Efficient Prediction of Fuel Cell Performance Using Global Modeling Method
Abstract
1. Introduction
2. Experimental Platform and Initial Experimental Design
3. Adaptive Sampling Method Based on Maximizing Expected Prediction Error
3.1. Basis of Kriging Metamodel
3.2. Adaptive Sampling Method
4. DMFC Multi-Type Parameters Global Model
4.1. Initial Model
4.2. Model Evolution Based on Adaptive Sampling
4.3. Model Validation
4.4. Prediction Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Charoen, K.; Prapainainar, C.; Sureeyatanapas, P.; Suwannaphisit, T.; Wongamornpitak, K.; Kongkachuichay, P.; Holmes, S.M.; Prapainainar, P. Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. J. Clean. Prod. 2017, 142, 1309–1320. [Google Scholar] [CrossRef]
- García-Salaberri, P.A.; Vera, M. On the effect of operating conditions in liquid-feed direct methanol fuel cells: A multiphysics modeling approach. Energy 2016, 113, 1265–1287. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Guo, T.; Jiao, K.; Huang, X. A three-dimensional multi-phase numerical model of DMFC utilizing Eulerian-Eulerian model. Appl. Therm. Eng. 2018, 132, 140–153. [Google Scholar] [CrossRef]
- Yang, Q.; Kianimanesh, A.; Freiheit, T.; Park, S.S.; Xue, D. A semi-empirical model considering the influence of operating parameters on performance for a direct methanol fuel cell. J. Power Sources 2011, 196, 10640–10651. [Google Scholar] [CrossRef]
- Tafaoli-Masoule, M.; Bahrami, A.; Elsayed, E. Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm. Energy 2014, 70, 643–652. [Google Scholar] [CrossRef]
- Karaoglan, M.U.; Ince, A.C.; Glüsen, A.; Colpan, C.O.; Müller, M.; Stolten, D.; Kuralay, N.S. Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell. Int. J. Hydrogen Energy 2020, 46, 4844–4856. [Google Scholar] [CrossRef]
- Ozden, A.; Ercelik, M.; Ouellette, D.; Colpan, C.O.; Ganjehsarabi, H.; Hamdullahpur, F. Designing, modeling and performance investigation of bio-inspired flow field based DMFCs. Int. J. Hydrogen Energy 2017, 42, 21546–21558. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, Y.; Zou, Y.; Sang, S.; Liu, X. Structural design and analysis of a passive DMFC supplied with concentrated methanol solution. Energy 2017, 128, 50–61. [Google Scholar] [CrossRef]
- Yu, B.; Yang, Q.; Kianimanesh, A.; Freiheit, T.; Park, S.; Zhao, H.; Xue, D. A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance. Int. J. Hydrogen Energy 2013, 38, 9873–9885. [Google Scholar] [CrossRef]
- Turkmen, A.C.; Celik, C.; Esen, H. The statistical relationship between flow channel geometry and pressure drop in a direct methanol fuel cell with parallel channels. Int. J. Hydrogen Energy 2019, 44, 18939–18950. [Google Scholar] [CrossRef]
- Matar, S.; Ge, J.; Liu, H. Modeling the cathode catalyst layer of a Direct Methanol Fuel Cell. J. Power Sources 2013, 243, 195–202. [Google Scholar] [CrossRef]
- Zainoodin, A.; Kamarudin, S.; Masdar, M.; Daud, W.; Mohamad, A.; Sahari, J. Optimization of a porous carbon nanofiber layer for the membrane electrode assembly in DMFC. Energy Convers Manag. 2015, 101, 525–531. [Google Scholar] [CrossRef]
- Abdullah, N.; Kamarudin, S.; Shyuan, L.; Karim, N. Synthesis and optimization of PtRu/TiO2-CNF anodic catalyst for direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 30543–30552. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liang, J.; Yang, W.; Li, X. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Appl. Energy 2019, 252, 113431. [Google Scholar] [CrossRef]
- Yang, Q.-W.; Hu, X.-Q.; Zhu, Y.; Lei, X.-C.; Yu, B.; Ji, S.-C. Extended criterion for robustness evaluations of energy conversion efficiency in DMFCs. Energy Convers. Manag. 2018, 172, 285–295. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, G.; Li, L.; Che, M.; Hu, X.-Q.; Meng, M. Collaborative design of multi-type parameters for design and operational stage matching in fuel cells. Renew. Energy 2021, 175, 1101–1110. [Google Scholar] [CrossRef]
- Fang, K.T.; Lin, D.K.; Winker, P.; Zhang, Y. Uniform design: Theory and application. Technometrics 2000, 42, 237–248. [Google Scholar] [CrossRef]
- Lophaven, S.N.; Nielsen, H.B.; Søndergaard, J. DACE A Matlab Kriging Toolbox-Version 2.0; Technical Report, IMMREP-2002-12; Technical University of Denmark: Kongens Lyngby, Denmark, 2002. [Google Scholar]
- Wang, G.G.; Shan, S. Review of Metamodeling Techniques in Support of Engineering Design Optimization. J. Mech. Des. 2006, 129, 370–380. [Google Scholar] [CrossRef]
- Liu, H.; Cai, J.; Ong, Y.-S. An adaptive sampling approach for Kriging metamodeling by maximizing expected prediction error. Comput. Chem. Eng. 2017, 106, 171–182. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, S.; Xiao, G.; Li, L.; Liu, T.; Feng, J. Joint operation of adaptive numerical simulation and adaptive optimization for direct methanol fuel cell performance improvement. J. Clean. Prod. 2020, 289, 125630. [Google Scholar] [CrossRef]
Operating Parameters | Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Cme: Methanol concentration (mol∙L−1) | 0.25 | 0.50 | 0.75 | 1.00 | 1.50 |
Fme: Flow rate of methanol (ccm) | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 |
T: Temperature (K) | 308 | 318 | 328 | 338 | 348 |
Fair: Flow rate of air (ccm) | 200 | 400 | 600 | 800 | 1000 |
No. | Values | |||
---|---|---|---|---|
Methanol Concentration (mol/L) | Methanol Flow Rate (ccm) | Temperature (°C) | Air Flow Rate (ccm) | |
1 | 0.25 | 0.5 | 65 | 800 |
2 | 0.25 | 3.5 | 45 | 200 |
3 | 0.75 | 0.5 | 35 | 400 |
4 | 0.75 | 4.5 | 35 | 800 |
5 | 0.50 | 2.5 | 55 | 600 |
6 | 1.00 | 1.5 | 75 | 200 |
7 | 1.50 | 4.5 | 65 | 400 |
8 | 1.00 | 2.5 | 55 | 800 |
9 | 0.50 | 3.5 | 75 | 1000 |
10 | 1.50 | 1.5 | 45 | 1000 |
No. | Shape | Membrane | Proton Exchange Membrane Thickness | Cathode Catalyst |
---|---|---|---|---|
MEA01 | Square | Nafion212 | 50.8 μm | 0.5 mg/cm2 |
MEA02 | Square | Nafion212 | 50.8 μm | 0.3 mg/cm2 |
MEA03 | Square | Nafion212 | 50.8 μm | 0.03 mg/cm2 |
MEA04 | Square | Nafion115 | 127 μm | 0.5 mg/cm2 |
MEA05 | Square | Nafion115 | 127 μm | 0.3 mg/cm2 |
MEA06 | Square | Nafion115 | 127 μm | 0.03 mg/cm2 |
MEA07 | Square | Nafion117 | 183 μm | 0.5 mg/cm2 |
MEA08 | Square | Nafion117 | 183 μm | 0.3 mg/cm2 |
MEA09 | Square | Nafion117 | 183 μm | 0.03 mg/cm2 |
MEA10 | Circular | Nafion115 | 127 μm | 0.3 mg/cm2 |
No. | CMe (mol/L) | FMe (ccm) | T (°C) | FAir (ccm) | Thickness (mm) | Loading (mg/cm2) | Channel Number | Energy Conversion Efficiency |
---|---|---|---|---|---|---|---|---|
1 | 0.25 | 0.51 | 32 | 964 | 183 | 0.3 | 30 | 15.4% |
2 | 0.87 | 0.50 | 75 | 996 | 183 | 0.3 | 30 | 7.9% |
3 | 0.25 | 0.50 | 75 | 442 | 183 | 0.3 | 30 | 20.2% |
4 | 0.55 | 0.50 | 44 | 995 | 127 | 0.3 | 30 | 13.3% |
5 | 1.50 | 2.79 | 35 | 260 | 127 | 0.3 | 30 | 6.0% |
6 | 0.97 | 0.50 | 75 | 758 | 127 | 0.3 | 30 | 5.9% |
7 | 1.5 | 0.50 | 49 | 341 | 183 | 0.5 | 30 | 8.7% |
8 | 0.25 | 0.50 | 53 | 200 | 183 | 0.5 | 30 | 23.2% |
9 | 0.25 | 1.00 | 35 | 200 | 183 | 0.3 | 30 | 15.8% |
10 | 0.25 | 0.50 | 56 | 257 | 127 | 0.3 | 30 | 17.7% |
11 | 1.50 | 0.50 | 49 | 209 | 50.8 | 0.03 | 30 | 6.9% |
12 | 0.69 | 0.50 | 71 | 716 | 183 | 0.5 | 30 | 11.7% |
13 | 0.25 | 4.50 | 73 | 200 | 127 | 0.5 | 30 | 13.2% |
14 | 0.25 | 1.39 | 75 | 986 | 127 | 0.5 | 30 | 15.3% |
15 | 1.50 | 0.50 | 50 | 250 | 50.8 | 0.5 | 30 | 5.6% |
16 | 0.25 | 2.33 | 67 | 963 | 183 | 0.03 | 30 | 13.7% |
17 | 0.88 | 1.91 | 48 | 200 | 183 | 0.3 | 30 | 8.2% |
18 | 0.25 | 1.50 | 35 | 946 | 50.8 | 0.5 | 30 | 11.5% |
19 | 0.30 | 1.17 | 37 | 254 | 127 | 0.5 | 30 | 17.0% |
20 | 0.25 | 4.50 | 75 | 631 | 183 | 0.03 | 30 | 9.5% |
21 | 0.42 | 0.50 | 75 | 976 | 183 | 0.03 | 30 | 8.3% |
22 | 0.25 | 2.53 | 75 | 829 | 127 | 0.03 | 30 | 15.5% |
23 | 1.50 | 0.50 | 35 | 200 | 183 | 0.03 | 30 | 10.4% |
24 | 0.76 | 0.50 | 49 | 283 | 183 | 0.5 | 30 | 13.0% |
25 | 1.34 | 0.50 | 35 | 636 | 127 | 0.3 | 30 | 8.4% |
26 | 0.50 | 4.50 | 75 | 200 | 50.8 | 0.03 | 30 | 9.9% |
27 | 1.50 | 4.50 | 35 | 284 | 50.8 | 0.5 | 30 | 4.7% |
28 | 1.24 | 2.50 | 35 | 276 | 127 | 0.3 | 30 | 8.3% |
29 | 1.33 | 4.50 | 35 | 200 | 50.8 | 0.03 | 30 | 9.0% |
30 | 1.5 | 0.50 | 75 | 776 | 50.8 | 0.03 | 30 | 9.0% |
31 | 0.26 | 0.50 | 39 | 591 | 183 | 0.5 | 30 | 18.9% |
32 | 1.41 | 4.00 | 75 | 979 | 127 | 0.03 | 30 | 8.8% |
33 | 1.50 | 0.50 | 75 | 971 | 50.8 | 0.3 | 30 | 3.0% |
34 | 0.82 | 2.08 | 75 | 878 | 127 | 0.03 | 30 | 10.2% |
35 | 0.25 | 4.50 | 53 | 985 | 127 | 0.03 | 30 | 14.9% |
MEA Number | Values | |||
---|---|---|---|---|
Methanol Concentration (mol/L) | Methanol Flow Rate (ccm) | Temperature (°C) | Air Flow Rate (ccm) | |
MEA01 | 0.30 | 1.0 | 40 | 300 |
MEA02 | 0.30 | 2.5 | 55 | 600 |
MEA03 | 0.30 | 4.0 | 70 | 900 |
MEA04 | 0.75 | 1.0 | 55 | 900 |
MEA05 | 0.75 | 2.5 | 70 | 300 |
MEA06 | 0.75 | 4.0 | 40 | 600 |
MEA07 | 1.20 | 1.0 | 70 | 600 |
MEA08 | 1.20 | 4.0 | 55 | 300 |
MEA09 | 1.20 | 2.5 | 40 | 900 |
Experiment Number | Experimental Value (%) | Model Prediction Value (%) | Relative Error | Accuracy |
---|---|---|---|---|
1 | 11.7226 | 12.5158 | 6.7664% | 93.2336% |
2 | 8.0659 | 8.3527 | 3.5557% | 96.4443% |
3 | 10.8069 | 10.7805 | 0.2443% | 99.7557% |
4 | 10.5279 | 10.0673 | 4.3750% | 95.6250% |
5 | 5.6273 | 6.0318 | 7.1882% | 92.8118% |
6 | 11.9883 | 12.7632 | 6.4638% | 93.5362% |
7 | 6.4487 | 6.3971 | 0.8002% | 99.1998% |
8 | 4.6035 | 5.0358 | 9.3907% | 90.6093% |
9 | 7.1142 | 6.8623 | 3.5408% | 96.4592% |
Average value | 4.7000% | 95.2972% |
Experiment Number | Experimental Value (%) | Initial Model Validation (%) | Relative Error | Accuracy |
---|---|---|---|---|
1 | 11.7226 | 12.6454 | 7.8720% | 92.1280% |
2 | 8.0659 | 7.4933 | 7.0990% | 92.9010% |
3 | 10.8069 | 10.3283 | 4.4287% | 95.5713% |
4 | 10.5279 | 12.6721 | 2.0367% | 97.9633% |
5 | 5.6273 | 5.8964 | 4.7820% | 95.2180% |
6 | 11.9883 | 13.0410 | 8.7811% | 91.2189% |
7 | 6.4487 | 6.7032 | 3.9465% | 96.0535% |
8 | 4.6035 | 4.1239 | 10.4182% | 89.5818% |
9 | 7.1142 | 6.0761 | 14.5919% | 85.4081% |
Average value | 9.1429% | 90.8571% |
MEA Number | CMe (mol/L) | FMe (ccm) | T (°C) | Air Flow Rate (ccm) | Experimental Output Variations | Calculated Output Variations |
---|---|---|---|---|---|---|
MEA01 | 0.30 | 1.05 | 40 | 300 | 0.4095% | 0.3795% |
MEA05 | 0.75 | 2.5 | 70 | 315 | 0.3838% | 0.3366% |
MEA09 | 1.20 | 2.5 | 42 | 900 | 4.5388% | 4.8162% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Xiao, G.; Liu, T.; Gao, B.; Chen, S. Efficient Prediction of Fuel Cell Performance Using Global Modeling Method. Energies 2022, 15, 8549. https://doi.org/10.3390/en15228549
Yang Q, Xiao G, Liu T, Gao B, Chen S. Efficient Prediction of Fuel Cell Performance Using Global Modeling Method. Energies. 2022; 15(22):8549. https://doi.org/10.3390/en15228549
Chicago/Turabian StyleYang, Qinwen, Gang Xiao, Tao Liu, Bin Gao, and Shujun Chen. 2022. "Efficient Prediction of Fuel Cell Performance Using Global Modeling Method" Energies 15, no. 22: 8549. https://doi.org/10.3390/en15228549
APA StyleYang, Q., Xiao, G., Liu, T., Gao, B., & Chen, S. (2022). Efficient Prediction of Fuel Cell Performance Using Global Modeling Method. Energies, 15(22), 8549. https://doi.org/10.3390/en15228549