Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor
Abstract
1. Introduction
2. Experimental Methods
2.1. Experimental Setup and Instrumentation
2.2. Experimental Conditions
3. Results and Discussion
3.1. Definition of Combustion Instability
3.2. Analysis for Resonant Frequency in the Swirl-Stabilized Combustor
3.3. Phase Analysis for the Combustion Instability Characteristics
3.4. Flame Structure Characteristics for Two Different Combustion Instabilities
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lefebvre Lean Premixed/Prevaporized Combustion; NASA CP-2016; Lewis Research Center: Cleveland, OH, USA, 1977.
- Foglesong, R.E.; Frazier, T.R.; Flamand, L.M.; Peters, J.E.; Lucht, R.P. Flame structure and emissions characteristics of a lean premixed gas turbine combustor. Jt. Propuls. Conf. Exhib. 1999, 2399. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Ruan, C.; Chen, F.; Cai, W.; Qian, Y.; Yu, L.; Lu, X. Principles of non-intrusive diagnostic techniques and their applications for fundamental studies of combustion instabilities in gas turbine combustors: A brief review. Aerosp. Sci. Technol. 2019, 84, 585–603. [Google Scholar] [CrossRef]
- Wu, G.; Lu, Z.; Xu, X.; Pan, W.; Wu, W.; Li, J.; Ci, J. Numerical investigation of aeroacoustics damping performance of a Helmholtz resonator: Effects of geometry, grazing and bias flow. Aerosp. Sci. Technol. 2019, 86, 191–203. [Google Scholar] [CrossRef]
- Renaud, A.; Ducruix, S.; Zimmer, L. Bistable behaviour and thermo-acoustic instability triggering in a gas turbine model combustor. Proc. Combust. Inst. 2017, 36, 3899–3906. [Google Scholar] [CrossRef]
- Bernier, D.; Lacas, F.; Candel, S. Instability Mechanisms in a Premixed Prevaporized Combustor. J. Propuls. Power 2004, 20, 648–656. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, D.; Han, N.; Wang, S.; Li, J. Control of combustion instability with a tunable Helmholtz resonator. Aerosp. Sci. Technol. 2015, 41, 55–62. [Google Scholar] [CrossRef]
- Chen, F.; Ruan, C.; Yu, T.; Cai, W.; Mao, Y.; Lu, X. Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerosp. Sci. Technol. 2019, 92, 126–138. [Google Scholar] [CrossRef]
- Kim, K.T.; Santavicca, D.A. Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor. Combust. Flame 2013, 160, 1441–1457. [Google Scholar] [CrossRef]
- Rayleigh, J.W.S. The Theory of Sound, 2nd ed.; Dover: New York, NY, USA, 1945. [Google Scholar]
- Kim, K.T. Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor. Combust. Flame 2016, 171, 137–151. [Google Scholar] [CrossRef]
- Nicoud, F.; Poinsot, T. Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes? Combust. Flame 2005, 142, 153–159. [Google Scholar] [CrossRef]
- Venkataraman, K.K.; Preston, L.H.; Simons, D.W.; Lee, B.J.; Lee, J.G.; Santavicca, D.A. Mechanism of Combustion Instability in a Lean Premixed Dump Combustor. J. Propuls. Power 1999, 15, 909–918. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: Transition from stable to unstable flame. Combust. Flame 2004, 136, 383–389. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, M.-K.; Hwang, J.; Lee, J.; Yoon, Y. Effect of fuel–air mixture velocity on combustion instability of a model gas turbine combustor. Appl. Therm. Eng. 2013, 54, 92–101. [Google Scholar] [CrossRef]
- Yoon, J.; Joo, S.; Kim, J.; Lee, M.C.; Lee, J.G.; Yoon, Y. Effects of convection time on the high harmonic combustion instability in a partially premixed combustor. Proc. Combust. Inst. 2017, 36, 3753–3761. [Google Scholar] [CrossRef]
- Allison, P.; Driscoll, J.F.; Ihme, M. Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons. Proc. Combust. Inst. 2013, 34, 3145–3153. [Google Scholar] [CrossRef]
- Park, J.; Lee, M.C. Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially-premixed gas turbine combustor: Part I—Frequency and mode analysis. Int. J. Hydrog. Energy 2016, 41, 7484–7493. [Google Scholar] [CrossRef]
- Schuller, T.; Durox, D.; Palies, P.; Candel, S. Acoustic decoupling of longitudinal modes in generic combustion systems. Combust. Flame 2012, 159, 1921–1931. [Google Scholar] [CrossRef]
- Kim, D.; Joo, S.; Yoon, Y. Effects of fuel line acoustics on the self-excited combustion instability mode transition with hydrogen-enriched laboratory-scale partially premixed combustor. Int. J. Hydrogen Energy 2020, 45, 19956–19964. [Google Scholar] [CrossRef]
- Kim, M.-K.; Yoon, J.; Oh, J.; Lee, J.; Yoon, Y. An experimental study of fuel–air mixing section on unstable combustion in a dump combustor. Appl. Therm. Eng. 2014, 62, 662–670. [Google Scholar] [CrossRef]
- Katsuki, M.; Whitelaw, J. The influence of duct geometry on unsteady premixed flames. Combust. Flame 1986, 63, 87–94. [Google Scholar] [CrossRef]
- Delacruzgarcia, M.; Mastorakos, E.; Dowling, A. Investigations on the self-excited oscillations in a kerosene spray flame. Combust. Flame 2009, 156, 374–384. [Google Scholar] [CrossRef]
- Hwang, D.; Ahn, K. Experimental Study on Dynamic Combustion Characteristics in Swirl-Stabilized Combustors. Energies 2021, 14, 1609. [Google Scholar] [CrossRef]
- Beer, J.M.; Chigier, N.A. Combustion Aerodynamics; Applied Science Publisher: London, UK, 1972. [Google Scholar]
- Hwang, D.; Song, Y.; Ahn, K. Combustion instability characteristics in a dump combustor using different hydrocarbon fuels. Aeronaut. J. 2019, 123, 586–599. [Google Scholar] [CrossRef]
- Sterling, J.D. Longitudinal Mode Combustion Instabilities in Air Breathing Engines; California Institute of Technology: Pasadena, CA, USA, 1987. [Google Scholar]
- Göttgens, J.; Mauss, F.; Peters, N. Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames. Symp. Combust. 1992, 24, 129–135. [Google Scholar] [CrossRef]
- Kim, K.T.; Santavicca, D. Linear stability analysis of acoustically driven pressure oscillations in a lean premixed gas turbine combustor. J. Mech. Sci. Technol. 2009, 23, 3436–3447. [Google Scholar] [CrossRef]
Oxidizer | Air | |||
---|---|---|---|---|
Fuel | C2H4 | CH4 | ||
ϕ | 0.60–0.80, Δ0.05 | 0.70–0.85, Δ0.05 | ||
u [m/s] | 10 | 15 | 20 | |
Reynolds number | 24,000 | 36,000 | 48,000 | |
LC [mm] | 495–1695, Δ100 | |||
LI [mm] | 350 | |||
Swirl number (SN) | 0.46, 0.80, 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, D.; Kang, C.; Ahn, K. Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor. Energies 2022, 15, 8492. https://doi.org/10.3390/en15228492
Hwang D, Kang C, Ahn K. Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor. Energies. 2022; 15(22):8492. https://doi.org/10.3390/en15228492
Chicago/Turabian StyleHwang, Donghyun, Cheolwoong Kang, and Kyubok Ahn. 2022. "Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor" Energies 15, no. 22: 8492. https://doi.org/10.3390/en15228492
APA StyleHwang, D., Kang, C., & Ahn, K. (2022). Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor. Energies, 15(22), 8492. https://doi.org/10.3390/en15228492