An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications
Abstract
:1. Introduction
2. Low-GWP Refrigerants (Pure and Blended)
2.1. Pure Refrigerants
2.1.1. R1234yf
2.1.2. R1234ze(E)
2.1.3. R152a
2.1.4. R744
2.1.5. R1336mzz(Z)
2.1.6. HC (Propane R290, N-Butane R600, Isobutane R600a)
2.1.7. Other Natural Refrigerants
2.2. Refrigerant Mixtures
2.2.1. Binary Mixtures
R32/R1234ze
R32/R1234yf
R32/R1123
HC Mixtures
2.2.2. Ternary Mixtures
R744/R32/R1234ze(E)
R744/R32/R1234yf
Other Ternary Mixtures
3. Total Equivalent Warming Impact (TEWI) of a Refrigerant
4. Technical Difficulties and Remedies to Use Low-GWP Refrigerants
- ➢
- Lack of thermophysical property data (experimental) for the mixtures to select/study different binary or ternary mixtures.
- ➢
- Most of the low-GWP refrigerant mixtures are non-azeotropic, so it has higher temperature glide, which avoids the pinch point formation in the condenser and evaporators during the two-phase flow.
- ➢
- Irreversible loss as well as pressure drops in the condenser and evaporator increases due to the lower volumetric capacity of the mixture refrigerants [74].
- ➢
- The lower volumetric capacity of these refrigerant mixtures requires a higher volumetric flow rate to maintain a similar capacity resulting in higher compressor speed and, thus irreversible losses.
- ➢
- Large non-linear variation of two-phase enthalpy with temperature during phase change in some zeotropic mixtures.
- ➢
- Lack of compatibility data of refrigerant mixtures and lubricant oil.
- ➢
- Changes in the temperature glide of the zeotropic mixture due to possible leakage and thus altering the mixing ratio. Therefore, refilling cannot guarantee that the new mixture has the same proportion as it had before the leakage.
- ➢
- ➢
- When the refrigerant temperature changes in parallel with the heat source/sink fluids, that allows the ideal Lorentz cycle [156] and helps to reduce the mean temperature difference and irreversible losses in the condenser and evaporator. Kondou et al. [152] and Wang et al. [158] observed a negative effect on the heat transfer coefficient due to mass transport phenomena during the evaporation and condensation of the zeotropic refrigerant mixtures. High turbulence and good mixing in the heat exchanger can neutralize this negative effect.
- ➢
- By choosing the proper compressor size and suitable lubricant oil, the irreversible loss can be reduced for a new mixture.
- ➢
- Tubes with larger diameters and branches of refrigerant circuits in the heat exchangers can be employed to reduce the pressure drop.
- ➢
- The compressor efficiency curve for the mixtures, the solubility with lubricant oil, and their effect on the isentropic efficiency data are needed to find the best combination.
- ➢
- Research and technological development is required for a compressor when it uses blend refrigerants.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
COP | Coefficient of performance (–) |
H | Enthalpy (kJ/kg) |
Δh | Enthalpy change during evaporation (kJ/kg) |
L | Irreversibly low (W) |
Q | Cooling/heating load (kW) |
S | Entropy (J/kg/K) |
T | Temperature (°C or K) |
Subscripts | |
COMPR | Compressor |
COND | Condenser |
EVA | Evaporator |
EXP | Expansion valve |
H | Heating |
inv/INV | Inverter |
PD | Pressure drop |
R | Refrigerant |
R | Cooling |
V | Vapor |
W | Water |
Greek symbols | |
η | Efficiency (–) |
ρ | Density at evaporator output (kg/m3) |
References
- Calm, J.M.; Didion, D.A. Trade-offs in refrigerant selections: Past, present, and future. Int. J. Refrig. 1998, 21, 308–321. [Google Scholar] [CrossRef]
- UNEP. Report of the Technology and Economic Assessment Panel. Montreal Protocol On Substances that Deplete the Ozone Layer; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Benhadid-Dib, S.; Benzaoui, A. Refrigerants and their environmental impact Substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. Search for an adequate refrigerant. Energy Procedia 2012, 18, 1611–1623. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, N.J.; McMullan, J.T. The replacement of CFCS in refrigeration equipment by environmentally benign alternatives. Appl. Therm. Eng. 1997, 17, 955–972. [Google Scholar] [CrossRef]
- Billiard, F.; Lucas, L. Fluorocarbons and global warming. Rev Générale Therm. 1998, 37, 417–423. [Google Scholar] [CrossRef]
- McMullan, J.T. Refrigeration and the environment—Issues and strategies for the future. Int. J. Refrig. 2002, 25, 89–99. [Google Scholar] [CrossRef]
- Kim, K.H.; Shon, Z.H.; Nguyen, H.T.; Jeon, E.C. A review of major chlorofluorocarbons and their halocarbon alternatives in the air. Atmos. Environ. 2011, 45, 1369–1382. [Google Scholar] [CrossRef]
- Calm, J.M. Refrigerant Transitions … Again. In Proceedings of the ASHRAE-NIST Refrigrants Conference, Gaithersburg, MD, USA, 29–30 October 2012; pp. 1–16. [Google Scholar]
- Aprea, C.; Greco, A.; Maiorino, A. An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2. Energy 2012, 45, 753–761. [Google Scholar] [CrossRef]
- Powell, R.L. CFC phase-out: Have we met the challenge? J. Fluor. Chem. 2002, 114, 237–250. [Google Scholar] [CrossRef]
- Park, K.-J.; Seo, T.; Jung, D. Performance of alternative refrigerants for residential air-conditioning applications. Appl. Energy 2007, 84, 985–991. [Google Scholar] [CrossRef]
- Chen, J.; Yu, J. Performance of a new refrigeration cycle using refrigerant mixture R32/R134a for residential air-conditioner applications. Energy Build 2008, 40, 2022–2027. [Google Scholar] [CrossRef]
- Park, K.J.; Shim, Y.B.; Jung, D. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps. Appl. Energy 2008, 85, 896–900. [Google Scholar] [CrossRef]
- Park, K.J.; Shim, Y.B.; Jung, D. A “drop-in” refrigerant R431A for replacing HCFC22 in residential air-conditioners and heat pumps. Energy Convers. Manag. 2009, 50, 1671–1675. [Google Scholar] [CrossRef]
- Devotta, S.; Waghmare, A.V.; Sawant, N.N.; Domkundwar, B.M. Alternatives to HCFC-22 for air conditioners. Appl. Therm. Eng. 2001, 21, 703–715. [Google Scholar] [CrossRef]
- Joudi, K.A.; Al-Amir, Q.R. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures. Energy Convers. Manag. 2014, 86, 496–506. [Google Scholar] [CrossRef]
- Qifang, Y.; Jiangping, C.; Zhijiu, C. Experimental investigation of R407C and R410A flow through electronic expansion valve. Energy Convers. Manag. 2007, 48, 1624–1630. [Google Scholar] [CrossRef]
- Karagoz, S.; Yilmaz, M.; Comakli, O.; Ozyurt, O. R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps. Energy Convers. Manag. 2004, 45, 181–196. [Google Scholar] [CrossRef]
- Yun, R.; Heo, J.H.; Kim, Y. Evaporative heat transfer and pressure drop of R410A in microchannels R410A. Int. J. Refrig. 2006, 29, 92–100. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Makhnatch, P.; Molés, F. Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA. Renew. Sustain. Energy Rev. 2017, 80, 1031–1042. [Google Scholar] [CrossRef]
- Spatz, M.W.; Motta, S.F.Y.; Yana Motta, S.F. An evaluation of options for replacing HCFC-22 in medium temperature refrigeration systems. Int. J. Refrig. 2004, 27, 475–483. [Google Scholar] [CrossRef]
- R-32, Next-Generation Refrigerant|Benefits of Daikin Technology|Daikin Global n.d. Available online: http://www.daikin.com/about/why_daikin/benefits/r-32/ (accessed on 4 July 2017).
- Brown, J.S.; Yana-Motta, S.F.; Domanski, P.A. Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a. Int. J. Refrig. 2002, 25, 19–32. [Google Scholar] [CrossRef]
- Vaghela, J.K. Comparative Evaluation of an Automobile Air—Conditioning System Using R134a and Its Alternative Refrigerants. Energy Procedia 2017, 109, 153–160. [Google Scholar] [CrossRef]
- Minjares, R. Refrigerants for Light-Duty Passenger Vehicle Air Conditioning Systems Technical Assessment of Alternatives to HFC-134a; International Council of Clean Transport: Hague, The Netherlands, 2011. [Google Scholar]
- Ravikumar, T.S.; Lal, D.M. On-road performance analysis of R134a/R600a/R290 refrigerant mixture in an automobile air-conditioning system with mineral oil as lubricant. Energy Convers. Manag. 2009, 50, 1891–1901. [Google Scholar] [CrossRef]
- Bolaji, B.O. Experimental study of R152a and R32 to replace R134a in a domestic refrigerator. Energy 2010, 35, 3793–3798. [Google Scholar] [CrossRef]
- An Mota-Babiloni, A.; Belman-Flores, J.M.; Makhnatch, P.; Navarro-Esbrí, J.; Barroso-Maldonado, J.M. Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system. Energy 2018, 162, 99–110. [Google Scholar] [CrossRef]
- Tiwari, A.; Gupta, R.C. Recent development of domestic refrigerator—A review. Int. J. Eng. Sci. Technol. 2011, 3, 4233–4239. [Google Scholar]
- Sciance, F. The Transition from HFC-134a to a Low-GWP Refrigerant in Mobile Air Conditioners HFO-1234yf; General Motors Public Policy Center: Detroit, MI, USA, 2013; pp. 1–15. [Google Scholar]
- Navarro-Esbrí, J.; Mendoza-Miranda, J.M.; Mota-Babiloni, A.; Barragán-Cervera, A.; Belman-Flores, J.M. Experimental analysis of R1234yf as a drop-in replacement for R134a in a vapor compression system. Int. J. Refrig. 2013, 36, 870–880. [Google Scholar] [CrossRef]
- Zilio, C.; Brown, J.S.; Schiochet, G.; Cavallini, A. The refrigerant R1234yf in air conditioning systems. Energy 2011, 36, 6110–6120. [Google Scholar] [CrossRef]
- De Chazournes, L.B. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations Audiovisual Library of International Law: Maastricht, The Netherlands, 1998. [Google Scholar]
- European Environment Agency. Company Reporting for Regulation (EU) No 517/2014 on Fluorinated Greenhouse Gases; European Environment Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- EU MAC Directive. Directive 2006/40/EC of the European Parliament and the Council of the European Union; Official Journal of the European Union: Maastricht, The Netherlands, 2006; L 161. [Google Scholar]
- EPA. 40 CFR Part 82—Protection of stratospheric ozone: Change of listing status for certain substitutes under the significant new alternative policy program, Final Rule. Fed. Regist. 1990, 80, 1–91. [Google Scholar]
- Pham, H.; Rajendran, R. R32 And HFOs As Low-GWP Refrigerants For Air Conditioning. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 24–28 May 2012; pp. 1–10. [Google Scholar]
- UNFCC. United Nations/Framework Convention on Climate Change. Paris Agreement (21st Conf Parties) 2015. p. 27. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 20 August 2022).
- Fukushima, M.; Hashimoto, M. Next Generation Low-GWP Refrigerants “AMOLEA-TM.”; Reports of the Research Laboratory; Asahi Glass Co., Ltd.: Tokyo, Japan, 2015. [Google Scholar]
- Meno, A. Laws and Regulation for Fluorocarbons in Japan; Ministry of Economy, Trade and Industry, Japan: Tokyo, Japan, 2015. [Google Scholar]
- Uddin, K.; Arakaki, S.; Saha, B.B. Thermodynamic analysis of low-GWP blends to replace R410A for residential building air conditioning applications. Environ. Sci. Pollut. Res. 2021, 28, 2934–2947. [Google Scholar] [CrossRef]
- Pal, A.; Uddin, K.; Thu, K.; Saha, B.B. Environmental assessment and characteristics of next generation refrigerants. Evergr. Jt. J. Nov. Carbon. Resour. Sci. Green. Asia Strateg. 2018, 5, 58–66. [Google Scholar] [CrossRef]
- Minor, B.H.; Herrmann, D.; Gravell, R. Flammability characteristics of HFO-1234yf. Process. Saf. Prog. 2010, 29, 150–154. [Google Scholar] [CrossRef]
- Honeywell SolsticeTM yf Refrigerants. Honeywell Technical Bulletin. 2012. Available online: https://www.honeywell-refrigerants.com/europe/wp-content/uploads/2013/03/honeywell-solstice-yf-technical-bulletin.pdf (accessed on 12 December 2021).
- Feng, B.; Yang, Z.; Zhai, R. Experimental study on the influence of the flame retardants on the flammability of R1234yf. Energy 2018, 143, 212–218. [Google Scholar] [CrossRef]
- Minor, B.; Spatz, M. HFO-1234yf Low GWP Refrigerant Update. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 14–17 July 2008; pp. 1–8. [Google Scholar]
- Tanaka, K.; Higashi, Y. Thermodynamic properties of HFO-1234yf (2,3,3,3-tetrafluoropropene). Int. J. Refrig. 2010, 33, 474–479. [Google Scholar] [CrossRef]
- Akasaka, R.; Tanaka, K.; Higashi, Y. Thermodynamic property modeling for 2,3,3,3-tetrafluoropropene (HFO-1234yf). Int. J. Refrig. 2010, 33, 52–60. [Google Scholar] [CrossRef]
- Lai, N.A.; Vrabec, J.; Raabe, G.; Fischer, J.; Wendland, M. Description of HFO-1234yf with BACKONE equation of state. Fluid Phase Equilib. 2011, 305, 204–211. [Google Scholar] [CrossRef]
- Richter, M.; McLinden, M.O.; Lemmon, E.W. Thermodynamic properties of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf): Vapor pressure and p- rho- T Measurements and an Equation of State. J. Chem. Eng. Data 2011, 56, 3254–3264. [Google Scholar] [CrossRef]
- SAE-CRP1234; Industry Evaluation of Low Global Warning Potential Refrigerant HFO-1234yf. SAE International: Warrendale, PA, USA, 2009.
- Lee, Y.; Jung, D. A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications. Appl. Therm. Eng. 2012, 35, 240–242. [Google Scholar] [CrossRef]
- Spatz, M.; Minor, B. HFO-1234yf Low GWP Refrigerant: A Global Sustainable Solution for Mobile Air Conditioning. In Proceedings of the SAE Alternate Refrigerant Systems Symposium, Scottsdale, AZ, USA, 10 June 2008; pp. 1–26. [Google Scholar]
- Del Col, D.; Torresin, D.; Cavallini, A. Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf. Int. J. Refrig. 2010, 33, 1307–1318. [Google Scholar] [CrossRef]
- Koban, M. HFO-1234yf Low GWP Refrigerant—Information for Manufacturing and Service Facilities. 2010. [Google Scholar]
- Jarall, S. Study of refrigeration system with HFO-1234yf as a working fluid. Int. J. Refrig. 2012, 35, 1668–1677. [Google Scholar] [CrossRef]
- Qi, Z. Performance improvement potentials of R1234yf mobile air conditioning system. Int. J. Refrig. 2015, 58, 35–40. [Google Scholar] [CrossRef]
- Kojima, H.; Fukuda, S.; Kondou, C.; Takata, N.; Koyama, S. Comparative Assessment of Heat Pump Cycle Operated with R32/R1234ze(E) and R32/R1234yf mixtures. In Proceedings of the International Refrigeration and Air Conditioning Conference, Yokohama, Japan, 16–22 August 2015; pp. 1–8. [Google Scholar]
- Barve, A.; Cremaschi, L. Drop-in Performance of Low GWP Refrigerants in a Heat Pump System for Residential Applications. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 16–19 July 2012; pp. 1–9. [Google Scholar]
- Kenji, U.; Kazuki, W.; Yokoyama, A.; Akimasa, S.A.; Ueda, K.; Wajima, K.; Yokoyama, A.; As, A. Low GWP refrigerant application for the centrifugal chiller—Study for application of HFO-1234ze(E). Trans Jpn. Soc Refrig. Air Cond. Eng. 2011, 28, 503–508. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, X.; Tian, T. Flammability of Trans-1, 3, 3, 3-tetrafluoroprop-1-ene and its binary blends. Energy 2015, 91, 386–392. [Google Scholar] [CrossRef]
- Higashi, Y.; Tanaka, K.; Ichikawa, T. Critical Parameters and Saturated Densities in the Critical Region for trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E)). J. Chem. Eng. Data 2010, 55, 1594–1597. [Google Scholar] [CrossRef]
- Brown, J.S.; Zilio, C.; Cavallini, A. Thermodynamic properties of eight fluorinated olefins. Int. J. Refrig. 2010, 33, 235–241. [Google Scholar] [CrossRef]
- Fukuda, S.; Kondou, C.; Takata, N.; Koyama, S. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps. Int. J. Refrig. 2014, 40, 161–173. [Google Scholar] [CrossRef]
- Koyama, S.; Fukuda, S.; Osafune, K.; Akasaka, R. Development of low GWP refrigerants suitable for heat pump systems. In Proceedings of the JRAIA International Symposium, Kobe, Japan, 3–4 April 2012. [Google Scholar]
- Brown, J.S.; Zilio, C.; Cavallini, A. The fluorinated olefin R-1234ze(Z) as a high-temperature heat pumping refrigerant. Int. J. Refrig. 2009, 32, 1412–1422. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Ge, Z.; Duan, Y.; Yang, Z. Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100â(E)“200°C heat sources. Energy Convers. Manag. 2017, 149, 140–154. [Google Scholar] [CrossRef]
- Koyama, S.; Takata, N.; Fukuda, S. An experimental study on heat pump cycle using zeotropic binary refrigerant of HFO-1234ze(E) and HFC-32. In Proceedings of the 10th IEA Heat Pump Conference, Tokyo, Japan, 14–16 September 2011; pp. 1–10. [Google Scholar]
- Koyama, S.; Takata, N.; Fukuda, S. Drop-in Experiments on Heat Pump Cycle Using HFO-1234ze(E) and Its Mixtures with HFC-32. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 9–12 July 2010; pp. 1–7. [Google Scholar]
- Kabeel, A.E.; Khalil, A.; Bassuoni, M.M.; Raslan, M.S. Comparative experimental study of low GWP alternative for R134a in a walk-in cold room. Int. J. Refrig. 2016, 69, 303–312. [Google Scholar] [CrossRef]
- Lai, N.A. Equations of state for HFO-1234ze(E) and their application in the study on refrigeration cycle. Int. J. Refrig. 2014, 43, 194–202. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Barragán, Á.; Molés, F.; Peris, B. Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements. Appl. Therm. Eng. 2014, 71, 259–265. [Google Scholar] [CrossRef] [Green Version]
- An Mota-Babiloni, A.; Navarro-Esbrí, J.; Barrag An-Cervera, A.; Mol, F.; Peris, B. Drop-in analysis of an internal heat exchanger in a vapour compression system using R1234ze(E) and R450A as alternatives for R134a. Energy 2015, 90, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; Kojima, H.; Kondou, C.; Takata, N.; Koyama, S. Comparative assessment on irreversible losses in heat pumps using R744/R32/R1234yf and R744/R32/R1234ze(E). Sci. Technol. Built Environ. 2016, 22, 1118–1127. [Google Scholar] [CrossRef]
- Yamamoto, S.; Koyama, S. Performance Evaluation of Heat Pump Cycle Using Non-Azeotropic Refrigerant Mixture R32/R1234ze(E); Kyushu University: Fukuoka, Japan, 2014. [Google Scholar]
- Higashi, Y.; Ashizawa, M.; Kabata, Y.; Majima, T.; Uematsu, M.; Watanabe, K. Measurements of vapor pressure, vapor-liquid coexistence curve and critical parameters of Refrigerant 152a. Trans Jpn. Soc. Mech. Eng. Ser. B 1987, 53, 1379–1385. [Google Scholar] [CrossRef] [Green Version]
- Tamatsu, T.; Sato, H.; Watanabe, K. An equation of state for 1,1-difluoroethane (HFC 152a). Int. J. Refrig. 1993, 16, 347–352. [Google Scholar] [CrossRef]
- Van Poolen, L.J.; Holcomb, C.D.; Niesen, V.G. Critical temperature and density from liquid-vapor coexistence data: Application to refrigerants R32, R124, and R152a. Fluid Phase Equilib. 1997, 129, 105–111. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013 The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bitzer Group of Companies. Refrigerant Report, 15th ed.; Bitzer Group of Companies: Sindelfingen, Germany, 2014. [Google Scholar]
- Cabello, R.; Sánchez, D.; Llopis, R.; Arauzo, I.; Torrella, E. Experimental comparison between R152a and R134a working in a refrigeration facility equipped with a hermetic compressor. Int. J. Refrig. 2015, 60, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-J.; Jung, D. Performance of alternative refrigerant R430A on domestic water purifiers. Energy Convers. Manag. 2009, 50, 3045–3050. [Google Scholar] [CrossRef]
- ANSI/ASHRAE-34-2007; Designation and Safety Classification of Refrigerants. ASHRAE: Atlanta, GA, USA, 2008; Volume 4723.
- Cabello, R.; Sánchez, D.; Llopis, R.; Catalán, J.; Nebot-Andrés, L.; Torrella, E. Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants. Appl. Therm. Eng. 2017, 110, 972–984. [Google Scholar] [CrossRef] [Green Version]
- Pearson, A. Carbon dioxide—New uses for an old refrigerant. Int. J. Refrig. 2005, 28, 1140–1148. [Google Scholar] [CrossRef]
- Austin, B.T.; Sumathy, K. Transcritical carbon dioxide heat pump systems: A review. Renew. Sustain. Energy Rev. 2011, 15, 4013–4029. [Google Scholar] [CrossRef]
- Bolaji, B.O.; Huan, Z. Ozone depletion and global warming: Case for the use of natural refrigerant—A review. Renew. Sustain. Energy Rev. 2013, 18, 49–54. [Google Scholar] [CrossRef]
- Weber, C.; Favrat, D. Conventional and advanced CO2 based district energy systems. Energy 2010, 35, 5070–5081. [Google Scholar] [CrossRef]
- Maina, P.; Huan, Z. A review of carbon dioxide as a refrigerant in refrigeration technology. S. Afr. J. Sci. 2015, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lorentzen, G. Revival of carbon dioxide as a refrigerant. Int. J. Refrig. 1994, 17, 292–301. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Z.; Tian, H. A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 2013, 55, 156–172. [Google Scholar] [CrossRef]
- Lorentzen, G.; Pettersen, J. A new, efficient and environmentally benign system for car air-conditioning. Int. J. Refrig. 1993, 16, 4–12. [Google Scholar] [CrossRef]
- Koyama, K.; Xue, J.; Kuwahara, K. Performance Prediction Method of CO2 Cycle for Air Cooling. Trans. Jpn. Soc. Refrig. Air Cond. Eng. 2009, 26, 325–333. [Google Scholar] [CrossRef]
- Xue, J.; Koyama, S.; Kuwahara, K. Performance Prediction of a R744 Transcritical Cycle for Air Conditioning. In Proceedings of the International Symposium Next-generation Air Conditioning Refrigeration Technology, Tokyo, Japan, 17–19 February 2010; pp. 17–19. [Google Scholar]
- Jing-Yang, M.; Jiang-Ping, C.; Zhi-Jiu, C. System design and analysis of trans-critical carbon-dioxide automotive air-conditioning system. J. Zhejiang Univ. Sci. 2003, 4, 305–308. [Google Scholar]
- Girotto, S.; Minetto, S.; Neksa, P. Commercial refrigeration system using CO2 as the refrigerant. Int. J. Refrig. 2004, 27, 717–723. [Google Scholar] [CrossRef]
- He, Y.; Deng, J.; Zheng, L.; Zhang, Z. Performance optimization of a transcritical CO2 refrigeration system using a controlled ejector. Int. J. Refrig. 2016, 75, 250–261. [Google Scholar] [CrossRef]
- Pitarch, M.; Navarro-Peris, E.; Gonzalvez, J.; Corberan, J.M. Analysis and optimisation of different two-stage transcritical carbon dioxide cycles for heating applications. Int. J. Refrig. 2016, 70, 235–2342. [Google Scholar] [CrossRef]
- Chen, G.; Volovyk, O.; Zhu, D.; Ierin, V.; Shestopalov, K. Theoretical analysis and optimization of a hybrid CO2 transcritical mechanical compression—Ejector cooling cycle. Int. J. Refrig. 2017, 74, 86–94. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Celik, A.; Radermacher, R. Performance of CO2 cycles with a two-stage compressor. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 12–14 July 2004; pp. 1–8. [Google Scholar]
- Nekså, P. CO2 heat pump systems. Int. J. Refrig. 2002, 25, 421–427. [Google Scholar] [CrossRef]
- Dawo, F.; Fleischmann, J.; Kaufmann, F.; Schifflechner, C.; Eyerer, S.; Wieland, C.; Spliethoff, H. R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact. Appl. Energy 2021, 288, 116661. [Google Scholar] [CrossRef]
- Sakoda, N.; Higashi, Y.; Akasaka, R. Measurements of PvT Properties, Vapor Pressures, Saturated Densities, and Critical Parameters for trans-1,1,1,4,4,4-Hexafluoro-2-butene (R1336mzz(E)). J. Chem. Eng. Data 2021, 66, 734–739. [Google Scholar] [CrossRef]
- Kedzierski, M.A.; Lin, L. Pool boiling of HFO-1336mzz(Z) on a reentrant cavity surface. Int. J. Refrig. 2019, 104, 476–483. [Google Scholar] [CrossRef]
- Kontomaris, K. Zero-ODP, low-GWP, non-flammable working fluids for high temperature heat pumps. In Proceedings of the ASHRAE 2014 Annual Conference, Seattle, WA, USA, 23 July 2014. [Google Scholar]
- Lampugnani, G.; Zgliczynski, M. R290 as a Substitute of R502 and R22 in Commercial Refrigeration and Air Conditioning. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 23 July 1996; pp. 83–88. [Google Scholar]
- Granryd, E. Hydrocarbons as refrigerants—An overview. Int. J. Refrig. 2001, 24, 15–24. [Google Scholar] [CrossRef]
- Halimic, E.; Ross, D.; Agnew, B.; Anderson, A.; Potts, I. A comparison of the operating performance of alternative refrigerants. Appl. Therm. Eng. 2003, 23, 1441–1451. [Google Scholar] [CrossRef]
- Bjerre, P.; Larsen, P. Evaluation of N-butane as a potential refrigerant for household compressors. In Proceedings of the International Compressor Engineering Conference, Purdue, IN, USA, 17–20 July 2006; pp. 1–6. [Google Scholar]
- Palm, B. Hydrocarbons as refrigerants in small heat pump and refrigeration systems—A review. Int. J. Refrig. 2008, 31, 552–563. [Google Scholar] [CrossRef]
- Wongwises, S.; Chimres, N. Experimental study of hydrocarbon mixtures to replace HFC-134a in a domestic refrigerator. Energy Convers. Manag. 2005, 46, 85–100. [Google Scholar] [CrossRef]
- Corberán, J.M.; Segurado, J.; Colbourne, D.; Gonzálvez, J. Review of standards for the use of hydrocarbon refrigerants in A/C, heat pump and refrigeration equipment. Int. J. Refrig. 2008, 31, 748–756. [Google Scholar] [CrossRef]
- Suzuki, M. Application of adsorption cooling systems to automobiles. Heat Recover. Syst. ClIP 1993, 13, 335–340. [Google Scholar] [CrossRef]
- Zhang, L. Design and testing of an automobile waste heat adsorption cooling system. Appl. Therm. Eng. 2000, 20, 103–114. [Google Scholar] [CrossRef]
- Wang, R.; Oliveira, R. Adsorption refrigeration—An efficient way to make good use of waste heat and solar energy. Prog. Energy. Combust. Sci. 2006, 32, 424–458. [Google Scholar] [CrossRef]
- Abdullah, M.O.; Tan, I.A.W.; Lim, L.S. Automobile adsorption air-conditioning system using oil palm biomass-based activated carbon: A review. Renew. Sustain. Energy Rev. 2011, 15, 2061–2072. [Google Scholar] [CrossRef]
- Wang, R.Z.; Li, Y. Perspectives for natural working fluids in China. Int. J. Refrig. 2007, 30, 568–581. [Google Scholar] [CrossRef]
- Critoph, R.E. Performance estimation of convective thermal wave adsorption cycles. Appl. Therm. Eng. 1996, 16, 429–437. [Google Scholar] [CrossRef]
- Balaras, C.A.; Grossman, G.; Henning, H.-M.; Ferreira, C.A.I.; Podesser, E.; Wang, L.; Wiemken, E. Solar air conditioning in Europe—An overview. Renew. Sustain. Energy Rev. 2007, 11, 299–314. [Google Scholar] [CrossRef]
- Sumathy, K.; Huang, Z.C.; Li, Z.F. Solar absorption cooling with low grade heat source—A strategy of development in south China. Sol. Energy 2002, 72, 155–165. [Google Scholar] [CrossRef]
- Wang, R.Z.; Xia, Z.Z.; Wang, L.W.; Lu, Z.S.; Li, S.L.; Li, T.X.; Wu, J.Y.; He, S. Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy. Energy 2011, 36, 5425–5439. [Google Scholar] [CrossRef]
- Thu, K.; Kim, Y.-D.D.; Myat, A.; Chun, W.G.; Ng, K.C. Entropy generation analysis of an adsorption cooling cycle. Int. J. Heat Mass. Transf. 2013, 60, 143–150. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Saha, B.B.; Chakraborty, A. Study on a waste heat-driven adsorption cooling cum desalination cycle. Int. J. Refrig. 2012, 35, 685–693. [Google Scholar] [CrossRef]
- Myat, A.; Thu, K.; Kim, Y.D.; Chakraborty, A.; Chun, W.G.; Ng, K.C. A second law analysis and entropy generation minimization of an absorption chiller. Appl. Therm. Eng. 2011, 31, 2405–2413. [Google Scholar] [CrossRef]
- Bella, B.; Kaemmer, N. An assessment of low GWP refrigerants in different applications. In Proceedings of the 23rd IIR Congress of Refrigeration, Prague, Czech Republic, 26–28 August 2011; p. 8. [Google Scholar]
- Kamiaka, T.; Dang, C.; Hihara, E. Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a. Int. J. Refrig. 2013, 36, 965–971. [Google Scholar] [CrossRef]
- Koyama, S.; Takata, N.; Fukuda, S.; Akasaka, R. Measurement of vapor-liquid equilibrium of HFO1234ze(E)/HFC32. In Proceedings of the JSRAE Annual Conference, Tokyo, Japan, 14-16 September 2010. [Google Scholar]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.1; NIST: Gaithersburg, MD, USA, 2013.
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Molés, F.; Cervera, Á.B.; Peris, B.; Verdú, G. A review of refrigerant R1234ze(E) recent investigations. Appl. Therm. Eng. 2016, 95, 211–222. [Google Scholar] [CrossRef]
- Wang, X.; Amrane, K. AHRI Low Global Warming Potential Alternative Refrigerants Evaluation Program (Low-GWP AREP)—Summary of Phase I Testing Results. In Proceedings of the 15th International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 14–17 July 2014; pp. 1–10. [Google Scholar]
- Koyama, S.; Takata, N.; Matsuo, Y.; Yoshitake, D.; Fukuda, S. Possibility to introduce HFO-1234ze(E) and its mixture with HFC-32 as low-GWP alternatives for heat pump/refrigeration systems SYSTEMS. In Proceedings of the 2010 International Symposium on Next-generation Air Conditioning and Refrigeration Technology, Tokyo, Japan, 17–19 February 2010; pp. 1–10. [Google Scholar]
- Akasaka, R. Thermodynamic property models for the difluoromethane (R-32)+trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)) and difluoromethane+2,3,3,3-tetrafluoropropene (R-1234yf) mixtures. Fluid Phase Equilib. 2013, 358, 98–104. [Google Scholar] [CrossRef]
- Kojima, H.; Arakaki, S.; Fukuda, S.; Takata, N.; Kondou, C.; Koyama, S. Comparative Study on Heat Pump Cycle Using R32/R1234yf and R744/R32/R1234yf. In Proceedings of the 8th Asian Conference on Refrigeration and Air-Conditioning, Taipei, Taiwan, 15–17 May 2016; pp. 8–11. [Google Scholar]
- Fukuda, S.; Takata, N.; Koyama, S. The Circulation Composition Characteristic of the Zeotropic Mixture R1234ze ( E )/ R32 in a Heat Pump Cycle. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 16–19 July 2012; pp. 1–8. [Google Scholar]
- Fukuda, S.; Kondou, C.; Takata, N.; Koyama, S. Evaluation of High-Temperature Heat Pump Cycle Performance Using Low-Gwp Refrigerants. In Proceedings of the 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Delft, The Netherlands, 17–19 June 2013; pp. 1–8. [Google Scholar]
- Alabdulkarem, A.; Eldeeb, R.; Hwang, Y.; Aute, V.; Radermacher, R. Testing, simulation and soft-optimization of R410A low-GWP alternatives in heat pump system. Int. J. Refrig. 2015, 60, 106–117. [Google Scholar] [CrossRef]
- Mani, K.; Selladurai, V. Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a. Int. J. Therm. Sci. 2008, 47, 1490–1495. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, D.Y.; Kim, Y. Performance characteristics of a small-capacity directly cooled refrigerator using R290/R600a (55/45). Int. J. Refrig. 2008, 31, 734–741. [Google Scholar] [CrossRef]
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C. Environment friendly alternatives to halogenated refrigerants-A review. Int. J. Greenh. Gas. Control. 2009, 3, 108–119. [Google Scholar] [CrossRef]
- Jung, D.; Kim, C.B.; Song, K.; Park, B. Testing of propane/isobutane mixture in domestic refrigerators. Int. J. Refrig. 2000, 23, 517–527. [Google Scholar] [CrossRef]
- Akasaka, R.; Tanaka, K.; Higashi, Y. Measurements of saturated densities and critical parameters for the binary mixture of 2,3,3,3-tetrafluoropropene (R-1234yf) + difluoromethane (R-32). Int. J. Refrig. 2013, 36, 1341–1346. [Google Scholar] [CrossRef]
- Tanaka, T.; Hidekazu, O.; Katsuya, U.; Jun, I.; Otsuka, T.; Nogami, T.; Dobashi, R. Development of a new low-GWP refrigerant composed of HFO-1123 (trifluoroethylene). In Proceedings of the AIChE Annual Meeting, Atlanta, GA, USA, 18 November 2014. [Google Scholar]
- Higashi, Y.; Akasaka, R. Measurements of Thermodynamic Properties for R1123 and R1123 + R32 Mixture. In Proceedings of the International Compressor Engineering Conference, Purdue, IN, USA, 11–14 July 2016; pp. 1–10. [Google Scholar]
- Richardson, R.N.; Butterworth, J.S. The performance of propane/isobutane mixtures in a vapour-compression refrigeration system. Int. J. Refrig. 1995, 18, 58–62. [Google Scholar] [CrossRef]
- Dalkilic, A.S.; Wongwises, S. A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. Int. Commun. Heat Mass. Transf. 2010, 37, 1340–1349. [Google Scholar] [CrossRef]
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.; Chandrasekar, P. Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int. J. Therm. Sci. 2009, 48, 103106–103142. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, J.M.; Kim, M.S. Cooling performance of several CO2/propane mixtures and glide matching with secondary heat transfer fluid. Int. J. Refrig. 2008, 31, 800–806. [Google Scholar] [CrossRef]
- Tian, Q.; Cai, D.; Ren, L.; Tang, W.; Xie, Y.; He, G.; Liu, F. An experimental investigation of refrigerant mixture R32/R290 as drop-in replacement for HFC410A in household air conditioners. Int. J. Refrig. 2015, 57, 216–228. [Google Scholar] [CrossRef]
- Mohanraj, M.; Muraleedharan, C.; Jayaraj, S. A review on recent developments in new refrigerant mixtures for vapour compression-based refrigeration, air-conditioning and heat pump units. Int. J. Energy Res. 2011, 35, 647–669. [Google Scholar] [CrossRef]
- Fukuda, S.; Kondou, C.; Takata, N.; Koyama, S. Cycle performance of low GWP refrigerant mixtures R-32/1234ze(E) and R-744/1234ze(E). Proceedings of 7th Asian Conference on Refrigeration and Air Conditioning, Jeju, Korea, 18–21 May 2014. [Google Scholar]
- Kojima, H.; Koyama, S. Performance Evaluation of Low GWP HFO-R1234ze (E) and R1234y Based Refrigerant Mixtures for Heat Pump Cycle; Kyushu University: Fukuoka, Japan, 2016. [Google Scholar]
- Kondou, C.; Mishima, F.; Koyama, S. Condensation and evaporation of R32/R1234ze(E) and R744/R32/R1234ze(E) flow in horizontal microfin tubes. Sci. Technol. Built Environ. 2015, 21, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Maczek, K.; Muller, J.; Wojtas, K.; Domanski, P.A. Ternary Zeotropic Mixture with CO2 Component for R-22 Heat pump application. In Proceedings of the CLIMA Conference, Brussels, Belgium, 30 August 1997. [Google Scholar]
- Hakkaki-fard, A.L.I.; Aidoun, Z.; Ouzzane, M. Air-source heat pumps with refrigerant mixtures for cold climates. In Proceedings of the 11th IEA Heat Pump Conference, Montreal, Canada, 12–16 May 2014; pp. 1–11. [Google Scholar]
- Jakobs, R.; Kruse, H. The use of non-azeotropic refrigerant mixtures in heat pumps for energy saving. Int. J. Refrig. 1979, 2, 29–32. [Google Scholar] [CrossRef]
- Kruse, H. The advantages non-azeotropic refrigerant mixtures for heat pump application. Int. J. Refrig. 1981, 4, 119–125. [Google Scholar] [CrossRef]
- Swinney, J.; Jones, W.; Wilson, J. The impact of mixed non-azeotropic working fluids on refrigeration system performance. Int. J. Refrig. 1998, 21, 607–616. [Google Scholar] [CrossRef]
- Wang, L.; Dang, C.; Hihara, E. Experimental and Theoretical Study on Condensation Heat Transfer of Nonazeotropic Refrigerant Mixtures R1234yf/R32 Inside a Horizontal Smooth Tube. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue, IN, USA, 16–19 July 2012. [Google Scholar]
Application Area | Mostly Used Refrigerant in the System | Mostly Adopting Regions | ODP | a GWP100 (IPCC5) | Comments |
---|---|---|---|---|---|
Residential air conditioning | R22 [11,12,13,14,15,16,17,18] (retrofitting R22 are R134a (GWP-1300), R407C (GWP-1624), R407A (GWP-1923) and R404A (GWP-3942)) | Developing countries | 0.034 | 1760 | Banned in January 2020 |
R410A [19,20,21] | Developed countries | 0 | 1923 | Will be phased out soon | |
R32 [22] | Developed countries | 0 | 677 | DAIKIN Tec. introduced | |
Automobile air conditioning | R134a [23,24,25,26,27,28] (retrofitting R134a are R32, R152a, R513A) | Developed and developing countries | 0 | 1300 | Replaced R12, but will be restricted very soon [29] |
R1234yf [30,31,32] | Developed countries | 0 | <1 | Low volumetric capacity |
Designated Products | Current Refrigerants and GWP100 (IPCC5) | Target GWP | Year of Implementation | ||
---|---|---|---|---|---|
Japan | Room air conditioning | R410A | 1923 | 750 | 2018 |
Commercial air conditioning for offices and stores | R410A | 1923 | 750 | 2020 | |
Condensing unit and refrigeration unit | R404A R410A R407C R744 (CO2) | 3942 1923 1624 1 | 1500 | 2025 | |
Cold storage warehouse | R404A Ammonia | 3985 | 100 | 2019 | |
Mobile air conditioning | R134a | 1300 | 150 | 2023 | |
Urethane foam | HFC-245fa HFC-365mfc | 1030 795 | 100 | 2020 | |
Dust blowers | HFC-134a HFC152a CO2 | 1300 124 1 | 10 | 2019 | |
USA | Mobile air conditioning | R12 R134a | 10900 1300 | 2021 | |
Residential air conditioning/refrigerator | R22 R410A R134a R407C | 1760 1923 1300 1624 | 2020 N/A 2025 N/A | ||
EU | Mobile air conditioning | R134a | 1300 | 150 | 2017 |
Room air conditioning | 750 | 2021 | |||
Canada | Domestic refrigeration | 150 | 2025 | ||
AC chillers | 700 | 2025 |
GWP100 | Classification |
---|---|
>1000 | High |
300–1000 | Medium |
<300 | Low |
<100 | Very low |
<30 | Ultra-low or negligible |
Property | R1234yf | R1234ze(E) | R32 | Propane (R-290) | R152a | Ammonia (R717) | Ethanol | Gasoline |
---|---|---|---|---|---|---|---|---|
Lower flammable limit (% volume in air) | 6.2 | 7 | 14.4 | 2.2 | 3.9 | 15 | 3.3 | 1.4 |
Upper flammable limit (% volume in air) | 12.3 | 9.5 | 29.3 | 10 | 16.9 | 28 | 19 | 7.6 |
Minimum ignition energy (mJ) | >5000, <10,000 | 61,000–64,000 | >30, <100 | 0.25 | 0.38 | 100–300 | 0.65 | 0.29 |
Heat of combustion (kJ/g) | 10.7 | – | 9.4 | 46.3 | 16.5 | 18.6 | 29.8 | 47 |
Burning velocity (cm/s) | 1.5 | – | 6.7 | 46 | 23 | 7.2 | 58 | 34 |
Safety class (ISO 817 and ASHRAE 34) | A2L | A2L | A2L | A3 | A2 | B2L | A3 | A3 |
Refrigerant | Composition (Mass %) | GWP100 with the Safety Class in Brackets | NBP (°C) | Volumetric Capacity * (MJ/m3) | △Tglide ** (°C) | References |
---|---|---|---|---|---|---|
R410A (R32/R125) | 50/50 | 1900 | −51.36 | 8.78 | 0.11 | [133] |
R32 | 100% | 677 (A2L) | −51.65 | 9.04 | 0 | [65] |
R1234ze(E) | 100% | <1 (A2L) | −18.95 | 2.92 | 0 | [65] |
R1234yf | 100% | <1 (A2L) | −29.45 | 3.80 | 0 | [32] |
R290 | 100% | 5 (A3) | −42 | 4.97 | 0 | [130] |
R600a | 100% | ~20 (A3) | −11.75 | 2.02 | 0 | |
R32/R1234ze(E) | 42/58 | 285 (A2L) | −35.2 | 7.98 | 10 | [58] |
28/72 | 190 (A2L) | −30.2 | 7.14 | 13.1 | [133] | |
20/80 | 140 (A2L) | −27.14 | 6.42 | 12 | [134] | |
50/50 | 338 (A2L) | −38.1 | 5.65 | 9.68 | [65] | |
5/95 | 40 (A2L) | −21.4 | 3.11 | 7.7 | [135] | |
R32/R1234yf | 42/58 | 285 (A2L) | −44.2 | 8.27 | 4.4 | [133] |
28/72 | 190 (A2L) | −39.9 | 7.72 | 6.75 | [133] | |
40/60 | 272 (A2L) | −43.6 | 8.21 | 4.65 | [130,136] | |
29/71 | 199 (A2L) | −40.3 | 7.78 | 6.44 | [130] | |
36/64 | 246 (A2L) | −42.46 | 8.08 | 5.32 | ||
35/65 | 239 (A2L) | −42.15 | 8.04 | 5.48 | ||
R134a/R1234yf | 11.2/88.8 | 146 (A2L) | −29 | 3.92 | 0 | ASHRAE, proposed |
10.2/89.8 | 133 (A2L) | −29 | 3.92 | 0 | ASHRAE, proposed | |
R290/R600a | 68/32 | 11 (A3) | −36 | 4.1 | 5.7 | [137] |
55/45 | 11 (A3) | −25 | 3.73 | 6.5 | [138] | |
45.2/54.8 | 11 (A3) | −23 | 3.45 | 6.6 | [139] | |
60/40 | 11 (A3) | −35.15 | 3.88 | 6.4 | [140] | |
R744/R32/R1234ze(E) | 4/43/53 | 292 (A2L) | −37.5 | 9.29 | 13.5 | [74] |
9/29/62 | 197 (A2L) | −34.8 | 10.4 | 21.4 | ||
R744/R32/R1234yf | 4/44/52 | 29 8(A2L) | −46.4 | 9.49 | 7.6 | |
5/28/67 | 190 (A2L) | −42.2 | 9.39 | 11.9 | ||
R744/R32/R1234ze(E) | 7/30/63 | 206 (A2L) | −43.4 | 10.13 | 13.3 | AHRI, proposed [130] |
R32/R152a/R1234ze(E) | 12/5/83 | 92 (A2L) | ||||
R134a/R152a/R1234yf | 7/11/82 | 117 (A2L) |
Parameters | Value Assumed |
---|---|
t h (h/year) | 1183 |
t c (h/year) | 1008 |
HC (kW) | 2.4 |
CC (kW) | 2.0 |
Y (year) | 10 |
a (%/year) | 2 |
b (%) | 30 |
c (kg CO2) | 0.599 |
M (kg) | 0.7–0.85 (depends on refrigerant) |
COP | 3.0–5.5 (depends on the refrigerant and the operation mode) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, K.; Saha, B.B. An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications. Energies 2022, 15, 8082. https://doi.org/10.3390/en15218082
Uddin K, Saha BB. An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications. Energies. 2022; 15(21):8082. https://doi.org/10.3390/en15218082
Chicago/Turabian StyleUddin, Kutub, and Bidyut Baran Saha. 2022. "An Overview of Environment-Friendly Refrigerants for Domestic Air Conditioning Applications" Energies 15, no. 21: 8082. https://doi.org/10.3390/en15218082