Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application
Abstract
:1. Introduction
2. Synthesis Routes
2.1. Consolidated Adsorbent Bed
- a small amount of binder does not provide the proper strength of the bed; its larger amount can reduce the bed adsorption capacity;
- high density and large thickness of the bed, especially synthesized by compressing method, can reduce mass transfer.
2.2. Binder-Based Adsorbent Coatings
- adsorption of water on the polymer surface;
- LiCl interaction with water vapor resulting in the LiCl deliquescence and water vapor absorption;
- repulsive forces between ions cause the polymer swelling that circumvent the solution leakage. Such a combination of different mechanisms allows a superior sorption capacity of 1.8–2.5 g/g at RH = 80%.
- lower adsorbent content in the coating;
- partial blockage of pores by the binder deposited on the grain surface, which can reduce the adsorption capacity and hinder mass transfer. The first effect is minor at a small binder content of 5–10%; however, the content might not be sufficient for good adhesion and coating strength.
2.3. In-Situ Synthesized Coatings
3. Effect of Compact Bed Parameters on Adsorption Dynamics
- heat and mass transfer in porous media are strongly coupled with each other since adsorption releases a large amount of heat, and
3.1. Features of Experimental Studying Adsorption Dynamics in Compact Layers for AHT Units
3.2. General Remarks on HMT in Compact Adsorbent Beds
3.2.1. Mass Transfer in Porous Adsorbent Beds
- a system of macro/mesopores that provide vapor delivery to the outer grain surface (transport pores) and
- meso/micropore system, through which the vapor reaches the adsorption sites inside the pores, where it is adsorbed (reaction pores) [14].
3.2.2. Heat Transfer to and Inside the Adsorbent Bed
3.3. Effect of the Contact Resistance
3.4. Effect of the Layer Thickness
3.5. Effect of the Binder Content
3.6. Studying the Relative Contributions of Heat and Mass Transfer Resistances
3.7. Optimization of Adsorption Dynamics in Compact Layers
4. Lab-Scale AHT Units Employing Coated and Consolidated Adsorbent Bed
- increasing the coating thickness that, however, may reduce mass transfer through the adsorbent layer;
- adding adsorbent grains to completely fill a space between fins;
- combination of these two routes.
5. Summary
- Although coated Ad-HExs are characterized by good conductive heat transfer, their mass transfer resistance is rather high due to the large density of the bed. This leads to quite moderate values of the specific power (less than 150 W/kg).
- The Ad-Hex configuration in the form of a thin coating (100–300 µm) allows reducing mass transfer resistance. The specific power of such AHT units reaches promising values exceeding 1 kW/kg. However, the small coating thickness leads to a large mass ratio “metal to adsorbent” of 3–6, which can significantly lower the unit COP.
- Heat and mass transfers in adsorbent coatings are strongly coupled, so the reduction of mass-transfer can result in the depression of heat transfer and an appropriate deceleration of vapor adsorption.
- A smart compromise between heat and mass transfers can be achieved through the synthesis of structured or architectured coatings. In such coatings, fast heat transfer is ensured due to tight contact between the HEx surface and the coating. The intently introduced macropores or channels for vapor transport enable rapid mass transfer in the coating.
Author Contributions
Funding
Conflicts of Interest
References
- BP Statistical Review of World Energy 2022, 71st edition. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 3 October 2022).
- IEA-RETD; de Vos, R.; Sawin, J. Chapter Seven—Heating and Cooling Policies. In Ready Renewable Energy Action Deployment; IEA-RETD, de Vos, R., Sawin, J., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 115–135. [Google Scholar]
- Wang, R.; Wang, L.; Wu, J. Adsorption Refrigeration Technology: Theory and Application; John Wiley & Sons: Singapore, 2014. [Google Scholar]
- Aristov, Y.I. Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century? Energy 2022, 239, 122142. [Google Scholar] [CrossRef]
- Pinheiro, J.M.; Salústio, S.; Rocha, J.; Valente, A.A.; Silva, C.M. Adsorption heat pumps for heating applications. Renew. Sustain. Energy Rev. 2020, 119, 109528. [Google Scholar] [CrossRef]
- Dawoud, B. Gas-driven sorption heat pumps; a potential trend-setting heating technology. In Thermally Driven Heat Pumps for Heating; Kühn, A., Ed.; Universitätsverlag der TU Berlin: Berlin, Germany, 2013; pp. 19–28. [Google Scholar]
- Calabrese, L.; Mittelbach, W.; Bonaccorsi, L.; Freni, A. An Industrial Approach for the Optimization of a New Performing Coated Adsorber for Adsorption Heat Pumps. Energies 2022, 15, 5118. [Google Scholar] [CrossRef]
- Adsorption Refrigeration System, United States Patent and Trademark Office, US. US Patent 4881376, 1989.
- New Adsorption Chiller AdRef-Noa. Available online: https://www.mayekawa.com.au/494/wp-content/uploads/2011/02/AdRef-Noa-Adsorption-Chiller1.pdf (accessed on 3 October 2022).
- Silica Gel Cooling Systems. Available online: https://fahrenheit.cool/en/chillers/adsorption-chillers/ (accessed on 3 October 2022).
- Green Cooling Initiatives. InvenSor GmbH. Available online: https://www.green-cooling-initiative.org/network/member/invensor-gmbh (accessed on 3 October 2022).
- AQSOA Desiccant Air-Conditioner. AQSOA Adsorption Heat Pump. Available online: http://www.aaasaveenergy.com/products/001/pdf/AQSOA_1210E.pdf (accessed on 3 October 2022).
- Meunier, F. Thermal swing adsorption refrigeration (heat pump). Sep. Technol. 1993, 3, 143–150. [Google Scholar] [CrossRef]
- Kärger, J.; Ruthven, D.M.; Theodorou, D.N. Diffusion in Nanoporous Materials; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Sapienza, A.; Frazzica, A.; Freni, A.; Aristov, Y. Experimental Findings: Main Factors Affecting the Adsorptive Temperature-Driven Cycle Dynamics. In Dynamics of Adsorptive Systems for Heat Transformation; Kacprzyk, J., Ed.; Springer Nature: Cham, Switzerland, 2018; pp. 31–68. [Google Scholar]
- Gordeeva, L.G.; Aristov, Y.I. Adsorptive heat storage and amplification: New cycles and adsorbents. Energy 2019, 167, 440–453. [Google Scholar] [CrossRef]
- Brancato, V.; Gordeeva, L.G.; Grekova, A.D.; Frazzica, A.; Aristov, Y.I. Water adsorption equilibrium and dynamics of LiCl/MWCNT/PVA composite for adsorptive heat storage. Solar Energy Mater. Solar Cells 2019, 193, 133–140. [Google Scholar] [CrossRef]
- Brancato, V.; Gordeeva, L.G.; Sapienza, A.; Freni, A.; Frazzica, A. Dynamics study of ethanol adsorption on microporous activated carbon for adsorptive cooling applications. Appl. Therm. Eng. 2016, 105, 28–38. [Google Scholar] [CrossRef]
- Freni, A.; Russo, F.; Vasta, S.; Tokarev, M.; Aristov, Y.I.; Restuccia, G. An advanced solid sorption chiller using SWS-1L. Appl. Therm. Eng. 2007, 27, 2200–2204. [Google Scholar] [CrossRef]
- Freni, A.; Bonaccorsi, L.; Calabrese, L.; Caprì, A.; Frazzica, A.; Sapienza, A. SAPO-34 coated adsorbent heat exchanger for adsorption chillers. Appl. Therm. Eng. 2015, 82, 1–7. [Google Scholar] [CrossRef]
- Kummer, H.; Jeremias, F.; Fröhlich, D.; Warlo, A.; Füldner, G.; Janiak, C.; Gläser, R.; Henninger, S. A Functional Full-Scale Heat Exchanger Coated with Aluminum Fumarate Metal-Organic Framework for Adsorption Heat Transformation. Ind. Eng. Chem. Res. 2017, 56, 8393–8398. [Google Scholar] [CrossRef]
- Meunier, F. Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 1998, 18, 715–729. [Google Scholar] [CrossRef]
- Guilleminot, J.J.; Choisier, A.; Chalfen, J.B.; Nicolast, S.; Reymoney, J.L. Heat transfer intensification in fixed bed adsorbers. Heat Recovery Syst. CHP 1993, 13, 297–300. [Google Scholar] [CrossRef]
- Strauss, R.; Schallenberg, K.; Knocke, K.F. Measurement of the kinetics of water vapor adsorption into solid zeolite layers. In Proceedings of the International Symp Solid Sorption Refrigeration, Paris, France, 18–21 November 1992; pp. 227–231. [Google Scholar]
- Knoche, K.F.; Lang, R. Heat exchangers coated with zeolite for adsorption heat pumps. In Proceedings of the München Discussion Meeting on Heat Transfer Enhancement by Additives München, München, Germany, October 1994. [Google Scholar]
- Lang, R.; Westerfeld, T.; Gerlich, A.; Knoche, K.F. Enhancement of the Heat and Mass Transfer in Compact Zeolite Layers. Adsorption 1996, 2, 121–132. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Tan, Y. Heat Transfer Enhancement of the Adsorber of an Adsorption Heat Pump. Adsorption 1999, 5, 279–286. [Google Scholar] [CrossRef]
- Zhao, L.H.; Wang, R.Z.; Ge, T.S. Desiccant coated heat exchanger and its applications. Int. J. Refrig. 2021, 130, 217–232. [Google Scholar] [CrossRef]
- El-Sharkawy, I.I.; Pal, A.; Miyazaki, T.; Saha, B.B.; Koyama, S. A study on consolidated composite adsorbents for cooling application. Appl. Therm. Eng. 2016, 98, 1214–1220. [Google Scholar] [CrossRef] [Green Version]
- Scherle, M.; Nowak, T.A.; Welzel, S.; Etzold, B.J.M.; Nieken, U. Experimental study of 3D—Structured adsorbent composites with improved heat and mass transfer for adsorption heat pumps. Chem. Eng. J. 2022, 431, 133365. [Google Scholar] [CrossRef]
- Eun, T.-H.; Song, H.-K.; Hun Han, J.; Lee, K.-H.; Kim, J.-N. Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. Int. J. Refrig. 2000, 23, 64–73. [Google Scholar] [CrossRef]
- Pal, A.; Shahrom, M.S.R.; Moniruzzaman, M.; Wilfred, S.D.; Mitra, S.; Thu, K.; Saha, B.B. Ionic liquid as a new binder for activated carbon based consolidated composite adsorbents. Chem. Eng. J. 2017, 326, 980–986. [Google Scholar] [CrossRef]
- Rocky, K.A.; Pal, A.; Moniruzzaman, M.; Saha, B.B. Adsorption characteristics and thermodynamic property fields of polymerized ionic liquid and polyvinyl alcohol based composite/ CO2 pairs. J. Mol. Liq. 2019, 294, 111555. [Google Scholar] [CrossRef]
- Caprì, A.; Frazzica, A.; Calabrese, L. Recent Developments in Coating Technologies for Adsorption Heat Pumps: A Review. Coatings 2020, 10, 855. [Google Scholar] [CrossRef]
- Saleh, M.M.; Elsayed, E.; AL-Dadah, R.; Mahmoud, S. Experimental testing of wire finned heat exchanger coated with aluminium fumarate MOF material for adsorption desalination application. Thermal Sci Eng. Prog. 2022, 28, 101050. [Google Scholar] [CrossRef]
- Kummer, H.; Baumgartner, M.; Hügenell, P.; Fröhlich, D.; Henninger, S.K.; Gläser, R. Thermally driven refrigeration by methanol adsorption on coatings of HKUST-1 and MIL-101(Cr). Appl. Therm. Eng. 2017, 117, 689–697. [Google Scholar] [CrossRef]
- Gkaniatsou, E.; Chen, C.; Cui, F.S.; Zhu, X.; Sapin, P.; Nouar, F.; Boissiere, C.; Markides, C.N.; Hensen, J.; Serre, C. Producing cold from heat with aluminum carboxylate-based metal-organic frameworks. Cell Rep. Phys. Sci. 2022, 3, 100730. [Google Scholar] [CrossRef]
- Cui, S.; Qin, M.; Marandi, A.; Steggles, V.; Wang, S.; Feng, X.; Nouar, F.; Serre, C. Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling. Sci. Rep. 2018, 8, 15284. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Nagano, K.; Seol, S.-H.; Togawa, J. Thermal performance improvement of AHP using corrugated heat exchanger by dip-coating method with mass recovery. Energy 2022, 239, 122418. [Google Scholar] [CrossRef]
- Younes, M.M.; El-sharkawy, I.I.; Kabeel, A.E.; Uddin, K.; Pal, A.; Mitra, S.; Thu, K.; Saha, B.B. Synthesis and characterization of silica gel composite with polymer binders for adsorption cooling applications. Int. J. Refrig. 2019, 98, 161–170. [Google Scholar] [CrossRef]
- Sharafian, A.; Fayazmanesh, K.; McCague, C.; Bahrami, M. Thermal conductivity and contact resistance of mesoporous silica gel adsorbents bound with polyvinylpyrrolidone in contact with a metallic substrate for adsorption cooling system applications. Int. J. Heat Mass Transf. 2014, 79, 64–71. [Google Scholar] [CrossRef]
- Bendix, P.; Füldner, B.; Möllers, M.; Kummer, H.; Schnabel, L.; Henninger, S.; Henning, H.-M. Optimization of power density and metal-to-adsorbent weight ratio in coated adsorbers for adsorptive heat transformation applications. Appl. Therm. Eng. 2017, 124, 83–90. [Google Scholar] [CrossRef]
- Calabrese, L.; Brancato, V.; Bonaccorsi, L.; Frazzica, A.; Caprì, A.; Freni, A.; Proverbio, E. Development and characterization of silane-zeolite adsorbent coatings for adsorption heat pump applications. Appl. Therm. Eng. 2017, 116, 364–371. [Google Scholar] [CrossRef]
- Frazzica, A.; Füldner, G.; Sapienza, A.; Freni, A.; Schnabel, L. Experimental and theoretical analysis of the kinetic performance of an adsorbent coating composition for use in adsorption chillers and heat pumps. Appl. Therm. Eng. 2014, 73, 1022–1031. [Google Scholar] [CrossRef]
- Li, A.; Thu, K.; Ismail, A.B.; Shahzad, M.V.; Ng, K.C. Performance of adsorbent-embedded heat exchangers using binder-coating method. Int. J. Heat Mass Transf. 2016, 92, 149–157. [Google Scholar] [CrossRef]
- Pino, L.; Aristov, Y.; Cacciola, G.; Restuccia, G. Composite materials based on zeolite 4A for adsorption heat pumps. Adsorption 1997, 3, 33–40. [Google Scholar] [CrossRef]
- Zheng, X.; Ge, T.S.; Jiang, Y.; Wang, R.Z. Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger. Int. J. Refrig. 2015, 51, 24–32. [Google Scholar] [CrossRef]
- Xu, Z.; Yin, Y.; Shao, J.; Liu, Y.; Zhang, L.; Cui, C.; Wang, H. Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube. Energy 2020, 191, 116302. [Google Scholar] [CrossRef]
- Vivekh, P.; Bui, D.T.; Wong, Y.; Kumja, M.; Chua, K.J. Performance evaluation of PVA-LiCl coated heat exchangers for next generation of energy-efficient dehumidification. Appl. Energy 2019, 237, 733–750. [Google Scholar] [CrossRef]
- Vivekh, P.; Islam, M.R.; Chua, K.J. Experimental performance evaluation of a composite superabsorbent polymer coated heat exchanger based air dehumidification system. Appl. Energy 2020, 260, 114256. [Google Scholar] [CrossRef]
- Calabrese, L.; Bruzzaniti, P.; Palamara, D.; Freni, A.; Proverbio, E. New SAPO-34-SPEEK composite coatings for adsorption heat pumps: Adsorption performance and thermodynamic analysis. Energy 2020, 203, 117814. [Google Scholar] [CrossRef]
- Kummer, H.; Füldner, G.; Henninger, S.K. Versatile siloxane based adsorbent coatings for fast water adsorption processes in thermally driven chillers and heat pumps. Appl. Therm. Eng. 2015, 85, 1–8. [Google Scholar] [CrossRef]
- van Heyden, H.; Munz, G.; Schnabel, L.; Schmidt, F.; Mintova, S.; Bein, T. Kinetics of water adsorption in microporous aluminophosphate layers for regenerative heat exchangers. Appl. Therm. Eng. 2009, 29, 1514–1522. [Google Scholar] [CrossRef]
- Freni, A.; Calabrese, L.; Malara, A.; Frontera, P.; Bonaccorsi, L. Silica gel microfibres by electrospinning for adsorption chillers. Energy 2019, 187, 115971. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Fotia, A.; Malara, A.; Frontera, P. Advanced Adsorbent Materials for Waste Energy Recovery. Energies 2020, 13, 4299. [Google Scholar] [CrossRef]
- Ge, L.; Ge, T.; Wang, R. Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers. Renew. Sustain. Energy Rev. 2022, 157, 112015. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Tso, C.Y.; Chan, K.C.; Wua, C.L.; Chao, C.Y.H.; Chen, J.; Hec, W.; Luo, S.W. Experimental investigation on composite adsorbent—Water pair for a solar-powered adsorption cooling system. Appl. Therm. Eng. 2018, 131, 649–659. [Google Scholar] [CrossRef]
- Schnabel, L.; Tatlier, M.; Schmidt, F.; Erdem-Senatalar, A. Adsorption kinetics of zeolite coatings directly crystallized on metal supports for heat pump applications (adsorption kinetics of zeolite coatings). Appl. Therm. Eng. 2010, 30, 1409–1416. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Calabrese, L.; Freni, A.; Proverbio, E.; Restuccia, G. Zeolites direct synthesis on heat exchangers for adsorption heat pumps. Appl. Therm. Eng. 2013, 50, 1590–1595. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Bruzzaniti, P.; Calabrese, L.; Freni, A.; Proverbio, E.; Restuccia, G. Synthesis of SAPO-34 on graphite foams for adsorber heat exchangers. Appl. Therm. Eng. 2013, 61, 848–852. [Google Scholar] [CrossRef]
- Jeremias, F.; Henninger, S.K.; Janiak, C. High performance metal–organic-framework coatings obtained via thermal gradient synthesis. Chem. Commun. 2012, 48, 9708–9710. [Google Scholar] [CrossRef]
- Jeremias, F.; Fröhlich, D.; Janiak, C.; Henninger, S.K. Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF. RSC Adv. 2014, 4, 24073–24082. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Herrmann, R.; Mittelbach, W.; Schwieger, W. Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 2009, 33, 1233–1249. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Proverbio, E. Synthesis of thick zeolite 4A coatings on stainless steel. Micropor. Mesopor. Mater. 2004, 74, 221–229. [Google Scholar] [CrossRef]
- Poyelle, F.; Guilleminot, J.-J.; Meunier, F. Experimental Tests and Predictive Model of an Adsorptive Air Conditioning Unit. Ind. Eng. Chem. Res. 1999, 38, 298–309. [Google Scholar] [CrossRef]
- Rouhani, M.; Huttema, W.; Bahrami, M. Effective thermal conductivity of packed bed adsorbers: Part 1—Experimental study. Int. J. Heat Mass Transf. 2018, 123, 1204–1211. [Google Scholar] [CrossRef]
- Okamoto, K.; Teduka, M.; Nakano, T.; Kubokawa, S.; Kakiuchi, H. The development of AQSOA water adsorbent and AQSOA coated heat exchanger. In Innovative Materials for Processes in Energy Systems, for Fuel Cells, Heat Pumps and Sorption Systems; Saha, B.B., Chakraborty, A., Ng, K.C., Eds.; Research Publishing: Singapore, 2010; pp. 27–32. [Google Scholar]
- Dawoud, B.; Vedder, U.; Amer, E.-H.; Dunne, S. Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer. Int. J. Heat Mass Transf. 2007, 50, 2190–2199. [Google Scholar] [CrossRef]
- Gordeeva, L.G.; Aristov, Y.I.; Freni, A.; Restuccia, G. Preparation of zeolite layers with enhanced mass transfer properties for adsorption air conditioning. In Proceedings of the International Sorption Heat Pump Conference, Shanghai, China, 24–27 September 2002; p. 625. [Google Scholar]
- Freni, A.; Dawoud, B.; Bonaccorsi, L.; Chmielevski, S.; Frazzica, A.; Calabrese, L.; Restuccia, G. Characterisation of Zeolite-Based Coatings for Adsorption Heat Pumps; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Aristov, Y.I. Adsorptive transformation and storage of renewable heat: Review of current trends in adsorption dynamics. Ren. Energy 2017, 110, 105–114. [Google Scholar] [CrossRef]
- Girnik, I.S.; Grekova, A.D.; Gordeeva, L.G.; Aristov, Y.I. Dynamic optimization of adsorptive chillers: Compact layer vs. bed of loose grains. Appl. Therm. Eng. 2017, 125, 823–829. [Google Scholar] [CrossRef]
- Aristov, Y.I.; Girnik, I.S.; Glaznev, I.S. Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 2012, 46, 484–492. [Google Scholar] [CrossRef]
- Solovyeva, M.V.; Gordeeva, L.G.; Aristov, Y.I. “MIL-101(Cr)—Methanol” as working pair for adsorption heat transformation cycles: Adsorbent shaping, adsorption equilibrium and dynamics. Energy Convers. Manag. 2019, 182, 299–306. [Google Scholar] [CrossRef]
- Solovyeva, M.V.; Gordeeva, L.G.; Krieger, T.A.; Aristov, Y.I. MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption. Energy Convers. Manag. 2018, 174, 356–363. [Google Scholar] [CrossRef]
- Grekova, A.; Gordeeva, L.; Lu, Z.; Wang, R.; Aristov, Y. Composite “LiCl/MWCNT” as advanced water sorbent for thermal energy storage: Sorption dynamics. Solar Energy Mater. Solar Cells 2018, 176, 273–279. [Google Scholar] [CrossRef]
- Glaznev, I.S.; Koptyug, I.V.; Aristov, Y.I. A compact layer of alumina modified by CaCl2: The influence of composition and porous structure on water transport. Micropor. Mesopor. Mater. 2010, 131, 358–365. [Google Scholar] [CrossRef]
- Gregorova, E.; Pabst, W. Porosity and pore size control in starch consolidation casting of oxide ceramics–Achievements and problems. J. Eur. Ceram. Soc. 2007, 27, 669–672. [Google Scholar] [CrossRef]
- Prabhakaran, K.; Melkeri, A.; Gokhale, N.M.; Sharma, S.C. Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent. J. Ceram. Int. 2007, 33, 77–81. [Google Scholar] [CrossRef]
- Manap, N.R.A.; Jais, U.S. Influence of concentration of pore forming agent on porosity of SiO2 ceramic from rice husk ash. Mater. Res. Innov. 2009, 13, 382–385. [Google Scholar] [CrossRef]
- Huang, L.J.; Shah, R.K. Assessment of Calculation Methods for Efficiency of Straight Fins of Rectangular Profile. Int. J. Heat Fluid Flow 1992, 13, 282–293. [Google Scholar] [CrossRef]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Springer: New York, NY, USA, 1991. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Luikov, A.V. Transport Phenomena in Capillary-Porous Bodies; Nauka: Moscow, Russia, 1954. (In Russian) [Google Scholar]
- Vasil’ev, L.L.; Tanaeva, S.A. Thermophysical Properties of Porous Materials; Nauka: Minsk, Russia, 1968. (In Russian) [Google Scholar]
- Calabrese, L.; Bonaccorsi, L.; Freni, A.; Proverbio, E. Silicone composite foams for adsorption heat pump applications. Sustain. Mater. Technol. 2017, 12, 27–34. [Google Scholar] [CrossRef]
- Hu, E.; Zhu, D.-S.; Sang, X.-Y.; Wang, L.; Tan, Y.-K. Enhancement of thermal conductivity by using polymer-zeolite in solid adsorption heat pumps. J. Heat Transf. 1997, 119, 627–629. [Google Scholar] [CrossRef]
- Basile, A.; Cacciola, G.; Colella, C.; Mercadante, L.; Pansini, M. Thermal conductivity of natural zeolite-PTFE composites. Heat Recovery Syst. CHP 1992, 12, 497–503. [Google Scholar] [CrossRef]
- SorTech AG Training Course—ACS in Solar Cooling System. Available online: http://www.solarcombiplus.eu/docs/SolarCombi_Sortech_trainingmaterial.pdf (accessed on 3 October 2022).
- Wasilewska, M.; Deryło-Marczewska, A. Adsorption of non-steroidal anti-inflammatory drugs on alginate-carbon composites—Equilibrium and kinetics. Materials 2022, 15, 6049. [Google Scholar] [CrossRef]
- Demir, H.; Mobedi, M.; Ulku, S. The use of metal piece additives to enhance heat transfer rate through an unconsolidated adsorbent bed. Int. J. Refrig. 2010, 33, 714–720. [Google Scholar] [CrossRef]
- Askalany, A.A.; Henninger, S.K.; Ghazy, M.; Saha, B.B. Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system. Appl. Therm. Eng. 2017, 110, 695–702. [Google Scholar] [CrossRef]
- Palomba, V.; Lombardo, W.; Grobe, A.; Herrmann, R.; Nitsch, B.; Strehlow, A.; Bastian, R.; Sapienza, A.; Frazzica, A. Evaluation of in-situ coated porous structures for hybrid heat pumps. Energy 2020, 209, 118313. [Google Scholar] [CrossRef]
- Fayazmanesh, K.; McCague, C.; Bahrami, M. Consolidated adsorbent containing graphite flakes for heat-driven water sorption cooling systems. Appl. Therm. Eng. 2017, 123, 753–760. [Google Scholar] [CrossRef]
- Zarichniak, Y.P.; Novikov, V.V. The effective conductivity of heterogeneous systems with a disordered structure. J. Eng. Thermophys. 1978, 34, 648–655. [Google Scholar] [CrossRef]
- Tatlıer, M.; Erdem-Senatalar, A. Effects of metal mass on the performance of adsorption heat pumps utilizing zeolite 4A coatings synthesized on heat exchanger tubes. Int. J. Refrig. 2000, 23, 260–268. [Google Scholar] [CrossRef]
- Freni, A.; Maggio, G.; Sapienza, A.; Frazzica, A.; Restuccia, G.; Vasta, S. Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Appl. Therm. Eng. 2016, 104, 85–95. [Google Scholar] [CrossRef]
- Gluesenkamp, K.R.; Frazzica, A.; Velte, A.; Metcalf, S.; Yang, Z.; Rouhani, M.; Blackman, C.; Qu, M.; Laurenz, E.; Rivero-Pacho, A.; et al. Experimentally Measured Thermal Masses of Adsorption Heat Exchangers. Energies 2020, 13, 1150. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E.; Wang, R.Z. Anisotropic thermal conductivity and permeability of compacted expanded natural graphite. Appl. Therm. Eng. 2010, 30, 1805–1811. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Tamainot-Telto, Z.; Thorpe, R.; Critoph, R.E.; Metcalf, S.J.; Wang, R.Z. Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renew. Energy 2011, 36, 2062–2066. [Google Scholar] [CrossRef]
- Tatlier, M.; Tantekin-Ersolmaz, S.B.; Erdem-Senatalar, A. A novel approach to enhance heat and mass transfer in adsorption heat pumps using the zeolite–water pair. Micropor. Mesopor. Mater. 1999, 27, 1–10. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Freni, A.; Proverbio, E.; Restuccia, G.; Russo, F. Zeolite coated copper foams for heat pumping applications. Micropor. Mesopor. Mater. 2006, 91, 7–14. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Calabrese, L.; Freni, A.; Proverbio, E. Hydrothermal and microwave synthesis of SAPO (CHA) zeolites on aluminum foams for heat pumping applications. Micropor. Mesopor. Mater. 2013, 167, 30–37. [Google Scholar] [CrossRef]
- Wang, Y.; Gundevia, M. Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers. Int. J. Heat Mass Transf. 2013, 60, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Dunn, P.D.; Reay, D.A. Heat Pipes; Pergamon Press: Oxford, UK, 1976. [Google Scholar] [CrossRef]
- Vasiliev, L.L. Micro and miniature heat pipes—Electronic component coolers. Appl. Therm. Eng. 2008, 28, 266–273. [Google Scholar] [CrossRef]
- Girnik, I.S. Dynamics of Water and Methanol Adsorption in the Adsorption Heat Conversion Cycle. Ph.D. Thesis, Boreskov Institute of Catalysis, Novosibirsk, Russia, 2018. [Google Scholar]
- Dixon, A.G.; Nijemeisland, M.; Stitt, E.H. Systematic mesh development for 3D CFD simulation of fixed beds: Contact points study. Comput. Chem. Eng. 2013, 48, 135–153. [Google Scholar] [CrossRef]
- Radu, A.I.; Defraeye, T.; Ruch, P.; Carmeliet, J.; Derome, D. Insights from modeling dynamics of water sorption in spherical particles for adsorption heat pumps. Int. J. Heat Mass Transf. 2017, 105, 326–337. [Google Scholar] [CrossRef]
- Ammann, J.; Ruch, P.; Michel, B.; Studart, A.R. High-Power Adsorption Heat Pumps Using Magnetically Aligned Zeolite Structures. ACS Appl. Mater. Interfaces 2019, 11, 24037–24046. [Google Scholar] [CrossRef]
- Ammann, J.; Ruch, P.; Michel, B.; Studart, A.R. Quantification of heat and mass transport limitations in adsorption heat exchangers: Application to the silica gel/water working pair. Int. J. Heat Mass Transf. 2018, 123, 331–341. [Google Scholar] [CrossRef]
- Wittstadt, U.; Fueldner, G.; Laurenz, E.; Warlo, A.; Grosse, A.; Herrmann, R.; Schnabel, L.; Mittelbach, W. A novel adsorption module with fiber heat exchangers: Performance analysis based on driving temperature differences. Renew. Energy 2017, 110, 154–161. [Google Scholar] [CrossRef]
- Ammann, J.; Ruch, P.; Michel, B.; Ruch, P. Characterization of transport limitations in SAPO-adsorbent coatings for adsorption heat pumps. Int. J. Heat Mass Transf. 2019, 129, 18–27. [Google Scholar] [CrossRef]
- Ammann, J.; Michel, B.; Studart, A.R.; Ruch, P. Sorption rate enhancement in SAPO-34 zeolite by directed mass transfer channels. Int. J. Heat Mass Transf. 2019, 130, 25–32. [Google Scholar] [CrossRef]
- Eun, T.-H.; Song, H.-K.; Hun Han, J.; Lee, K.-H.; Kim, J.-N. Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part II. Cooling system using the composite blocks. Int. J. Refrig. 2000, 23, 74–81. [Google Scholar] [CrossRef]
- McCague, C.; Huttema, W.; Fradin, A.; Bahrami, M. Lab-scale sorption chiller comparison of FAM-Z02 coating and pellets. Appl. Therm. Eng. 2020, 173, 115219. [Google Scholar] [CrossRef]
- He, F.; Nagano, K.; Togawa, J. Experimental study and development of a low-cost 1 kW adsorption chiller using composite adsorbent based on natural mesoporous material. Energy 2020, 209, 118365. [Google Scholar] [CrossRef]
- Li, G.; Qian, S.; Lee, H.; Hwang, Y.; Radermacher, R. Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application. Energy 2014, 65, 675–691. [Google Scholar] [CrossRef]
- Sapienza, A.; Gullì, G.; Calabrese, L.; Palomba, V.; Frazzica, A.; Brancato, V.; La Rosa, D.; Vasta, S.; Freni, A.; Bonaccorsi, L.; et al. An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers. Appl. Energy 2016, 179, 929–938. [Google Scholar] [CrossRef]
- Engel, G. Sorption thermal energy storage: Hybrid coating/granules adsorber design and hybrid TCM/PCM operation. Energy Convers. Manag. 2019, 184, 466–474. [Google Scholar] [CrossRef]
Adsorbent/ Binder/Additive | λ, W/(m K) | h, W/(m2 K) | A, m2 | Remarks | Ref. |
---|---|---|---|---|---|
Granulated beds | |||||
Zeolites | 0.056–0.12 | 20–45 | 10−9–10−11 | - | [23,27,65] |
AQSOA materials | 0.1–0.2 | - | - | - | [66,67] |
Silica gel | 0.11–0.26 | - | - | - | [31,45] |
Active carbon | 0.14–0.17 | - | - | - | [31] |
Maxsorb III | 0.066 | - | - | - | [32,33] |
Al-fumarate | ≈0.12 | - | - | - | [62] |
MIL-101 (Cr) powder | 0.06 | - | - | - | [48] |
Binder-based adsorbent coatings | |||||
Zeolite 13X/polyaniline | 0.15–0.26 | - | - | [27] | |
Zeolite/polymer binder | 230 | - | l = 0.7 mm | [68] | |
AQSOA Z01/organic binder | 0.37 | - | - | l = 0.3 mm | [67] |
Silica/polyvinylpyrrolidone | 0.26 | - | - | - | [41] |
Ti-substituted SAPO-34/SilRes binder | 200–500 | - | l = 0.16-0.47 mm | [42] | |
SAPO-34/clay binder | 600–700 | - | l = 0.38–11.1 mm | [44] | |
LiCl-silica composite/glue, silica sol binder | 3.2–5.8 | - | - | mad/S = 0.4–0.48 kg/m2 | [47] |
MIL-101(Cr)/Cu foam | 0.38–0.86 | - | - | Dip-coating without binder | [48] |
Consolidated beds | |||||
Maxsorb III/PVA/EG | 0.15–0.74 | - | - | Compressing, l = 15–17 mm | [29] |
Maxsorb III/PVA | 0.099 | - | - | - | [32,33] |
Maxsorb III/PIL | 0.122 | - | - | Increased specific surface area, pore volume, adsorption capacity as compared to PVA | [32,33] |
Zeolite 13X, 4A/silico-aluminate gel | 0.36 | 45 | - | Pressing, l = 25 mm | [23] |
Zeolite 13X, 4A/silico-aluminate gel/Cu, Ni foam | 1.7–8.3 | 110–180 | 2 × 10−13 | Pressing, l = 25 mm, the Cu effect is stronger than Ni | [23] |
Silica gel/EG | 10–20 | - | (3–40) × 10−12 | Pressing, l = 4 mm, | [31] |
Zeolite CBV 901 (Y)/ pseudoboehmite | 0.4 | 55 | 10−13–10−12 | l = 5 mm, effect of pore-forming additives | [69] |
Zeolite/EG | 5–10 | 500–1000 | 2 × 10−13 | [65] | |
In-situ synthesized coatings | |||||
HKUST-1/Cu support | 1.2–1.4 | (3.5–3.8) × 104 | - | l = 0.1 mm | [61] |
Zeolites 4A, Y, SAPO-34/ Al, stainless steel support | 0.15 | >1000 | 10−8 | l = 0.02–0.08 mm | |
SAPO-34/Al fibers | 8 | >1000 | - | l = 2–4 mm * | [70] |
SAPO-34/Al foam | 14 | >1000 | 10−8 | l = 2–5 mm * | [70] |
Al-fumarate | 0.31–0.33 | ≈2000 | - | l = 0.28 mm | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordeeva, L.; Aristov, Y. Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application. Energies 2022, 15, 7551. https://doi.org/10.3390/en15207551
Gordeeva L, Aristov Y. Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application. Energies. 2022; 15(20):7551. https://doi.org/10.3390/en15207551
Chicago/Turabian StyleGordeeva, Larisa, and Yuri Aristov. 2022. "Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application" Energies 15, no. 20: 7551. https://doi.org/10.3390/en15207551