Efficient Prediction of Fuel Cell Performance Using Global Modeling Method
Abstract
:1. Introduction
2. Experimental Platform and Initial Experimental Design
3. Adaptive Sampling Method Based on Maximizing Expected Prediction Error
3.1. Basis of Kriging Metamodel
3.2. Adaptive Sampling Method
4. DMFC Multi-Type Parameters Global Model
4.1. Initial Model
4.2. Model Evolution Based on Adaptive Sampling
4.3. Model Validation
4.4. Prediction Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Charoen, K.; Prapainainar, C.; Sureeyatanapas, P.; Suwannaphisit, T.; Wongamornpitak, K.; Kongkachuichay, P.; Holmes, S.M.; Prapainainar, P. Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. J. Clean. Prod. 2017, 142, 1309–1320. [Google Scholar] [CrossRef] [Green Version]
- García-Salaberri, P.A.; Vera, M. On the effect of operating conditions in liquid-feed direct methanol fuel cells: A multiphysics modeling approach. Energy 2016, 113, 1265–1287. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Guo, T.; Jiao, K.; Huang, X. A three-dimensional multi-phase numerical model of DMFC utilizing Eulerian-Eulerian model. Appl. Therm. Eng. 2018, 132, 140–153. [Google Scholar] [CrossRef]
- Yang, Q.; Kianimanesh, A.; Freiheit, T.; Park, S.S.; Xue, D. A semi-empirical model considering the influence of operating parameters on performance for a direct methanol fuel cell. J. Power Sources 2011, 196, 10640–10651. [Google Scholar] [CrossRef]
- Tafaoli-Masoule, M.; Bahrami, A.; Elsayed, E. Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm. Energy 2014, 70, 643–652. [Google Scholar] [CrossRef]
- Karaoglan, M.U.; Ince, A.C.; Glüsen, A.; Colpan, C.O.; Müller, M.; Stolten, D.; Kuralay, N.S. Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell. Int. J. Hydrogen Energy 2020, 46, 4844–4856. [Google Scholar] [CrossRef]
- Ozden, A.; Ercelik, M.; Ouellette, D.; Colpan, C.O.; Ganjehsarabi, H.; Hamdullahpur, F. Designing, modeling and performance investigation of bio-inspired flow field based DMFCs. Int. J. Hydrogen Energy 2017, 42, 21546–21558. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, Y.; Zou, Y.; Sang, S.; Liu, X. Structural design and analysis of a passive DMFC supplied with concentrated methanol solution. Energy 2017, 128, 50–61. [Google Scholar] [CrossRef]
- Yu, B.; Yang, Q.; Kianimanesh, A.; Freiheit, T.; Park, S.; Zhao, H.; Xue, D. A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance. Int. J. Hydrogen Energy 2013, 38, 9873–9885. [Google Scholar] [CrossRef]
- Turkmen, A.C.; Celik, C.; Esen, H. The statistical relationship between flow channel geometry and pressure drop in a direct methanol fuel cell with parallel channels. Int. J. Hydrogen Energy 2019, 44, 18939–18950. [Google Scholar] [CrossRef]
- Matar, S.; Ge, J.; Liu, H. Modeling the cathode catalyst layer of a Direct Methanol Fuel Cell. J. Power Sources 2013, 243, 195–202. [Google Scholar] [CrossRef]
- Zainoodin, A.; Kamarudin, S.; Masdar, M.; Daud, W.; Mohamad, A.; Sahari, J. Optimization of a porous carbon nanofiber layer for the membrane electrode assembly in DMFC. Energy Convers Manag. 2015, 101, 525–531. [Google Scholar] [CrossRef]
- Abdullah, N.; Kamarudin, S.; Shyuan, L.; Karim, N. Synthesis and optimization of PtRu/TiO2-CNF anodic catalyst for direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 30543–30552. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liang, J.; Yang, W.; Li, X. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Appl. Energy 2019, 252, 113431. [Google Scholar] [CrossRef]
- Yang, Q.-W.; Hu, X.-Q.; Zhu, Y.; Lei, X.-C.; Yu, B.; Ji, S.-C. Extended criterion for robustness evaluations of energy conversion efficiency in DMFCs. Energy Convers. Manag. 2018, 172, 285–295. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, G.; Li, L.; Che, M.; Hu, X.-Q.; Meng, M. Collaborative design of multi-type parameters for design and operational stage matching in fuel cells. Renew. Energy 2021, 175, 1101–1110. [Google Scholar] [CrossRef]
- Fang, K.T.; Lin, D.K.; Winker, P.; Zhang, Y. Uniform design: Theory and application. Technometrics 2000, 42, 237–248. [Google Scholar] [CrossRef]
- Lophaven, S.N.; Nielsen, H.B.; Søndergaard, J. DACE A Matlab Kriging Toolbox-Version 2.0; Technical Report, IMMREP-2002-12; Technical University of Denmark: Kongens Lyngby, Denmark, 2002. [Google Scholar]
- Wang, G.G.; Shan, S. Review of Metamodeling Techniques in Support of Engineering Design Optimization. J. Mech. Des. 2006, 129, 370–380. [Google Scholar] [CrossRef]
- Liu, H.; Cai, J.; Ong, Y.-S. An adaptive sampling approach for Kriging metamodeling by maximizing expected prediction error. Comput. Chem. Eng. 2017, 106, 171–182. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, S.; Xiao, G.; Li, L.; Liu, T.; Feng, J. Joint operation of adaptive numerical simulation and adaptive optimization for direct methanol fuel cell performance improvement. J. Clean. Prod. 2020, 289, 125630. [Google Scholar] [CrossRef]
Operating Parameters | Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Cme: Methanol concentration (mol∙L−1) | 0.25 | 0.50 | 0.75 | 1.00 | 1.50 |
Fme: Flow rate of methanol (ccm) | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 |
T: Temperature (K) | 308 | 318 | 328 | 338 | 348 |
Fair: Flow rate of air (ccm) | 200 | 400 | 600 | 800 | 1000 |
No. | Values | |||
---|---|---|---|---|
Methanol Concentration (mol/L) | Methanol Flow Rate (ccm) | Temperature (°C) | Air Flow Rate (ccm) | |
1 | 0.25 | 0.5 | 65 | 800 |
2 | 0.25 | 3.5 | 45 | 200 |
3 | 0.75 | 0.5 | 35 | 400 |
4 | 0.75 | 4.5 | 35 | 800 |
5 | 0.50 | 2.5 | 55 | 600 |
6 | 1.00 | 1.5 | 75 | 200 |
7 | 1.50 | 4.5 | 65 | 400 |
8 | 1.00 | 2.5 | 55 | 800 |
9 | 0.50 | 3.5 | 75 | 1000 |
10 | 1.50 | 1.5 | 45 | 1000 |
No. | Shape | Membrane | Proton Exchange Membrane Thickness | Cathode Catalyst |
---|---|---|---|---|
MEA01 | Square | Nafion212 | 50.8 μm | 0.5 mg/cm2 |
MEA02 | Square | Nafion212 | 50.8 μm | 0.3 mg/cm2 |
MEA03 | Square | Nafion212 | 50.8 μm | 0.03 mg/cm2 |
MEA04 | Square | Nafion115 | 127 μm | 0.5 mg/cm2 |
MEA05 | Square | Nafion115 | 127 μm | 0.3 mg/cm2 |
MEA06 | Square | Nafion115 | 127 μm | 0.03 mg/cm2 |
MEA07 | Square | Nafion117 | 183 μm | 0.5 mg/cm2 |
MEA08 | Square | Nafion117 | 183 μm | 0.3 mg/cm2 |
MEA09 | Square | Nafion117 | 183 μm | 0.03 mg/cm2 |
MEA10 | Circular | Nafion115 | 127 μm | 0.3 mg/cm2 |
No. | CMe (mol/L) | FMe (ccm) | T (°C) | FAir (ccm) | Thickness (mm) | Loading (mg/cm2) | Channel Number | Energy Conversion Efficiency |
---|---|---|---|---|---|---|---|---|
1 | 0.25 | 0.51 | 32 | 964 | 183 | 0.3 | 30 | 15.4% |
2 | 0.87 | 0.50 | 75 | 996 | 183 | 0.3 | 30 | 7.9% |
3 | 0.25 | 0.50 | 75 | 442 | 183 | 0.3 | 30 | 20.2% |
4 | 0.55 | 0.50 | 44 | 995 | 127 | 0.3 | 30 | 13.3% |
5 | 1.50 | 2.79 | 35 | 260 | 127 | 0.3 | 30 | 6.0% |
6 | 0.97 | 0.50 | 75 | 758 | 127 | 0.3 | 30 | 5.9% |
7 | 1.5 | 0.50 | 49 | 341 | 183 | 0.5 | 30 | 8.7% |
8 | 0.25 | 0.50 | 53 | 200 | 183 | 0.5 | 30 | 23.2% |
9 | 0.25 | 1.00 | 35 | 200 | 183 | 0.3 | 30 | 15.8% |
10 | 0.25 | 0.50 | 56 | 257 | 127 | 0.3 | 30 | 17.7% |
11 | 1.50 | 0.50 | 49 | 209 | 50.8 | 0.03 | 30 | 6.9% |
12 | 0.69 | 0.50 | 71 | 716 | 183 | 0.5 | 30 | 11.7% |
13 | 0.25 | 4.50 | 73 | 200 | 127 | 0.5 | 30 | 13.2% |
14 | 0.25 | 1.39 | 75 | 986 | 127 | 0.5 | 30 | 15.3% |
15 | 1.50 | 0.50 | 50 | 250 | 50.8 | 0.5 | 30 | 5.6% |
16 | 0.25 | 2.33 | 67 | 963 | 183 | 0.03 | 30 | 13.7% |
17 | 0.88 | 1.91 | 48 | 200 | 183 | 0.3 | 30 | 8.2% |
18 | 0.25 | 1.50 | 35 | 946 | 50.8 | 0.5 | 30 | 11.5% |
19 | 0.30 | 1.17 | 37 | 254 | 127 | 0.5 | 30 | 17.0% |
20 | 0.25 | 4.50 | 75 | 631 | 183 | 0.03 | 30 | 9.5% |
21 | 0.42 | 0.50 | 75 | 976 | 183 | 0.03 | 30 | 8.3% |
22 | 0.25 | 2.53 | 75 | 829 | 127 | 0.03 | 30 | 15.5% |
23 | 1.50 | 0.50 | 35 | 200 | 183 | 0.03 | 30 | 10.4% |
24 | 0.76 | 0.50 | 49 | 283 | 183 | 0.5 | 30 | 13.0% |
25 | 1.34 | 0.50 | 35 | 636 | 127 | 0.3 | 30 | 8.4% |
26 | 0.50 | 4.50 | 75 | 200 | 50.8 | 0.03 | 30 | 9.9% |
27 | 1.50 | 4.50 | 35 | 284 | 50.8 | 0.5 | 30 | 4.7% |
28 | 1.24 | 2.50 | 35 | 276 | 127 | 0.3 | 30 | 8.3% |
29 | 1.33 | 4.50 | 35 | 200 | 50.8 | 0.03 | 30 | 9.0% |
30 | 1.5 | 0.50 | 75 | 776 | 50.8 | 0.03 | 30 | 9.0% |
31 | 0.26 | 0.50 | 39 | 591 | 183 | 0.5 | 30 | 18.9% |
32 | 1.41 | 4.00 | 75 | 979 | 127 | 0.03 | 30 | 8.8% |
33 | 1.50 | 0.50 | 75 | 971 | 50.8 | 0.3 | 30 | 3.0% |
34 | 0.82 | 2.08 | 75 | 878 | 127 | 0.03 | 30 | 10.2% |
35 | 0.25 | 4.50 | 53 | 985 | 127 | 0.03 | 30 | 14.9% |
MEA Number | Values | |||
---|---|---|---|---|
Methanol Concentration (mol/L) | Methanol Flow Rate (ccm) | Temperature (°C) | Air Flow Rate (ccm) | |
MEA01 | 0.30 | 1.0 | 40 | 300 |
MEA02 | 0.30 | 2.5 | 55 | 600 |
MEA03 | 0.30 | 4.0 | 70 | 900 |
MEA04 | 0.75 | 1.0 | 55 | 900 |
MEA05 | 0.75 | 2.5 | 70 | 300 |
MEA06 | 0.75 | 4.0 | 40 | 600 |
MEA07 | 1.20 | 1.0 | 70 | 600 |
MEA08 | 1.20 | 4.0 | 55 | 300 |
MEA09 | 1.20 | 2.5 | 40 | 900 |
Experiment Number | Experimental Value (%) | Model Prediction Value (%) | Relative Error | Accuracy |
---|---|---|---|---|
1 | 11.7226 | 12.5158 | 6.7664% | 93.2336% |
2 | 8.0659 | 8.3527 | 3.5557% | 96.4443% |
3 | 10.8069 | 10.7805 | 0.2443% | 99.7557% |
4 | 10.5279 | 10.0673 | 4.3750% | 95.6250% |
5 | 5.6273 | 6.0318 | 7.1882% | 92.8118% |
6 | 11.9883 | 12.7632 | 6.4638% | 93.5362% |
7 | 6.4487 | 6.3971 | 0.8002% | 99.1998% |
8 | 4.6035 | 5.0358 | 9.3907% | 90.6093% |
9 | 7.1142 | 6.8623 | 3.5408% | 96.4592% |
Average value | 4.7000% | 95.2972% |
Experiment Number | Experimental Value (%) | Initial Model Validation (%) | Relative Error | Accuracy |
---|---|---|---|---|
1 | 11.7226 | 12.6454 | 7.8720% | 92.1280% |
2 | 8.0659 | 7.4933 | 7.0990% | 92.9010% |
3 | 10.8069 | 10.3283 | 4.4287% | 95.5713% |
4 | 10.5279 | 12.6721 | 2.0367% | 97.9633% |
5 | 5.6273 | 5.8964 | 4.7820% | 95.2180% |
6 | 11.9883 | 13.0410 | 8.7811% | 91.2189% |
7 | 6.4487 | 6.7032 | 3.9465% | 96.0535% |
8 | 4.6035 | 4.1239 | 10.4182% | 89.5818% |
9 | 7.1142 | 6.0761 | 14.5919% | 85.4081% |
Average value | 9.1429% | 90.8571% |
MEA Number | CMe (mol/L) | FMe (ccm) | T (°C) | Air Flow Rate (ccm) | Experimental Output Variations | Calculated Output Variations |
---|---|---|---|---|---|---|
MEA01 | 0.30 | 1.05 | 40 | 300 | 0.4095% | 0.3795% |
MEA05 | 0.75 | 2.5 | 70 | 315 | 0.3838% | 0.3366% |
MEA09 | 1.20 | 2.5 | 42 | 900 | 4.5388% | 4.8162% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Xiao, G.; Liu, T.; Gao, B.; Chen, S. Efficient Prediction of Fuel Cell Performance Using Global Modeling Method. Energies 2022, 15, 8549. https://doi.org/10.3390/en15228549
Yang Q, Xiao G, Liu T, Gao B, Chen S. Efficient Prediction of Fuel Cell Performance Using Global Modeling Method. Energies. 2022; 15(22):8549. https://doi.org/10.3390/en15228549
Chicago/Turabian StyleYang, Qinwen, Gang Xiao, Tao Liu, Bin Gao, and Shujun Chen. 2022. "Efficient Prediction of Fuel Cell Performance Using Global Modeling Method" Energies 15, no. 22: 8549. https://doi.org/10.3390/en15228549
APA StyleYang, Q., Xiao, G., Liu, T., Gao, B., & Chen, S. (2022). Efficient Prediction of Fuel Cell Performance Using Global Modeling Method. Energies, 15(22), 8549. https://doi.org/10.3390/en15228549