 1990, 116, 497–519. [Google Scholar] [CrossRef]
- Deng, Z.; Guan, H.; Hutson, J.; Forster, M.A.; Wang, Y.; Simmons, C.T. A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53, 4965–4983. [Google Scholar] [CrossRef]
- Brutsaert, W.; Stricker, H. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Yang, K.; Tamai, N.; Koike, T. Analytical solution of surface layer similarity equations. J. Appl. Meteorol. 2001, 40, 1647–1653. [Google Scholar] [CrossRef]
- Verma, S.; Rosenberg, N.; Blad, B.; Baradas, M. Resistance-energy Balance Method for Predicting Evapotranspiration: Determination of Boundary Layer Resistance and Evaluation of Error Effects 1. Agron. J. 1976, 68, 776–782. [Google Scholar] [CrossRef]
- Xie, X. An improved energy balance-aerodynamic resistance model used estimation of evapotranspiration on the wheat field. Acta Meteorol. Sin. 1988, 1, 102–106. [Google Scholar]
- Hatfield, J.; Perrier, A.; Jackson, R. Estimation of evapotranspiration at one time-of-day using remotely sensed surface temperatures. In Developments in Agricultural and Managed Forest Ecology; Elsevier: Amsterdam, The Netherlands, 1983; Volume 12, pp. 341–350. [Google Scholar]
- Viney, N.R. An empirical expression for aerodynamic resistance in the unstable boundary layer. Bound.-Layer Meteorol. 1991, 56, 381–393. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.; Idso, S. Wheat canopy temperature: A practical tool for evaluating water requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Richardson, L.F. The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1920, 97, 354–373. [Google Scholar]
- Su, Z.; Schmugge, T.; Kustas, W.; Massman, W. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef] [Green Version]
- Paulson, C.A. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. Climatol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Moran, M.S.; Jackson, R.D.; Raymond, L.H.; Gay, L.W.; Slater, P.N. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sens. Environ. 1989, 30, 77–87. [Google Scholar] [CrossRef]
- Irmak, S.; Mutiibwa, D. On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Szeicz, G.; Long, I. Surface resistance of crop canopies. Water Resour. Res. 1969, 5, 622–633. [Google Scholar] [CrossRef]
- Jarvis, P. Stomatal conductance, gaseous exchange and transpiration. In Proceedings of the Symposium-British Ecological Society; British Ecological Society: Oxford, UK, 1981. [Google Scholar]
- Lhomme, J.-P. The concept of canopy resistance: Historical survey and comparison of different approaches. Agric. For. Meteorol. 1991, 54, 227–240. [Google Scholar] [CrossRef]
- Sperry, J.S. Hydraulic constraints on plant gas exchange. Agric. For. Meteorol. 2000, 104, 13–23. [Google Scholar] [CrossRef]
- Ewers, B.; Oren, R.; Kim, H.S.; Bohrer, G.; Lai, C.T. Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns. Plant Cell Environ. 2007, 30, 483–496. [Google Scholar] [CrossRef]
- Katerji, N.; Perrier, A. A Model of Actual Evapotranspiration (ETR) for a Field of Lucerne: The Role of a Crop Coefficient. 1983. Available online: https://agris.fao.org/agris-search/search.do?recordID=FR2014005468 (accessed on 6 February 2022).
- He, B.; Oue, H.; Oki, T. Estimation of hourly evapotranspiration in arid regions by a simple parameterization of canopy resistance. In Proceedings of the Annual Meeting of the Society of Agricultural Meteorology of Japan Abstracts of International Symposium on Agricultural Meteorology, Hokkaido, Japan, 6 February 2008; p. 94. [Google Scholar]
- Todorovic, M. Single-layer evapotranspiration model with variable canopy resistance. J. Irrig. Drain. Eng. 1999, 125, 235–245. [Google Scholar] [CrossRef]
- Pauwels, V.R.; Samson, R. Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland. Agric. Water Manag. 2006, 82, 1–24. [Google Scholar] [CrossRef]
- Taheri, M.; Gholizadeh, M.; Nasseri, M.; Zahraie, B.; Poorsepahy-Samian, H.; Espanmanesh, V. Performance evaluation of various evapotranspiration modeling scenarios based on METRIC method and climatic indexes. Environ. Monit. Assess. 2021, 193, 1–18. [Google Scholar] [CrossRef]
- Kumar, R.; Aggarwal, R.; Sharma, J. Comparison of regression and artificial neural network models for estimation of global solar radiations. Renew. Sustain. Energy Rev. 2015, 52, 1294–1299. [Google Scholar] [CrossRef]
- Shamshirband, S.; Mohammadi, K.; Khorasanizadeh, H.; Yee, L.; Lee, M.; Petković, D.; Zalnezhad, E. Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renew. Sustain. Energy Rev. 2016, 56, 428–435. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Danesh, A.S.; Abdullah, M.S.; Zamani, M. RETRACTED ARTICLE: Temperature-based estimation of global solar radiation using soft computing methodologies. Theor. Appl. Climatol. 2016, 125, 101–112. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Batlles, F.; Bosch, J. Beam, diffuse and global solar irradiance estimation with satellite imagery. Energy Convers. Manag. 2015, 105, 1205–1212. [Google Scholar] [CrossRef]
- Niemelä, S.; Räisänen, P.; Savijärvi, H. Comparison of surface radiative flux parameterizations: Part I: Longwave radiation. Atmos. Res. 2001, 58, 1–18. [Google Scholar] [CrossRef]
- Yang, K.; Koike, T.; Ye, B. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agric. For. Meteorol. 2006, 137, 43–55. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Al-Mostafa, Z.; Maghrabi, A.; Al-Shehri, S. Sunshine-based global radiation models: A review and case study. Energy Convers. Manag. 2014, 84, 209–216. [Google Scholar] [CrossRef]
- Meza, F.; Varas, E. Estimation of mean monthly solar global radiation as a function of temperature. Agric. For. Meteorol. 2000, 100, 231–241. [Google Scholar] [CrossRef]
- Dos Santos, C.M.; De Souza, J.L.; Junior, R.A.F.; Tiba, C.; de Melo, R.O.; Lyra, G.B.; Teodoro, I.; Lyra, G.B.; Lemes, M.A.M. On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil. Energy 2014, 71, 388–398. [Google Scholar] [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Mohamed, Z.E.; Ali, M.A.; Hanafy, A.A. New temperature-based models for predicting global solar radiation. Appl. Energy 2016, 179, 437–450. [Google Scholar] [CrossRef]
- Nielsen, L.; Prahm, L.; Berkowicz, R.; Conradsen, K. Net incoming radiation estimated from hourly global radiation and/or cloud observations. J. Climatol. 1981, 1, 255–272. [Google Scholar] [CrossRef]
- Supit, I.; Van Kappel, R. A simple method to estimate global radiation. Sol. Energy 1998, 63, 147–160. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Wang, T. Methods and strategy for modeling daily global solar radiation with measured meteorological data–A case study in Nanchang station, China. Energy Convers. Manag. 2007, 48, 2447–2452. [Google Scholar] [CrossRef]
- Zhao, N.; Zeng, X.; Han, S. Solar radiation estimation using sunshine hour and air pollution index in China. Energy Convers. Manag. 2013, 76, 846–851. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M.; Kustas, W.P. Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liang, S. Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Ruhoff, A.L.; Paz, A.R.; Collischonn, W.; Aragao, L.E.; Rocha, H.R.; Malhi, Y.S. A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in Brazilian tropical savannas. Remote Sens. 2012, 4, 703–725. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wang, Q.; Matsushita, B.; Fukushima, T.; Ouyang, Z.; Watanabe, M. Development of a simple remote sensing evapotranspiration model (Sim-ReSET): Algorithm and model test. J. Hydrol. 2009, 376, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V.; Elliott, R.L. On the development of a simple downwelling longwave radiation scheme. Agric. For. Meteorol. 2002, 112, 237–243. [Google Scholar] [CrossRef]
- Kjaersgaard, J.; Plauborg, F.; Hansen, S. Comparison of models for calculating daytime long-wave irradiance using long term data set. Agric. For. Meteorol. 2007, 143, 49–63. [Google Scholar] [CrossRef]
- Key, J.R.; Schweiger, A.J. Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput. Geosci. 1998, 24, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Bennett, T.J., Jr. A coupled atmosphere-sea ice model study of the role of sea ice in climatic predictability. J. Atmos. Sci. 1982, 39, 1456–1465. [Google Scholar] [CrossRef]
- Paltridge, G.W.; CMR, P. Radiative Processes in Meteorology and Climatology. 1976. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201300532740 (accessed on 6 February 2022).
- Lumb, F. The influence of cloud on hourly amounts of total solar radiation at the sea surface. Q. J. R. Meteorol. Soc. 1964, 90, 43–56. [Google Scholar] [CrossRef]
- Moritz, R.; Barry, R.; Jacobs, J. A model for estimating global solar radiation. Energy Budg. Stud. Relat. Fast-Ice Break. Process. Davis Strait Climatol. Overv. INSTAAR Occas. Pap. 1978, 26, 121–142. [Google Scholar]
- Zillmann, J. A study of some aspects of the radiation and the heat budgets of the Southern Hemisphere oceans. Meteor. Stud. 1972, 26, 562. [Google Scholar]
- Sun, Z.; Gebremichael, M.; Wang, Q.; Wang, J.; Sammis, T.W.; Nickless, A. Evaluation of clear-sky incoming radiation estimating equations typically used in remote sensing evapotranspiration algorithms. Remote Sens. 2013, 5, 4735–4752. [Google Scholar] [CrossRef] [Green Version]
- Shine, K. Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Q. J. R. Meteorol. Soc. 1984, 110, 747–764. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.; Bastiaanssen, W.; Morse, A.; Tasumi, M.; Allen, R.; Kramber, W. The Theoretical Basis of SEBAL; Raytheon Systems Company, Earth Observation System Data and Information System Project, Idaho Department of Water Resources and University of Idaho: Arlington, VA, USA, 2000; Volume 1177. [Google Scholar]
- Allen, R.G. Assessing integrity of weather data for reference evapotranspiration estimation. J. Irrig. Drain. Eng. 1996, 122, 97–106. [Google Scholar] [CrossRef]
- Allen, R.G.; Trezza, R.; Tasumi, M. Analytical integrated functions for daily solar radiation on slopes. Agric. For. Meteorol. 2006, 139, 55–73. [Google Scholar] [CrossRef]
- Kondo, J. Atmospheric Science near the Ground Surface; University of Tokyo: Tokyo, Japan, 2000. [Google Scholar]
- Berliand, T. Method of climatological estimation of global radiation. Meteorol. Gidrol 1960, 6, 9–12. [Google Scholar]
- Laevastu, T. Factors affecting the temperature of the surface layer of the sea. Comment. Phys. Math. 1960, 25, 1–136. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Allen, R. Evaluation of Procedures for Estimating Mean Monthly Solar Radiation from Air Temperature. 1995. Available online: https://agris.fao.org/agris-search/search.do?recordID=XF2016062112 (accessed on 6 February 2022).
- Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Annandale, J.; Jovanovic, N.; Benade, N.; Allen, R. Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrig. Sci. 2002, 21, 57–67. [Google Scholar]
- Chen, R.; Ersi, K.; Yang, J.; Lu, S.; Zhao, W. Validation of five global radiation models with measured daily data in China. Energy Convers. Manag. 2004, 45, 1759–1769. [Google Scholar] [CrossRef]
- Prescott, J. Evaporation from a water surface in relation to solar radiation. Trans. Roy. Soc. S. Aust. 1940, 46, 114–118. [Google Scholar]
- Bahel, V.; Bakhsh, H.; Srinivasan, R. A correlation for estimation of global solar radiation. Energy 1987, 12, 131–135. [Google Scholar] [CrossRef]
- Kirmani, S.; Jamil, M.; Rizwan, M. Empirical correlation of estimating global solar radiation using meteorological parameters. Int. J. Sustain. Energy 2015, 34, 327–339. [Google Scholar] [CrossRef]
- Jahani, B.; Dinpashoh, Y.; Nafchi, A.R. Evaluation and development of empirical models for estimating daily solar radiation. Renew. Sustain. Energy Rev. 2017, 73, 878–891. [Google Scholar] [CrossRef]
- Ångström, A. A Study of the Radiation of the Atmosphere: Based upon Observations of the Nocturnal Radiation during Expeditions to Algeria and to California; Smithsonian Institution: Washington, DC, USA, 1915; Volume 65. [Google Scholar]
- Brunt, D. Notes on radiation in the atmosphere. I. Q. J. R. Meteorol. Soc. 1932, 58, 389–420. [Google Scholar] [CrossRef]
- Brutsaert, W. On a derivable formula for long-wave radiation from clear skies. Water Resour. Res. 1975, 11, 742–744. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D. Thermal radiation from the atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [Google Scholar] [CrossRef]
- Idso, S.B. A set of equations for full spectrum and 8-to 14-μm and 10.5-to 12.5-μm thermal radiation from cloudless skies. Water Resour. Res. 1981, 17, 295–304. [Google Scholar] [CrossRef]
- Prata, A. A new long-wave formula for estimating downward clear-sky radiation at the surface. Q. J. R. Meteorol. Soc. 1996, 122, 1127–1151. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates; Wageningen University and Research: Wageningen, The Netherlands, 1995. [Google Scholar]
- Swinbank, W.C. Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [Google Scholar] [CrossRef]
- Dilley, A.; O’brien, D. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q. J. R. Meteorol. Soc. 1998, 124, 1391–1401. [Google Scholar] [CrossRef]
- Satterlund, D.R. An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res. 1979, 15, 1649–1650. [Google Scholar] [CrossRef]
- Garratt, J. Extreme maximum land surface temperatures. J. Appl. Meteorol. Climatol. 1992, 31, 1096–1105. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J. Radiation climate of broughton island. Energy Budg. Stud. Relat. Fast-Ice Break. Processes Davis Strait 1978, 105–120. [Google Scholar]
- Maykut, G.A.; Church, P.E. Radiation climate of barrow Alaska, 1962–1966. J. Appl. Meteorol. Climatol. 1973, 12, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Waters, R.; Allen, R.; Bastiaanssen, W.; Tasumi, M.; Trezza, R. Sebal. Surface Energy Balance Algorithms for Land. Idaho Implementation. Advanced Training and Users Manual, Idaho, USA. 2002. Available online: https://www.posmet.ufv.br/wp-content/uploads/2016/09/MET-479-Waters-et-al-SEBAL.pdf (accessed on 6 February 2022).
- Tasumi, M. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery; University of Idaho: Arlington, VA, USA, 2003. [Google Scholar]
- Friedl, M.A. Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens. Environ. 2002, 79, 344–354. [Google Scholar] [CrossRef]
- Ge, N.; Zhong, L.; Ma, Y.; Cheng, M.; Wang, X.; Zou, M.; Huang, Z. Estimation of land surface heat fluxes based on Landsat 7 ETM+ data and field measurements over the northern Tibetan Plateau. Remote Sens. 2019, 11, 2899. [Google Scholar] [CrossRef] [Green Version]
- Thompson, N.; Barrie, I.; Ayles, M. The Meteorological Office Rainfall and Evaporation Calculation System: Morecs. 1981. Available online: https://catalogue.ceh.ac.uk/documents/b9155463-ac86-4e19-a24f-57cef6A24505 (accessed on 6 February 2022).
- Hansen, F.V. Surface Roughness Lengths; Army Research Lab White Sands Missile Range Nm: Adelphi, MD, USA, 1993. [Google Scholar]
Model | Type | Main Assumptions | Advantages | Disadvantages | Mosaic Scheme |
---|---|---|---|---|---|
BATS | Two-layer | Using the demand–supply approach for calculating evaporation Heat capacity of foliage is assumed to be zero; therefore, the energy of the photosynthesis/respiration process is neglected | Offline and Online version High vertical resolution | When the soil is dry, it will underestimate the latent heat flux Low horizontal resolution | ✕ |
SiB | Two-layer | The soil heat flux is modeled by using a Slab model Using an explicit backward-differencing scheme to calculate the and The variations of leaf area density are assumed to be constant over height | High vertical resolution Providing better estimates for the time-varying exchanges of water, energy, and carbon for croplands Containing a crop phenology module to specifically simulate corn, soybeans, and wheat (SiBcrop) | Complicated calculation Difficulty capturing spatial heterogeneity Low horizontal resolution | ✕ |
Mosaic | Two-layer | Using the ‘‘mosaic” strategy to consider sub-grid heterogeneity The energy balance equation for each sub-grid is simplified enough to be written in Penman–Monteith form | Computationally efficient Flexibility (various vegetation types) | Low horizontal resolution Modeling a Savanna as a mosaic can lead to significant errors | ✓ |
VIC | Two-layer | Hydrologically based Using the mosaic scheme Evaporation and transpiration are parameterized by the Penman–Monteith formulation | Fine resolution (vertical and horizontal) Suitable performance over larger regions Open-source availability | Inefficiency in snowpack-related parameterizations Due to the non-closure of the energy budget, some conflicting results may arise | ✓ |
Noah | Two-layer | Linearization of the surface energy balance for the Tskin calculation The prediction of the ith soil layer temperature is performed using the fully implicit Crank–Nicholson scheme | Advanced snowpack-related physics Offline and Online version | Insufficient consideration of vertical soil profile heterogeneity Under the conditions of high radiative forcing, it will underestimate the LST | ✕ |
Type | Model | Data Requirements | LST Configuration | Main Assumption | Strength | Weakness | Temporal Resolution | Spatial Scale |
---|---|---|---|---|---|---|---|---|
One-Source | SEBI | LST, W, Tpbl, hpbl, | Absolute LST | Based on the CWSI and pixel-wise concept | Practical even for surfaces without wet and dry pixels | Characteristics of the planetary boundary layer are needed Relatively poor accuracy | Day | Regional |
SEBAL | LST, NDVI, , W, Ta, RH | Surface–air temperature gradient | Internal calibration by anchor pixels through a subjective procedure Uses the air surface temperature gradient instead of absolute LST Defining a linear relationship between LST and dT | Minimum ground data requirement Able to use slope and aspect in heterogeneous lands Physical concept Internal calibration Solves all the energy fluxes | Time-consuming Cost-intensive Limited by different stability atmospheric conditions and heterogeneous surfaces Uncertainties due to user’s judgment in selecting anchor pixels | Day, Month, Season, Year | Field to regional | |
SEBS | , hpbl, ea, es, W, Ta, RH, | Absolute LST | EF is used by calibrating the limit points through a non-subjective procedure | Applicable for all atmospheric stability conditions Physical concept No need for prior knowledge on turbulent heat fluxes Calculates roughness length by a developed submodule Selects the reference pixels automatically | Complex structure High data requirements High sensitivity to the air surface temperature gradient and aerodynamic parameters | Day, Month | Local to regional | |
S-SEBI | LST, NDVI, α, | Absolute LST | The process of determining the wet and dry conditions is albedo dependent | No need for additional data Dependency on LST is less than other models Capable of regulating variations of LST in proportion to albedo Temperatures for dry and wet conditions can be determined by the image itself | Does not solve H Applicable for homogenous areas with constant atmospheric conditions Dependency of extreme LSTs on location | Day, Month | Basin | |
METRIC | LST, NDVI, LAI, W, RH, Ta, Sh | Surface–air temperature gradient | Internal calibration by anchor pixels through a subjective procedure Using the air surface temperature gradient instead of absolute LST Defining a linear relationship between LST and dT | Minimum ground data requirement Able to use slope and aspect in heterogeneous lands Solves all the energy fluxes Physical concept Internal calibration Uses a soil water balance to determine the hot pixel | Time-consuming Cost-intensive Uncertainties due to user’s judgment in selecting anchor pixels ET underestimation in arid and non-agricultural areas | Day, Month, Season, Year | Field to regional | |
SSEB | LST, NDVI, DEM, W, RH, Ta, Sh | Surface–air temperature gradient | Joint use of LST and reference ET | Simple Cost-effective Operational model Provides the rapid ET estimates over large regions | Does not solve H and G ET underestimation in surfaces with low albedo and ET overestimation in surfaces with high G and high albedo High sensitivity to LST | Day, Month, Season | Basin to regional | |
SSEBop | LST, Ta, Albedo, NDVI | Surface–air temperature gradient | Selecting the reference pixels by a non-subjective procedure ET is linearly scaled between evapotranspiration of hot and cold pixels (in proportion to LSTs of hot and cold pixels), dT is obtained from a linear relationship with LST | Simple, cost-effective, and operational model Low computational effort Selects the reference pixels automatically | Does not solve H and G Does not use surface and aspect in heterogeneous lands | Day, Month, Season, Year | Basin to regional | |
Two-Source | TSEB | LST, W, Ta, LAI | LST observations at one or two viewing angles | Energy fluxes can be determined by one or two LST observations | Usable at conditions with high VPD and low meteorological data | Determination of Priestly–Taylor and Penman–Monteith coefficients | Day, Month, Season | Local to regional |
TSTIM | LST, LAI, W | Temporal changes in LST | Time-integrated structure Uses LST data at two times (t1 and t2) | No need for measuring Less sensitive to systematic biases of LST | Requires LST data with a high temporal resolution | Day, Month, Season, Year | Regional to continental | |
ALEXI | LST, W, LAI, LULC | Temporal changes in LST | Time-integrated structure Considering temporal variations of LST Satellite-based | Generates maps of daily energy fluxes as well as soil moisture over large scales | Requires LST data with a high temporal resolution | Day | Continental | |
DTD | LST, LAI, Ta, W | Two LST observations at two times | Time-integrated structure | Simple structure with a few input data Operational model Less sensitive to errors of absolute LST and meteorological data, No need for modeling boundary layer development | Determines the Priestley–Taylor coefficient Requires LST data with a high temporal resolution | Day | Regional | |
TTME | NDVI, LST, , Ta, W | LST observation at a single viewing angle | VI/LST space-based Uses a trapezoidal framework with specified boundary conditions Patch approach for estimating ET | Simple structure with few input data requirements No need for computing the resistance network | Misestimates energy fluxes due to the temperature-dependent cold edge Different selections of wet/dry edgesNeeds a flat surface with a large number of pixels | Day | Regional | |
HTEM | LAI, Albedo, Ta, LST, ea, NDVI, W | LST observation at one viewing angle | Uses a trapezoidal framework for estimating energy fluxes | Hybrid dual-source scheme of the patch and layer methods No need for computing the resistance network | Inappropriate in complex surfaces Different selections of wet/dry edges Needs a flat surface with a large number of pixels | Day | Regional | |
ETEML | LST, Albedo, LULC, LAI, NDVI, Crop height, W, , VPD | Surface–air temperature difference | Based on a theoretical VI/LST space for each pixel | Appropriate for complex and heterogeneous conditions No need for computing the resistance network | Too many inputs | Day | Local to regional |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheri, M.; Mohammadian, A.; Ganji, F.; Bigdeli, M.; Nasseri, M. Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges. Energies 2022, 15, 1264. https://doi.org/10.3390/en15041264
Taheri M, Mohammadian A, Ganji F, Bigdeli M, Nasseri M. Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges. Energies. 2022; 15(4):1264. https://doi.org/10.3390/en15041264
Chicago/Turabian StyleTaheri, Mercedeh, Abdolmajid Mohammadian, Fatemeh Ganji, Mostafa Bigdeli, and Mohsen Nasseri. 2022. "Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges" Energies 15, no. 4: 1264. https://doi.org/10.3390/en15041264
APA StyleTaheri, M., Mohammadian, A., Ganji, F., Bigdeli, M., & Nasseri, M. (2022). Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges. Energies, 15(4), 1264. https://doi.org/10.3390/en15041264