# Thermochemical Properties for Valorization of Amazonian Biomass as Fuel

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}, which is about 58.9% of the national territory. The region has around 2500 species of large trees and 30,000 species of cataloged plants [3].

**Table 1.**Equations to determine HHVs from proximate analysis (volatiles (V), fixed carbon (FC) and ash (A)) or elemental analysis (carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulfur (S) and ash (A)).

Equation | Source | HHV Equation (MJ/kg) wt. %, Dry Basis | Biomass Data Origin | Type of Analysis |
---|---|---|---|---|

(1) | [23] | HHV = −1.6701 + 0.4373 × C | Wood from different countries | Ultimate |

(2) | [21] | HHV = −0.763 + 0.301 × C + 0.525 × H + 0.064 × O | Field crop residues, orchard pruning, vineyard pruning, food and fiber processing wastes, forest residues and energy crops from California | Ultimate |

(3) | [15] | HHV = −10.81408 + 0.3133 × (V + FC) | Agricultural residues from Spain | Proximate |

(4) | [5] | HHV = 35.43 − 0.1835 × V − 0.3543 × A | Forest and agricultural wastes/chars from Spain and Cuba | Proximate |

(5) | [16] | HHV = 0.1534 × V + 0.312 × FC | Turkey | Proximate |

(6) | [19] | HHV = −1.3675 + 0.3237 × C + 0.7009 × H + 0.0318 × O | Various types from the open literature | Ultimate |

(7) | [19] | HHV = 3.4597 + 0.3259 × C | Various types from the open literature | Ultimate |

(8) | [19] | HHV = −3.0368 + 0.2218 × V + 0.26 × FC | Various types from the open literature | Proximate |

(9) | [22] | HHV = 0.3491 × C + 1.1783 × H + 0.1005 × S − 0.1034 × O − 0.0151 × N − 0.0211 × A | Gases, liquids, solid fuels (coal/coke), wood, sawdust, refuse, MSW, animal waste from the open literature | Ultimate |

(10) | [13] | HHV = 0.3536 × FC + 0.1559 × V − 0.0078 × A | Fuels such as coals/lignite/manufactured fuel/all kinds of biomass/industry waste from the open literature | Proximate |

(11) | [20] | HHV = 0.3560 + 0.4328 × C − 0.2977 × H + 0.2874 × N | Straw from China | Ultimate |

(12) | [17] | HHV = 0.1905 × V + 0.2521 × FC | Agricultural byproducts/wood from Argentina, Australia, Cuba, Greece, India, Morocco, the Netherlands, Spain, Turkey and the United States of America | Proximate |

(13) | [17] | HHV = 0.2949 × C + 0.8250 × H | Agricultural byproducts/wood from Argentina, Australia, Cuba, Greece, India, Morocco, the Netherlands, Spain, Turkey and the United States of America | Ultimate |

(14) | [26] | HHV = −3.393 + 0.507 × C − 0.341 × H + 0.067 × N | Crop species from Spain | Ultimate |

(15) | [26] | HHV = −13.173 + 0.416 × V | Crop species from Spain | Proximate |

(16) | [14] | HHV = 19.2880 − 0.2135 × (V/FC) − 1.9584 × (A/V) + 0.0234 × (FC/A) | Various types from the open literature | Proximate |

(17) | [12] | HHV = 0.879 × C + 0.321 × H + 0.056 × O − 24.826 | Oil palm fronds from Malaysia | Ultimate |

(18) | [24] | HHV = 0.4373 × C − 1.6701 | Agroforestry biomass from Russia | Ultimate |

(19) | [27] | HHV = 0.2328 × C + 6.9703 | Various types from the open literature | Ultimate |

(20) | [18] | HHV = −0.0038 × (−19.9812 × FC^{1.2259}) + (−1.0298 × 10^{−13} × V × 8.0664) + (0.1026 × A^{2.423}) + (−1.2065 × 10^{−7} × FC × A^{4.6653} + 0.0228 × FC × V × A) + (−0.2511 × (V/A) − (0.0478 × (FC/V)) + 15.7199 | Various types from the open literature | Proximate |

(21) | [28] | HHV = 0.3826 × C − 0.3681 × H + 2.7882 × S − 0.0378 × O + 0.9262 | Biomass/biochar from Malaysia | Ultimate |

## 2. Materials and Methods

#### 2.1. Biomass Characteristics

#### 2.2. Development of Regression Equations

^{2}, p-value, F-test and MAPE, to the equations resulting from second step.

#### 2.2.1. Pearson’s Correlation

#### 2.2.2. Linear Regression Methods

#### 2.2.3. Statistical Analysis

#### R^{2} and R^{2}-Adjusted

^{2}, is an indicator of how good the regression fits with the data. An R

^{2}close to 1 indicates that the equation explains the case well. However, this value can be overestimated in cases of multiple regression due the addition of data. Therefore, R

^{2}-adjusted should be taken into account. This tends to be more realistic because it corrects the problem of increasing polynomial coefficients.

#### F-Test and p-Value

#### Error Analysis

- Mean absolute error (MAE);
- Mean absolute percentage of error (MAPE);
- Square root of mean error (SRME).

#### 2.3. Validation Databank

#### 2.4. HHV Equations from the Literature: Models Used for Comparison

## 3. Results and Discussion

#### 3.1. Biomass Characteristics

#### 3.2. Development of the Models for the HHV

^{2}-adjusted value was 0.95, the F-test result was less than 0.05 and the coefficient had a high p-value due to the ashes.

^{2}-adjusted value was 0.57. The F-test and the p-value test showed excellent results and could be considered zero. The MAPE of 2.84% was a considered value, since the acceptable limit adopted in this study was a MAPE below 5%.

#### 3.3. Validation of the Proposed HHV Equations

#### 3.4. Results of the Comparison between the Proposed and Literature Equations

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Empresa de Pesquisa Energética (Brasil). Brazilian Energy Balance 2021 Year 2020; Empresa de Pesquisa Energética (Brasil): Brasilia, Brazil, 2021; p. 292.
- Chavando, J.A.M.; Silva, V.; Guerra, D.R.D.S.; Eusébio, D.; Cardoso, J.S.; Tarelho, L.A. Review Chapter: Waste to Energy through Pyrolysis and Gasification in Brazil and Mexico. In Gasification; Intech Open: London, UK, 2021. [Google Scholar] [CrossRef]
- Araujo, R.O.; Ribeiro, F.C.P.; Santos, V.O.; Lima, V.M.R.; Santos, J.L.; Vilaça, J.E.S.; Chaar, J.S.; Falcão, N.P.S.; Pohlit, A.M.; de Souza, L.K.C. Renewable Energy from Biomass: An Overview of the Amazon Region. Bioenergy Res.
**2022**, 15, 834–849. [Google Scholar] [CrossRef] - van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing; Earthscan: London, UK, 2008. [Google Scholar]
- Cordero, T.; Marquez, F.; Rodriguez-Mirasol, J.; Rodriguez, J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel
**2001**, 80, 1567–1571. [Google Scholar] [CrossRef] - Qian, H.; Guo, X.; Fan, S.; Hagos, K.; Lu, X.; Liu, C.; Huang, D. A Simple Prediction Model for Higher Heat Value of Biomass. J. Chem. Eng. Data
**2016**, 61, 4039–4045. [Google Scholar] [CrossRef] - Hasan, M.; Haseli, Y.; Karadogan, E. Correlations to Predict Elemental Compositions and Heating Value of Torrefied Biomass. Energies
**2018**, 11, 2443. [Google Scholar] [CrossRef] [Green Version] - Dai, Z.; Chen, Z.; Selmi, A.; Jermsittiparsert, K.; Denić, N.M.; Nešić, Z. Machine learning prediction of higher heating value of biomass. Biomass Convers. Biorefin.
**2021**, 1–9. [Google Scholar] [CrossRef] - Wahid, F.R.A.A.; Saleh, S.; Samad, N.A.F.A. Estimation of Higher Heating Value of Torrefied Palm Oil Wastes from Proximate Analysis. Energy Procedia
**2017**, 138, 307–312. [Google Scholar] [CrossRef] [Green Version] - Keybondorian, E.; Zanbouri, H.; Bemani, A.; Hamule, T. Estimation of the higher heating value of biomass using proximate analysis. Energy Sources Part A Recover. Util. Environ. Eff.
**2017**, 39, 2025–2030. [Google Scholar] [CrossRef] - Akkaya, A.V. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Process. Technol.
**2009**, 90, 165–170. [Google Scholar] [CrossRef] - Elneel, R.; Anwar, S.; Ariwahjoed, B. Prediction of Heating Values of Oil Palm Fronds from Ultimate Analysis. J. Appl. Sci.
**2013**, 13, 491–496. [Google Scholar] [CrossRef] - Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A Correlation for Calculating HHV from Proximate Analysis of Solid Fuels. Fuel
**2005**, 84, 487–494. [Google Scholar] [CrossRef] - Nhuchhen, D.R.; Salam, P.A. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel
**2012**, 99, 55–63. [Google Scholar] [CrossRef] - Jiménez, L.; Gonzalez, F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel
**1991**, 70, 947–950. [Google Scholar] [CrossRef] - Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel
**1997**, 76, 431–434. [Google Scholar] [CrossRef] - Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel
**2011**, 90, 1128–1132. [Google Scholar] [CrossRef] [Green Version] - Dashti, A.; Noushabadi, A.S.; Raji, M.; Razmi, A.; Ceylan, S.; Mohammadi, A.H. Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel
**2019**, 257, 115931. [Google Scholar] [CrossRef] - Sheng, C.; Azevedo, J. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy
**2005**, 28, 499–507. [Google Scholar] [CrossRef] - Huang, C.; Han, L.; Yang, Z.; Liu, X. Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manag.
**2009**, 29, 1793–1797. [Google Scholar] [CrossRef] - Jenkins, B.M.; Ebeling, J.M. Thermochemical Properties of Biomass Fuels. Calif. Agric.
**1985**, 39, 14–16. [Google Scholar] - Channiwala, S.; Parikh, P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel
**2002**, 81, 1051–1063. [Google Scholar] [CrossRef] - Tillman, D.A. Wood as an Energy Resource; Academic Press: New York, NY, USA, 1978; ISBN 9780126912609. [Google Scholar]
- Bychkov, A.L.; Denkin, A.I.; Tikhova, V.; Lomovsky, O. Prediction of higher heating values of plant biomass from ultimate analysis data. J. Therm. Anal. Calorim.
**2017**, 130, 1399–1405. [Google Scholar] [CrossRef] - Ahmed, A.; Bakar, M.; Razzaq, A.; Hidayat, S.; Jamil, F.; Amin, M.; Sukri, R.; Shah, N.; Park, Y.-K. Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion. Sustainability
**2021**, 13, 5249. [Google Scholar] [CrossRef] - Callejón-Ferre, A.; Velázquez-Martí, B.; López-Martínez, J.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev.
**2011**, 15, 948–955. [Google Scholar] [CrossRef] - Boumanchar, I.; Charafeddine, K.; Chhiti, Y.; Alaoui, F.E.M.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming. Biomass Convers. Biorefin.
**2019**, 9, 499–509. [Google Scholar] [CrossRef] - Afiqah, N.; Kamaruddin, B.; Azlina, W.; Abdul, W.; Ghani, K.; Rezi, M.; Hamid, A.; Alias, A.B.; Shamsudin, A.H. Simulation and Analysis of Calorific Value for Biomass Solid Waste as a Potential Solid Fuel Source for Power Generation. Jase. Tku. Edu. Tw
**2022**, 26, 163–173. [Google Scholar] - Lopes, F.C.R.; Pereira, J.C.; Tannous, K. Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres. Bioresour. Technol.
**2018**, 270, 294–302. [Google Scholar] [CrossRef] [PubMed] - Rousset, P.; Aguiar, C.; Volle, G.; Souza, M. De Com Torrefaction of Babassu: A Potential Utilization Pathway. BioResources
**2013**, 8, 358–370. [Google Scholar] - Nobre, J.R.C.; Napoli, A.; Bianchi, M.L.; Trugilho, P.F.; Urbinati, C.V. Caracterização Elementar, Química E Energética De Resíduos De Manilkara Huberi (Maçaranduba) Do Estado Do Pará. In Proceedings of the Encontro Brasileiro em Madeiras e em Estruturas de Madeira, Natal-RN, Brazil, 28–30 April 2014. [Google Scholar]
- Rambo, M.; Alexandre, G.P.; Rambo, M.C.D.; Alves, A.R.; Garcia, W.T.; Baruque, E. Characterization of biomasses from the north and northeast regions of Brazil for processes in biorefineries. Food Sci. Technol.
**2015**, 35, 605–611. [Google Scholar] [CrossRef] [Green Version] - Rambo, M.; Schmidt, F.; Ferreira, M. Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta
**2015**, 144, 696–703. [Google Scholar] [CrossRef] - Mardikyan, S.; Darcan, O.N. A Software Tool for Regression Analysis and its Assumptions. Inf. Technol. J.
**2006**, 5, 884–891. [Google Scholar] [CrossRef] [Green Version] - Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer Nature: Berlin, Germany, 2022; ISBN 9783030890100. [Google Scholar]
- Haldar, S.K. Mineral Exploration: Principles and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-814022-2. [Google Scholar]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion Properties of Biomass Combustion Properties of Biomass. Fuel Process. Technol.
**1998**, 54, 17–46. [Google Scholar] - Ebeling, J.M.; Jenkins, B. Physical and Chemical Properties of Biomass Fuels. Trans. Am. Soc. Agric. Eng.
**1985**, 28, 898–902. [Google Scholar] [CrossRef] - Parikh, J.; Channiwala, S.; Ghosal, G. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel
**2007**, 86, 1710–1719. [Google Scholar] [CrossRef]

**Figure 2.**Results of proximate analysis for Amazonian biomasses shown in Table 3 (wt. %, dry basis). * Biomass identification.

**Figure 3.**Results of ultimate analysis for Amazonian biomasses (wt. %, ash-free, dry basis). * Biomass identification.

**Figure 4.**Results of proximate analysis for the Amazonian biomasses shown in Table 4 (wt. %, dry basis). * Biomass identification.

**Figure 5.**Correlation between HHVs and the independent variables from the proximate analysis on a dry basis: (

**a**) volatiles; (

**b**) fixed carbon; (

**c**) ashes; (

**d**) fixed carbon plus volatiles.

**Figure 6.**Correlations between HHVs and chemical elements in the ultimate analysis on an ash-free basis: (

**a**) carbon; (

**b**) nitrogen; (

**c**) hydrogen; (

**d**) oxygen.

**Figure 7.**Comparison of the experimental and predicted values for HHVs with the different proposed equations using proximate analysis parameters: (

**a**) AI-1; (

**b**) AI-2.

**Figure 8.**Comparison of the predicted and experimental values for HHVs with the different proposed equations using ultimate analysis parameters: (

**a**) AE-1; (

**b**) AE-2.

**Figure 9.**Graphs with the main error analyses for HHV predictions from equations based on the proximate analysis: (

**a**) mean absolute error (MAE) and square root mean error (SRME); (

**b**) mean absolute percentage error (MAPE). * ID: equation identification.

**Figure 10.**Comparison of the predicted and experimental values for HHVs based on proximate analysis using different authors’ equations: (

**a**) Equation (3); (

**b**) Equation (5); (

**c**) Equation (4); (

**d**) Equation (10); (

**e**) Equation (8); (

**f**) Equation (12); (

**g**) Equation (16) and (

**h**) Equation (20).

**Figure 11.**Graphs with the main error analyses for the HHV predictions from equations based on ultimate analysis: (

**a**) mean absolute error (MAE) and square root mean error (RSME); (

**b**) mean absolute percentage error (MAPE). * ID: equation identification.

**Figure 12.**Comparison of the predicted and experimental HHV values based on ultimate analysis using different authors’ equations: (

**a**) Equation (1); (

**b**) Equation (2); (

**c**) Equation (6); (

**d**) Equation (7); (

**e**) Equation (9); (

**f**) Equation (13); (

**g**) Equation (18) and (

**h**) Equation (19).

ID * | Source | Biomass Residues | HHV ^{1} | C ^{2} | H ^{3} | O ^{4} | N ^{5} | S ^{6} |
---|---|---|---|---|---|---|---|---|

(MJ/kg) | (wt. %, Ash-Free, Dry Basis) | |||||||

1 | [33] | Açaí seed Euterpe oleracea | 18.60 | 47.60 | 6.40 | 45.12 | 0.78 | - |

2 | [33] | Banana stem Musa spp. | 16.13 | 39.00 | 5.44 | 54.84 | 0.82 | - |

3 | [33] | Banana stalk Musa spp. | 15.73 | 37.95 | 4.73 | 55.85 | 1.46 | - |

4 | [33] | Bamboo Guadua sarcocarpa | 18.33 | 43.34 | 5.55 | 48.93 | 0.91 | - |

5 | [33] | Coconut Cocos nucifera | 18.70 | 47.40 | 5.41 | 46.64 | 0.55 | - |

6 | [32] | Babassu mesocarp Attalea speciosa | 19.07 | 47.13 | 5.17 | 40.70 | 0.27 | - |

7 | [30] | Babassu Attalea speciosa | 21.95 | 56.90 | 5.20 | 36.90 | - | - |

8 | [29] | Guarana seed Paullinia cupana | 17.58 | 41.55 | 6.44 | 44.91 | 1.51 | - |

9 | [31] | Maçaranduba Manilkara huberi | 20.44 | 49.54 | 6.31 | 43.45 | 0.67 | 0.01 |

^{1}High heating value;

^{2}carbon;

^{3}hydrogen;

^{4}oxygen;

^{5}nitrogen;

^{6}sulfur; * Biomass identification.

ID * | Biomass Residues | HHV ^{1} | V ^{2} | FC ^{3} | A ^{4} | C ^{5} | H ^{6} | O ^{7} | N ^{8} | S ^{9} |
---|---|---|---|---|---|---|---|---|---|---|

(MJ/kg) | (wt. %, Dry Basis) ª | |||||||||

1 | Açaí berry (seed) Euterpe oleracea | 19.23 | 78.88 | 19.91 | 1.21 | 46.16 | 6.01 | 47.26 | 0.43 | 0.13 |

2 | Tucumã (seed) Astrocaryum aculeatum | 22.18 | 78.56 | 17.02 | 4.42 | 51.35 | 6.50 | 41.52 | 0.52 | 0.11 |

3 | Açaí tree bark (husk) Euterpe oleracea | 16.73 | 74.70 | 17.99 | 7.31 | - | - | - | - | - |

4 | Coconut shell (husk) Cocos nucifera | 19.33 | 73.78 | 23.46 | 2.76 | 51.14 | 5.70 | 42.57 | 0.51 | 0.00 |

5 | Palm oil kernel shell (PKS) (husk) Elaeis guineensis | 21.22 | 77.92 | 19.55 | 2.53 | 49.55 | 5.96 | 42.92 | 0.60 | 0.96 |

6 | Angelim pedra (woody) Hymenolobium modestum | 19.42 | 80.60 | 17.85 | 1.55 | 49.15 | 6.26 | 43.34 | 0.39 | 0.86 |

7 | Angelim vermelho (woody) Dinizia excelsa | 20.10 | 82.90 | 14.86 | 2.24 | 48.44 | 6.22 | 43.99 | 0.45 | 0.9 |

8 | Bamboo with stripes (woody) Bambusa vulgaris vulgaris | 18.83 | 80.14 | 18.47 | 1.39 | 46.93 | 5.92 | 45.82 | 0.43 | 0.13 |

9 | Imperial bamboo (woody) Bambusa vulgaris vittata | 18.76 | 81.64 | 16.97 | 1.39 | 47.48 | 6.14 | 45.21 | 0.35 | 0.82 |

10 | Giant bamboo (woody) Dendrocalamus giganteus | 19.56 | 79.73 | 19.09 | 1.18 | 47.82 | 6.15 | 44.83 | 0.37 | 0.83 |

11 | Bamboo (woody) Guadua sarcocarpa | 18.80 | 78.63 | 17.96 | 3.41 | 44.96 | 5.90 | 47.99 | 0.39 | 0.77 |

12 | Cedro (woody) Cedrela fissilis | 19.83 | 82.60 | 16.54 | 0.86 | 50.10 | 6.34 | 42.37 | 0.37 | 0.82 |

13 | Cupiuba (woody) Goupia glabra | 19.37 | 83.44 | 16.20 | 0.36 | 49,09 | 7.83 | 42.52 | 0.19 | - |

14 | Ipê amarelo (woody) Handroanthus albus | 21.43 | 80.50 | 19.27 | 0.23 | 52.24 | 6.08 | 40.45 | 0.55 | 0.69 |

15 | Jatobá (woody) Hymenaea courbaril | 20.32 | 79.06 | 20.57 | 0.37 | 50.17 | 5.77 | 42.89 | 0.50 | 0.67 |

16 | Louro (woody) Ocotea spp. | 20.90 | 81.39 | 18.31 | 0.30 | 48.42 | 6.13 | 44.23 | 0.42 | 0.79 |

17 | Marupá (woody) Simarouba amara | 19.66 | 87.42 | 12.38 | 0.20 | 48.53 | 6.28 | 44.05 | 0.41 | 0.73 |

18 | Muiracatiara (woody) Astronium ulei | 20.34 | 80.89 | 18.91 | 0.20 | - | - | - | - | - |

19 | Pacapeua (woody) Swartzia Racemosa | 18.68 | 81.49 | 15.02 | 3.49 | - | - | - | - | - |

20 | Tatajuba (woody) Maclura tinctoria | 19.62 | 78.50 | 21.20 | 0.30 | 49.50 | 6.06 | 43.32 | 0.33 | 0.79 |

21 | Timborana (woody) Piptadenia suaveolens | 19.77 | 80.36 | 18.17 | 1.47 | 49.52 | 6.30 | 42.88 | 0.55 | 0.75 |

22 | Casca de amêndoa (husk) Prunus dulcis | 22.21 | 77.73 | 20.66 | 1.61 | - | - | - | - | - |

23 | Talo de uncária (husk) Uncaria tomentosa | 19.51 | 74.81 | 22.32 | 2.87 | - | - | - | - | - |

24 | Tanimbuca (woody) Buchenavia capitata | 19.58 | 78.01 | 19.80 | 2.26 | - | - | - | - | - |

25 | Tauari (woody) Couratari tauari | 19.86 | 82.56 | 16.75 | 0.69 | - | - | - | - | - |

26 | Pau-preto (woody) Dalbergia melanoxylon | 22.21 | 79.36 | 20.02 | 0.62 | - | - | - | - | - |

27 | Uncária (husk) Uncaria tomentosa | 20.77 | 70.10 | 21.49 | 8.41 | - | - | - | - | - |

Sample mean | 19.74 | 79.66 | 27.60 | 1.79 | 48.19 | 6.25 | 43.79 | 0.43 | 0.77 | |

Standart deviation | 1.23 | 3.06 | 2.43 | 1.82 | 1.89 | 0.46 | 1.90 | 0.12 | 0.37 |

^{1}High heating value;

^{2}volatiles;

^{3}fixed carbon;

^{4}ashes;

^{5}carbon;

^{6}hydrogen;

^{7}oxygen;

**nitrogen;**

^{8}^{9}sulfur; - denotes that ultimate analysis is not available; * biomass identification; ª proximate and ultimate analyses were on a wt. % dry biomass basis.

**Table 4.**Thermochemical data of proximate analysis for the studied biomass residues used for validation.

ID * | Biomass Residues | HHV ^{1} | V ^{2} | FC ^{3} | A ^{4} |
---|---|---|---|---|---|

(MJ/kg) | (wt. %, Dry Basis) ª | ||||

28 | Angelim (woody) Andira fraxinifolia | 17.50 | 70.01 | 15.13 | 14.86 |

29 | Breu (woody) Protium heptaphyllum | 19.90 | 85.62 | 14.19 | 0.19 |

30 | Buchas trituradas de dendê (husk) Elaeis guineensis | 17.33 | 72.86 | 15.23 | 9.91 |

31 | Cacho seco de amêndoa (husk) Prunus dulcis | 19.34 | 80.55 | 16.60 | 2.85 |

32 | Brazil nut shells (husk) Bertholletia excelsa | 20.27 | 71.04 | 27.07 | 1.88 |

33 | Walnut shell (husk) Juglans regia L. | 21.08 | 75.86 | 22.49 | 1.65 |

34 | Copaíba (woody) Copaifera langsdorffii | 19.90 | 90.87 | 9.05 | 0.08 |

35 | Cumaru (woody) Dipteryx odorata | 20.13 | 86.65 | 13.29 | 0.07 |

36 | Falso Pau-Brasil (woody) Biancaea sappan | 22.00 | 78.39 | 21.42 | 0.19 |

37 | Fibra de coco (husk) Cocos nucifera | 18.65 | 70.60 | 24.67 | 4.73 |

38 | Garapa (woody) Apuleia leiocarpa | 18.67 | 78.51 | 18.33 | 3.17 |

39 | Louro-Faia (woody) Roupala montana | 19.71 | 82.04 | 17.75 | 0.21 |

40 | Maçaranduba (woody) Manilkara bidentata | 20.10 | 82.43 | 17.36 | 0.20 |

41 | Mandioqueira (woody) Manihot esculenta | 19.69 | 83.23 | 16.04 | 0.73 |

42 | Melancieiro (woody) Alexa grandiflora | 19.96 | 93.87 | 5.36 | 0.77 |

43 | Mogno (woody) Swietenia macrophylla | 19.83 | 78.43 | 19.72 | 1.84 |

44 | Pau-marfim (woody) Balfourodendron riedelianum | 19.29 | 84.07 | 15.25 | 0.69 |

45 | Pequiá (woody) Caryocar brasiliense | 19.87 | 82.63 | 15.60 | 1.77 |

46 | Pracuuba (woody) Dimorphandra paraensis Ducke | 20.48 | 80.92 | 18.17 | 0.91 |

47 | Quaruba (woody) Vochysia maxima | 18.91 | 81.96 | 17.06 | 0.97 |

48 | Coconut shell (husk) Cocus nucifera | 20.54 | 79.74 | 19.30 | 0.95 |

49 | Resíduo de Favadanta (husk) Dimorphandra mollis Benth | 19.98 | 76.86 | 19.08 | 4.06 |

50 | Roxinho (woody) Peltogyne angustiflora | 19.83 | 80.08 | 19.59 | 0.33 |

51 | Sucupira (woody) Pterodon emarginatus | 20.18 | 82.76 | 16.70 | 1.69 |

52 | Acapu (woody) Vouacapoua americana | 20.69 | 78.72 | 20.91 | 0.37 |

53 | Casca de palmito (husk) Bactris gasipaes | 16.17 | 76.14 | 18.00 | 5.86 |

54 | Palm fruit fibre (husk) Elaeis guineensis | 16.54 | 76.21 | 19.59 | 4.20 |

55 | Pupunha bark (husk) Bactris gasipaes | 16.64 | 76.24 | 17.63 | 6.13 |

56 | Empty palm fruit bunch (EFB) Elaeis guineensis | 18.27 | 84.32 | 15.68 | 2.32 |

Sample mean | 19.65 | 80.06 | 17.77 | 2.17 | |

Standard deviation | 1.32 | 5.19 | 3.87 | 3.00 |

^{1}High heating value;

^{2}volatiles;

^{3}fixed carbon;

^{4}ashes. * Biomass identification; ª proximate analyses were on a wt. % dry biomass basis.

HHV ^{1} | V ^{2} | FC ^{3} | A ^{4} | V/FC | FC/V | V/A | FC/A | A/V | A/FC | FC + V | FC + A | V + A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

HHV ^{1} | 1.000 | ||||||||||||

V ^{2} | 0.132 | 1.000 | |||||||||||

FC ^{3} | 0.218 | −0.795 | 1.000 | ||||||||||

A ^{4} | −0.520 | 0.073 | −0.660 | 1.000 | |||||||||

V/FC | 0.004 | −0.859 | 0.755 | −0.180 | 1.000 | ||||||||

FC/V | 0.063 | 0.985 | −0.870 | 0.215 | −0.823 | 1.000 | |||||||

V/A | 0.072 | −0.342 | 0.374 | −0.196 | 0.308 | −0.342 | 1.000 | ||||||

FC/A | 0.128 | −0.283 | 0.365 | −0.256 | 0.256 | −0.297 | 0.974 | 1.000 | |||||

A/V | −0.507 | 0.079 | −0.664 | 0.999 | −0.182 | 0.222 | −0.186 | −0.243 | 1.000 | ||||

A/FC | −0.520 | −0.050 | −0.560 | 0.983 | −0.071 | 0.089 | −0.180 | −0.238 | 0.982 | 1.000 | |||

FC + V | 0.523 | −0.064 | 0.656 | −0.995 | 0.174 | −0.206 | 0.190 | 0.248 | −0.994 | −0.983 | 1.000 | ||

FC + A | −0.206 | 0.808 | −0.998 | 0.647 | −0.763 | 0.880 | −0.377 | −0.367 | 0.650 | 0.543 | −0.637 | 1.000 | |

V + A | −0.113 | −0.996 | 0.814 | −0.102 | 0.861 | −0.986 | 0.344 | 0.285 | −0.108 | 0.019 | 0.100 | −0.822 | 1.000 |

^{1}High heating value;

^{2}volatiles;

^{3}fixed carbon;

^{4}ash.

ID * | Equation | $\overline{\mathit{R}2}$ | F. | p-Value | MAPE |
---|---|---|---|---|---|

AI-1 | HHV = 0.196 × V + 0.221 × FC | 0.94 | 0.00 | 0.02 | 4.19% |

AI-2 | HHV = 0.204 × (V + FC) − 0.128 A | 0.95 | 0.00 | 0.31 | 4.35% |

HHV | C | H | N | S | O | |
---|---|---|---|---|---|---|

HHV | 1.000 | |||||

C | 0.899 | 1.000 | ||||

H | 0.502 | 0.447 | 1.000 | |||

N | −0.612 | −0.736 | −0.122 | 1.000 | ||

S | 0.499 | 0.481 | 0.345 | −0.544 | 1.000 | |

O | −0.808 | −0.848 | −0.573 | 0.477 | −0.366 | 1.000 |

ID * | Equation ^{a} | $\overline{\mathit{R}2}$ | F. | p-Value | MAPE |
---|---|---|---|---|---|

AE-1 | HHV = 2.957 + 0.335 × C + 1.064 × H | 0.49 | 0.01 | 0.26 | 2.98% |

AE-2 | HHV = 2.765 + 0.351 × C | 0.57 | 0.00 | 0.00 | 2.84% |

^{a}C, N, O—wt. %, dry basis. * ID: equation identification.

ID | This Work ^{1} | MAE | MAPE | SRME |
---|---|---|---|---|

AI-1 | HHV = 0.196 × V + 0.221 × FC | 0.70 | 3.79% | 1.04 |

AI-2 | HHV = 0.204 × (V + FC) − 0.128 A | 0.75 | 4.04% | 1.04 |

^{1}C, H—wt. %, dry basis.

ID | This Work ^{1} | MAE | MAPE | SRME |
---|---|---|---|---|

AE-1 | HHV = 2.957 + 0.335 × C + 1.064 × H | 0.42 | 2.85% | 0.64 |

AE-2 | HHV = 2.765 + 0.351 × C | 0.20 | 2.20% | 0.45 |

^{1}C, H—wt. %, dry basis.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Moreira, J.; Carneiro, A.; Oliveira, D.; Santos, F.; Guerra, D.; Nogueira, M.; Rocha, H.; Charvet, F.; Tarelho, L.
Thermochemical Properties for Valorization of Amazonian Biomass as Fuel. *Energies* **2022**, *15*, 7343.
https://doi.org/10.3390/en15197343

**AMA Style**

Moreira J, Carneiro A, Oliveira D, Santos F, Guerra D, Nogueira M, Rocha H, Charvet F, Tarelho L.
Thermochemical Properties for Valorization of Amazonian Biomass as Fuel. *Energies*. 2022; 15(19):7343.
https://doi.org/10.3390/en15197343

**Chicago/Turabian Style**

Moreira, João, Alan Carneiro, Diego Oliveira, Fernando Santos, Danielle Guerra, Manoel Nogueira, Hendrick Rocha, Félix Charvet, and Luís Tarelho.
2022. "Thermochemical Properties for Valorization of Amazonian Biomass as Fuel" *Energies* 15, no. 19: 7343.
https://doi.org/10.3390/en15197343