Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm
Abstract
:1. Introduction
2. Cascade Reservoirs’ Operational Optimization Model
2.1. Single Reservoir Operational Optimization Model
2.1.1. Objective Function
2.1.2. Constraints
- (1)
- The water balance constraint is shown in Equation (2):
- (2)
- The hydraulic contact constraint is shown in Equation (3):
- (3)
- The water level constraints are shown in Equation (4):
- (4)
- The output constraints are shown in Equation (5):
- (5)
- The flow constraints are shown in Equations (6) and (7):
- (6)
- The boundary conditions limits constraints are shown in Equations (8) and (9):
2.2. Joint Operational Optimization Model of the Cascade Reservoirs
2.2.1. Objective Function
2.2.2. Constraints
2.3. Constraints Handling Strategy
3. Model Solving Based on the ISFS Algorithm
3.1. PSO Algorithm
3.2. SFS Algorithm
- (1)
- Diffusion process
- (2)
- First update process
- (3)
- Second update process
3.3. ISFS Algorithm
3.4. Procedure for Solving the Optimal Operation Strategy Using the ISFS Algorithm
4. Case Study
4.1. Study Area
4.2. Data Processing and Parameter Settings
5. Results and Discussion
5.1. Test of the ISFS Algorithm
5.2. Comparison of the Three Schemes
5.2.1. Optimization Results of the Cascade Reservoirs
5.2.2. Power Generation Rules of Cascade Reservoirs
5.2.3. Outflow Process of the Cascade Reservoirs
6. Conclusions
- (1)
- Compared with the SFS algorithm and the PSO algorithm, the ISFS algorithm had the fastest convergence speed and the best optimization results in the three operation modes, and the difference in the power generation under the global joint operation mode of the cascade reservoirs was the most obvious;
- (2)
- In the years with larger inflow, the optimization effect of the global joint operation mode was more obvious for cascade reservoirs in the Yalong River. Compared with the single reservoir operation mode, the local joint operation mode and the global operation mode could utilize the regulating storage capacity of the cascade reservoirs to reasonably allocate the water resources of the downstream Jinxi Reservoir to the Tongzilin Reservoir, thereby significantly increasing the power generation and water resource utilization of the cascade reservoirs, but the latter had a more significant optimization effect on the downstream daily regulating reservoirs;
- (3)
- In the years with smaller inflow, the difference among the results of the three operation modes for the cascade reservoirs on the Yalong River was smaller. As the water supply of the upstream reservoirs to the downstream reservoirs gradually decreased, the regulation ability of the cascade reservoirs weakened, and the compensation range and compensation power generation of the global joint operation mode to the downstream reservoirs were reduced. In the drought year of p = 90%, the total power generation of a single reservoir operation mode eventually exceeded that of the global joint operation mode.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Gui, F.; Li, Q. Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China. Sustainability 2019, 11, 4261. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yang, M.; Meng, X.; Wen, F.; Sun, G. Assessing the Impact of Reservoir Parameters on Runoff in the Yalong River Basin using the SWAT Model. Water 2019, 11, 643. [Google Scholar] [CrossRef] [Green Version]
- Ehteram, M.; Karami, H.; Mousavi, S.; Farzin, S.; Kisi, O. Optimization of energy management and conversion in the multi-reservoir systems based on evolutionary algorithms. J. Clean. Prod. 2017, 168, 1132–1142. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, P.; Ji, C.; Zhang, H.; Chen, Y. Ecological flow considered multi-objective storage energy operation chart optimization of large-scale mixed reservoirs. J. Hydrol. 2019, 577, 123949. [Google Scholar] [CrossRef]
- Li, R.; Jiang, Z.; Li, A.; Yu, S.; Ji, C. An improved shuffled frog leaping algorithm and its application in the optimization of cascade reservoir operation. Hydrol. Sci. J. 2018, 63, 2020–2034. [Google Scholar] [CrossRef]
- Lu, S.; Shang, Y.; Li, W.; Peng, Y.; Wu, X. Economic benefit analysis of joint operation of cascaded reservoirs. J. Clean. Prod. 2018, 179, 731–737. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Li, Y.; Liu, P.; Li, T. Joint Operation of the Multi-Reservoir System of the Three Gorges and the Qingjiang Cascade Reservoirs. Energies 2011, 4, 1036–1050. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Mei, Y.; Yang, N.; Wei, J. Modeling long-term optimal operation of hydropower plants using hydropower correlation matrix. Eng. J. Wuhan Univ. Eng. Ed. 2009, 42, 308–312. [Google Scholar]
- Huang, W.; Ma, G.; Wang, H.; Tang, M.; Wang, L. Study on the mid-long term optimal operation model and its algorithm for cascade hydropower stations on the lower-reach of Yalong River. J. Hydroelectr. Eng. 2009, 28, 1–4. [Google Scholar]
- Ji, C.; Li, C.; Wang, B.; Liu, M.; Wang, L. Multi-Stage Dynamic Programming Method for Short-Term Cascade Reservoirs Optimal Operation with Flow Attenuation. Water Resour. Manag. 2017, 31, 4571–4586. [Google Scholar] [CrossRef]
- Chen, S.; Yan, S.; Huang, W.; Hu, Y.; Ma, G. A method for optimal floodgate operation in cascade reservoirs. Proc. Inst. Civ. Eng. Water Manag. 2017, 170, 81–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wu, Y.; Ji, C.; Ma, Q. Short-Term Optimal Operation of Cascade Reservoirs Considering Dynamic Water Flow Hysteresis. Water 2019, 11, 2098. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Z.; Liu, Y. Dimensionality Reduction Method of Dynamic Programming under Hourly Scale and Its Application in Optimal Scheduling of Reservoir Flood Control. Energies 2022, 15, 676. [Google Scholar] [CrossRef]
- Xiong, F.; Guo, S.; Liu, P.; Xu, C.; Zhong, Y.; Yin, J.; He, S. A general framework of design flood estimation for cascade reservoirs in operation period. J. Hydrol. 2019, 577, 124003. [Google Scholar] [CrossRef]
- Chen, L.; Mei, Y.; Yang, N. Adaptive multi-variant strategy particle swarm optimization algorithm and its application to the optimal operation of cascade reservoirs. J. Hydroelectr. Eng. 2010, 29, 139–144. [Google Scholar]
- Han, J.; Huang, G.; Zhang, H.; Zhuge, Y.; He, L. Fuzzy constrained optimization of eco-friendly reservoir operation using self-adaptive genetic algorithm: A case study of a cascade reservoir system in the Yalong River, China. Ecohydrology 2012, 5, 768–778. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Zhang, P.; Liu, M.; Li, C. Study on optimization of the short-term operation of cascade hydropower stations by considering output error. J. Hydrol. 2017, 549, 326–339. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, P.; Liao, X. Optimization of Year-End Water Level of Multi-Year Regulating Reservoir in Cascade Hydropower System Considering the Inflow Frequency Difference. Energies 2020, 13, 5345. [Google Scholar] [CrossRef]
- Yu, L.; Wu, X.; Wu, S.; Jia, B.; Han, G.; Xu, P.; Dai, J.; Zhang, Y.; Wang, F.; Yang, Q.; et al. Multi-objective optimal operation of cascade hydropower plants considering ecological flow under different ecological conditions. J. Hydrol. 2021, 601, 126599. [Google Scholar] [CrossRef]
- Jian, D.; Miao, Y. Optimization method of cascade reservoirs comprehensive dispatching rules for the lower reach of Yalong River. South-North Water Transf. Water Sci. Technol. 2016, 14, 204–209. [Google Scholar]
- Liu, Y.; Jiang, Z.; Feng, Z.; Chen, Y.; Zhang, H.; Chen, P. Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir. Energies 2019, 12, 3814. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sun, H.; Wang, H.; Liu, Z.; Zhao, J.; Zhou, T.; Qin, H. Multi-Objective Sustainable Operation of the Three Gorges Cascaded Hydropower System Using Multi-Swarm Comprehensive Learning Particle Swarm Optimization. Energies 2016, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Guo, R.; Cheng, X.; Cheng, C. Combined Aggregated Sampling Stochastic Dynamic Programming and Simulation-Optimization to Derive Operation Rules for Large-Scale Hydropower System. Energies 2021, 14, 625. [Google Scholar] [CrossRef]
- Salimi, H. Stochastic Fractal Search: A powerful metaheuristic algorithm. Knowl.-Based Syst. 2015, 75, 1–18. [Google Scholar] [CrossRef]
- Charef-Khodja, D.; Toumi, A.; Medouakh, S.; Sbaa, S. A novel visual tracking method using stochastic fractal search algorithm. Signal Image Video Process. 2021, 15, 331–339. [Google Scholar] [CrossRef]
- Alomoush, M.I. Optimal Combined Heat and Power Economic Dispatch Using Stochastic Fractal Search Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 276–286. [Google Scholar] [CrossRef]
- Tung, T.T.; Truong, K.H.; Vo, D.N. Stochastic fractal search algorithm for reconfiguration of distribution networks with distributed generations. Ain Shams Eng. J. 2020, 11, 389–407. [Google Scholar]
- Nguyen, T.T.; Nguyen, T.T.; Pham, T.D. Applications of metaheuristic algorithms for optimal operation of cascaded hydropower plants. Neural Comput. Appl. 2021, 33, 6549–6574. [Google Scholar] [CrossRef]
- Celik, E. Improved stochastic fractal search algorithm and modified cost function for automatic generation control of interconnected electric power systems. Eng. Appl. Artif. Intell. 2020, 88, 103407. [Google Scholar] [CrossRef]
- Thang, T.N.; Thuan, T.N.; Minh, Q.D.; Anh, T.D. Optimal operation of transmission power networks by using improved stochastic fractal search algorithm. Neural Comput. Appl. 2020, 32, 9129–9164. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, San Diego, CA, USA, 25–27 March 1998; pp. 591–600. [Google Scholar]
- Bansal, J.C.; Singh, P.K.; Saraswat, M.; Verma, A.; Singh Jadon, S.; Abraham, A. Inertia weight strategies in particle swarm optimization. In Proceedings of the 2011 Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; IEEE Press: New York, NY, USA, 2011; pp. 640–647. [Google Scholar]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Jordehi, A.R.; Jasni, J. Parameter selection in particle swarm optimisation: A survey. J. Exp. Theor. Artif. Intell. 2013, 25, 527–542. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Z. Parameter identification for fractional-order chaotic systems using a hybrid stochastic fractal search algorithm. Nonlinear Dyn. 2017, 90, 1243–1255. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Jaser, E. Differential Evolution with Stochastic Fractal Search Algorithm for Global Numerical Optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC): IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3154–3161. [Google Scholar]
- Damodaran, S.K.; Kumar, T.K.S. Hydro-Thermal-Wind Generation Scheduling Considering Economic and Environmental Factors Using Heuristic Algorithms. Energies 2018, 11, 353. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
Index | Unit | LHK | YFG | JX | JD | GD | ET | TZL |
---|---|---|---|---|---|---|---|---|
Normal water level | m | 2865 | 2094 | 1880 | 1646 | 1330 | 1200 | 1015 |
Dead water level | m | 2785 | 2088 | 1800 | 1640 | 1321 | 1155 | 1012 |
Total storage | 108 m3 | 107.67 | 5.125 | 79.8 | 0.193 | 7.36 | 61.3 | 0.912 |
Active storage | 108 m3 | 65.6 | 0.5385 | 49.1 | 0.0496 | 1.232 | 33.7 | 0.146 |
Regulation ability | Multiyear | Daily | Annual | Daily | Daily | Seasonal | Daily | |
Installed capacity | MW | 3000 | 1500 | 3600 | 4800 | 2400 | 3300 | 600 |
Guaranteed output | MW | 1130 | 523.3 | 1086 | 1443 | 709.8 | 1028 | 227 |
Year | Algorithm | Scheme 1 | Scheme 2 | Scheme 3 | |||
---|---|---|---|---|---|---|---|
Power Generation | Abandoned Water | Power Generation | Abandoned Water | Power Generation | Abandoned Water | ||
2012 | ISFS | 1197.23 | 204.17 | 1224.68 | 136.20 | 1231.21 | 131.36 |
SFS | 1195.43 | 206.38 | 1218.62 | 152.45 | 1223.61 | 142.84 | |
PSO | 1196.33 | 235.18 | 1222.12 | 160.69 | 1228.77 | 158.92 | |
2008 | ISFS | 1059.93 | 26.22 | 1074.30 | 0.85 | 1081.00 | 0.70 |
SFS | 1059.40 | 33.63 | 1065.08 | 5.36 | 1069.40 | 4.91 | |
PSO | 1059.59 | 35.85 | 1072.76 | 1.53 | 1076.44 | 0.87 | |
2015 | ISFS | 1000.75 | 17.87 | 1017.88 | 0 | 1023.74 | 0 |
SFS | 999.13 | 19.32 | 1010.39 | 2.84 | 1013.80 | 2.21 | |
PSO | 1000.21 | 24.07 | 1017.39 | 0 | 1020.19 | 0 | |
2013 | ISFS | 937.61 | 11.48 | 946.57 | 0 | 951.38 | 0 |
SFS | 937.52 | 12.28 | 942.66 | 1.40 | 944.76 | 0.70 | |
PSO | 937.53 | 13.51 | 944.77 | 0 | 947.52 | 0 | |
2006 | ISFS | 772.53 | 0 | 764.60 | 0 | 767.82 | 0 |
SFS | 772.26 | 0 | 757.62 | 0.95 | 761.70 | 0.34 | |
PSO | 772.10 | 0 | 761.26 | 0 | 764.35 | 0 |
Year | Algorithm | Scheme 1 | Scheme 2 | Scheme 3 | |||
---|---|---|---|---|---|---|---|
Power Generation | Water Resource Utilization Rate | Power Generation | Water Resource Utilization Rate | Power Generation | Water Resource Utilization Rate | ||
2012 | SFS | 1.81 | 1.07% | 6.07 | 10.65% | 7.60 | 8.04% |
PSO | 0.90 | 13.19% | 2.57 | 15.24% | 2.43 | 17.34% | |
2008 | SFS | 0.53 | 22.03% | 9.23 | 84.10% | 11.60 | 85.74% |
PSO | 0.34 | 26.87% | 1.55 | 44.15% | 4.57 | 19.40% | |
2015 | SFS | 1.62 | 32.12% | 7.48 | 100% | 9.94 | 100% |
PSO | 0.54 | 19.76% | 0.49 | 0 | 3.55 | 0 | |
2013 | SFS | 0.09 | 6.48% | 3.91 | 100% | 6.62 | 100% |
PSO | 0.08 | 15.04% | 1.80 | 0 | 3.86 | 0 | |
2006 | SFS | 0.27 | 0 | 6.98 | 100% | 6.12 | 100% |
PSO | 0.43 | 0 | 3.34 | 0 | 3.47 | 0 |
Year | Mode | LHK | YFG | JX | JD | GD | ET | TZL |
---|---|---|---|---|---|---|---|---|
2012 | Scheme 1 | 161.19 | 86.75 | 223.49 | 322.36 | 148.38 | 217.97 | 37.10 |
Scheme 2 | 155.88 | 88.54 | 232.40 | 335.40 | 146.51 | 229.83 | 36.12 | |
Scheme 3 | 155.04 | 88.59 | 232.59 | 336.40 | 150.80 | 230.73 | 37.16 | |
2008 | Scheme 1 | 110.94 | 72.45 | 207.93 | 290.93 | 138.51 | 205.02 | 34.15 |
Scheme 2 | 107.47 | 70.52 | 209.13 | 301.30 | 136.01 | 216.29 | 33.58 | |
Scheme 3 | 107.43 | 70.59 | 208.03 | 303.10 | 140.06 | 217.28 | 34.51 | |
2015 | Scheme 1 | 117.07 | 71.12 | 193.20 | 278.04 | 124.47 | 185.78 | 31.07 |
Scheme 2 | 113.53 | 69.57 | 199.78 | 286.64 | 121.74 | 196.09 | 30.53 | |
Scheme 3 | 112.75 | 69.47 | 199.56 | 288.52 | 125.14 | 196.91 | 31.39 | |
2013 | Scheme 1 | 113.00 | 72.29 | 175.83 | 251.86 | 115.72 | 180.33 | 28.58 |
Scheme 2 | 110.09 | 70.86 | 182.74 | 256.04 | 112.44 | 186.35 | 28.04 | |
Scheme 3 | 109.72 | 70.77 | 181.09 | 257.31 | 115.88 | 187.88 | 28.73 | |
2006 | Scheme 1 | 76.39 | 52.16 | 152.25 | 217.01 | 97.05 | 152.77 | 24.91 |
Scheme 2 | 73.03 | 51.04 | 150.18 | 215.16 | 95.21 | 155.47 | 24.50 | |
Scheme 3 | 74.03 | 51.27 | 149.01 | 215.65 | 96.29 | 156.28 | 25.29 |
Year | LHK | YFG | JX | JD | GD | ET | TZL | Sum |
---|---|---|---|---|---|---|---|---|
2012 | −6.15 | 1.84 | 9.10 | 14.04 | 2.42 | 12.76 | 0.06 | 34.07 |
2008 | −3.50 | −1.85 | 0.10 | 12.17 | 1.55 | 12.25 | 0.36 | 21.08 |
2015 | −4.32 | −1.66 | 6.36 | 10.48 | 0.68 | 11.12 | 0.32 | 23.00 |
2013 | −3.28 | −1.52 | 5.26 | 5.45 | 0.16 | 7.55 | 0.15 | 13.77 |
2006 | −2.35 | −0.89 | −3.24 | −1.36 | −0.76 | 3.51 | 0.38 | −4.71 |
Year | LHK, JX and ET | YFG | JD | GD | TZL | Sum |
---|---|---|---|---|---|---|
2012 | 0.24 | 0.05 | 1.00 | 4.29 | 1.04 | 6.62 |
2008 | −0.15 | 0.07 | 1.79 | 4.05 | 0.93 | 6.70 |
2015 | −0.18 | −0.10 | 1.88 | 3.41 | 0.86 | 5.86 |
2013 | −0.49 | −0.10 | 1.27 | 3.43 | 0.69 | 4.81 |
2006 | 0.64 | 0.23 | 0.49 | 1.08 | 0.79 | 3.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, A.; Mo, L.; Wang, Q. Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm. Energies 2022, 15, 7779. https://doi.org/10.3390/en15207779
Xu A, Mo L, Wang Q. Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm. Energies. 2022; 15(20):7779. https://doi.org/10.3390/en15207779
Chicago/Turabian StyleXu, Ailing, Li Mo, and Qi Wang. 2022. "Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm" Energies 15, no. 20: 7779. https://doi.org/10.3390/en15207779
APA StyleXu, A., Mo, L., & Wang, Q. (2022). Research on Operation Mode of the Yalong River Cascade Reservoirs Based on Improved Stochastic Fractal Search Algorithm. Energies, 15(20), 7779. https://doi.org/10.3390/en15207779