Power Management and Power Quality System Applied in a Single-Phase Nanogrid
Abstract
:1. Introduction
2. Description of Nanogrid with Active Energy Conditioning
3. Nanogrid Model
3.1. Photovoltaic System Model
3.2. Boost Converter Control Using the MPPT-P &O Algorithm
3.3. Battery and Supercapacitor Control Structure
3.4. Pll System
3.5. Synchronous Reference Frame Method SRF
3.6. Nanoinverter Control Connected Mode and Islanded Mode
4. Nanogrid Management System
5. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Junior, O.; Bretas, A.; Leborgne, R. Methodology for calculation and management for indicators of power quality energy. IEEE Lat. Am. Trans. 2015, 13, 2217–2224. [Google Scholar] [CrossRef]
- Crepaldi, J.; Amoroso, M.; Ando, O. Analysis of the topologies of power filters applied in distributed generation units—Review. IEEE Lat. Am. Trans. 2018, 16, 1892–1897. [Google Scholar] [CrossRef]
- Bastos, R. Sistema de Gerenciamento Para a Integração em CC de Fontes Alternativas de Energia e Armazenadores Híbridos Conectados a Rede de Distribuição via Conversores Eletrônicos; Universidade de São Paulo: São Paulo, Brazil.
- Chattopadhyay, S.; Mitra, M.; Sengupta, S. Electric power quality. Electr. Power Qual. 2011, 5–12. [Google Scholar] [CrossRef]
- Wang, F.; Duarte, J.; Hendrix, M.; Ribeiro, P. Modeling and analysis of grid harmonic distortion impact of aggregated DG inverters. IEEE Trans. Power Electron. 2010, 26, 786–797. [Google Scholar] [CrossRef]
- IEEE STD519–1992; IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. IEEE: New York, NY, USA, 1993.
- Prodist, A. Agência Nacional de Energia Elétrica-Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional, Módulo 8—Qualidade da Energia Elétrica. 2012. Available online: https://www.gov.br/aneel/pt-br/centrais-de-conteudos/procedimentos-regulatorios/prodist (accessed on 13 August 2013).
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y. Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electron. 2014, 30, 7072–7089. [Google Scholar] [CrossRef]
- Samper, M.; Flores, D.; Vargas, A. Investment valuation of energy storage systems in distribution networks considering distributed solar generation. IEEE Lat. Am. Trans. 2016, 14, 1774–1779. [Google Scholar] [CrossRef]
- Daza, E.; Sperandio, M. The insertion of energy storage systems in power systems: A regulatory and economic analysis. IEEE Lat. Am. Trans. 2019, 17, 843–850. [Google Scholar] [CrossRef]
- Grisales, L.; Montoya, O.; Grajales, A.; Hincapie, R.; Granada, M. Optimal planning and operation of distribution systems considering distributed energy resources and automatic reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134. [Google Scholar] [CrossRef]
- Montoya, O.; Grajales, A.; Garces, A.; Castro, C. Distribution systems operation considering energy storage devices and distributed generation. IEEE Lat. Am. Trans. 2017, 15, 890–900. [Google Scholar] [CrossRef]
- Serrano-Canalejo, C.; Sarrias-Mena, R.; Garcia-Trivino, P.; Fernandez-Ramirez, L. Energy management system design and economic feasibility evaluation for a hybrid wind power/pumped hydroelectric power plant. IEEE Lat. Am. Trans. 2019, 17, 1686–1693. [Google Scholar] [CrossRef]
- Wiesner, A.; Diez, R.; Perilla, G. Energy Storage System from DC Bus with Port for Solar Module. IEEE Lat. Am. Trans. 2015, 13, 1376–1382. [Google Scholar] [CrossRef]
- Xu, M.; Wu, L.; Liu, H.; Wang, X. Multi-objective optimal scheduling strategy for wind power, PV and pumped storage plant in VSC-HVDC grid. J. Eng. 2019, 2019, 3017–3021. [Google Scholar] [CrossRef]
- Khalid, M.; AlMuhaini, M.; Aguilera, R.; Savkin, A. Method for planning a wind–solar–battery hybrid power plant with optimal generation-demand matching. IET Renew. Power Gener. 2018, 12, 1800–1806. [Google Scholar] [CrossRef]
- Pradhan, S.; Singh, B.; Panigrahi, B.; Murshid, S. A composite sliding mode controller for wind power extraction in remotely located solar PV–wind hybrid system. IEEE Trans. Ind. Electron. 2018, 66, 5321–5331. [Google Scholar] [CrossRef]
- Kumar, P.; Chandrasena, R.; Ramu, V.; Srinivas, G.; Babu, K. Energy management system for small scale hybrid wind solar battery based microgrid. IEEE Access 2020, 8, 8336–8345. [Google Scholar] [CrossRef]
- Pilehvar, M.; Shadmand, M.; Mirafzal, B. Analysis of smart loads in nanogrids. IEEE Access 2018, 7, 548–562. [Google Scholar] [CrossRef]
- Bagewadi, M.; Dambhare, S. A Buck-Boost topology based hybrid converter for standalone nanogrid applications. In Proceedings of the 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 502–506. [Google Scholar]
- Jie, L.; Naayagi, R. Nanogrid for energy aware buildings. In Proceedings of the 2019 IEEE PES GTD Grand International Conference And Exposition Asia (GTD Asia), Bangkok, Thailand, 20–23 March 2019; pp. 92–96. [Google Scholar]
- Joseph, S.; Mohammed, A.; Dhanesh, P.; Ashok, S. Smart Power Management for DC Nanogrid Based Building. In Proceedings of the 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, 6–8 December 2018; pp. 142–146. [Google Scholar]
- Hinov, N.; Stanev, R.; Vacheva, G. A power electronic smart load controller for nanogrids and autonomous power systems. In Proceedings of the 2016 XXV International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 12–14 September 2016; pp. 1–4. [Google Scholar]
- Joseph, S.; Ashok, S.; Dhanesh, P. Low voltage direct current (LVDC) nanogrid for home application. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5. [Google Scholar]
- Joseph, S.; Ashok, S.; Dhanesh, P. An effective method of power management in DC nanogrid for building application. In Proceedings of the 2017 IEEE International Conference on Signal Processing, Informatics, Communication And Energy Systems (SPICES), Kollam, India, 8–10 August 2017; pp. 1–5. [Google Scholar]
- Joseph, S.; Chandrasekar, V.; Dhanesh, P.; Mohammed, A.; Ashok, S. Battery Management System for DC Nanogrid. In Proceedings of the 2018 20th National Power Systems Conference (NPSC), Tiruchirappalli, India, 14–16 December 2018; pp. 1–5. [Google Scholar]
- Malkawi, A.; Lopes, L. Control of the power electronics interface of a PV source in a smart residential DC nanogrid. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016; pp. 1–4. [Google Scholar]
- Schonardie, M.; Coelho, R.; Martins, D. Active and reactive power control in a three-phase grid-connected Pv power system using Dq0 transformation. EletrôNica PotêNcia 2013, 18, 1180–1187. [Google Scholar] [CrossRef]
- Brandão, D.; Marafão, F.; Farret, F.; Simões, M. Proposta de Metodologia para o Gerenciamento Automático de Sistemas Fotovoltaicos de Geração Distribuída. EletrôNica PotêNcia 2013, 18, 1257–1265. [Google Scholar]
- Brito, M.; Sampaio, L.; Melo, G.; Canesin, C. Contribuição ao estudo dos principais algoritmos de extração da máxima potência dos painéis fotovoltaicos. EletrôNica PotêNcia 2012, 17, 592–600. [Google Scholar]
- Coelho, R.; Dos Santos, W.; Martins, D. Influence of power converters on PV maximum power point tracking efficiency. In Proceedings of the 2012 10th IEEE/IAS International Conference on Industry Applications, Fortaleza, CE, Brazil, 5–7 November 2012; pp. 1–8. [Google Scholar]
- Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 2005, 20, 963–973. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Huang, J. A review of maximum power point tracking techniques for use in partially shaded conditions. Renew. Sustain. Energy Rev. 2015, 41, 436–453. [Google Scholar] [CrossRef]
- Wu, T.; Nien, H.; Shen, C.; Chen, T. A single-phase inverter system for PV power injection and active power filtering with nonlinear inductor consideration. IEEE Trans. Ind. Appl. 2005, 41, 1075–1083. [Google Scholar] [CrossRef]
- Silva, S.; Sampaio, L.; Oliveira, F.; Durand, F. Sistema fotovoltaico com condicionamento ativo de energia usando mppt baseado em PSO e malha feed-forward de controle de tensão do barramento CC. EletrôNica PotêNcia 2016, 21, 105–116. [Google Scholar] [CrossRef]
- Brandão, D.; Marafão, F.; Gonçalves, F.; Villalva, M.; Gazoli, J. Estratégia de controle multifuncional para sistemas fotovoltaicos de geração de energia elétrica. Braz. J. Power Electron. 2013, 18, 1206–1214. [Google Scholar]
- Campanhol, L.; Silva, S.; Goedtel, A. Filtro ativo de potência paralelo aplicado em sistemas trifásicos a quatro-fios. EletrôNica PotêNcia 2013, 18, 782–792. [Google Scholar]
- Angélico, B.; Campanhol, L.; Silva, S. Proportional–integral/proportional–integral-derivative tuning procedure of a single-phase shunt active power filter using Bode diagram. IET Power Electron. 2014, 7, 2647–2659. [Google Scholar] [CrossRef]
- Ferreira, S.; Pereira, R.; Gonzatti, R.; Silva, C.; Silva, L.; Lambert-Torres, G. Filtros Adaptativos Aplicados em Condicionadores de Energia. EletrôNica PotêNcia 2014, 19, 377–385. [Google Scholar]
- Poblador, M.; López, G. Power calculations in nonlinear and unbalanced conditions according to IEEE Std 1459–2010. In Proceedings of the 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 6–7 July 2013; pp. 1–7. [Google Scholar]
- Bacon, V.; Silva, S.; Campanhol, L.; Angélico, B. Stability analysis and performance evaluation of a single-phase phase-locked loop algorithm using a non-autonomous adaptive filter. IET Power Electron. 2014, 7, 2081–2092. [Google Scholar] [CrossRef]
- Gow, J.; Manning, C. Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proc.-Electr. Power Appl. 1999, 146, 193–200. [Google Scholar] [CrossRef]
- Henze, C.; Martin, H.; Parsley, D. Zero-voltage switching in high frequency power converters using pulse width modulation. In Proceedings of the APEC’88 Third Annual IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA, 1–5 February 1988; pp. 33–40. [Google Scholar]
- Salameh, Z.; Casacca, M.; Lynch, W. A mathematical model for lead-acid batteries. IEEE Trans. Energy Convers. 1992, 7, 93–98. [Google Scholar] [CrossRef]
- Chang, E.; Guerrero, J. Fuzzy variable structure control for PWM inverters. In Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Taipei, Taiwan, 27–30 June 2011; pp. 609–613. [Google Scholar]
- Yilmaz, M.; Krein, P. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2012, 28, 2151–2169. [Google Scholar] [CrossRef]
- Wang, Q.; Rivera, M.; Riveros, J.; Wheeler, P. Modulated model predictive current control for PMSM operating with three-level NPC inverter. In Proceedings of the 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC), Santos, Brazil, 1–4 December 2019; pp. 1–5. [Google Scholar]
- Pradipta, A.; Riawan, D. Others Power flow control of battery energy storage system using droop voltage regulation technique integrated with hybrid PV/Wind generation system. In Proceedings of the 2018 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 6–7 March 2018; pp. 202–207. [Google Scholar]
Parameter | Value |
---|---|
Voltage rms grid | 127 V |
Ls | 1.5 mH |
rLs | 0.01 ohm |
rLf | 0.01 ohm |
Lf | 1.5 mH |
Lpv | 3 mH |
rLpv | 0.0025 ohm |
Cpv | 1 uF |
Cdc | 400 uF |
Lbat | 2 mH |
rLbat | 0.001 ohm |
Cbat | 100 uF |
Lsc | 2 mH |
rLsc | 0.001 ohm |
Csc | 100 uF |
Pv boost Kp | 13.8 |
Pv boost Ki | 0.15 |
Buck-boot battery Kp | 0.00214 |
Buck-boot battery Ki | 0.125 |
Buck-boot SC Kp | 0.0168 |
Buck-boot SC Ki | 1 |
Nanoinverter Kp | 117 |
Nanoinverter Ki | 0.1 |
Switch frequêncy | 20 kHz |
Parameter | Value |
---|---|
Nominal capacity | 50 Ah (0.2 C, 45.21 V discharge) |
Maximum capacity | 50 Ah (1 C, 139.67 V fully charged) |
Load Voltage | 120 ± 0.05 V |
Nominal Voltage | 120 V (1 C discharge) |
load type | CC-CV |
Load current | standard charge: 21 A fast charge: 2150 mA |
Charging time | standard charge: 3 h fast charge: 2.5 h |
Maximum load current | 21 mA |
Maximum current charge | 10 mA |
Cut off Voltage | 90 V |
Supercapacitor capacitance | 1 F |
Parameter | Value |
---|---|
Pmpp | 324.89 V |
Vmpp | 38.54 V |
Impp | 8.43 |
Voc | 48 V |
Isc | 9 A |
number of Cells | 72 |
Shunt resistor | 75 ohms |
Series resistence | 0.006344 ohms |
Ideality Factor | 1.0844 |
Temperature Coefficient | 0.00585 K |
Parameter | Value |
---|---|
R load | 6.3 ohms) |
L load | 380 mH |
Power S | 1.87 kVA |
Active Power | 1.69 kW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, F.M.; Mariano, A.C.S.; Salvadori, F.; Ando Junior, O.H. Power Management and Power Quality System Applied in a Single-Phase Nanogrid. Energies 2022, 15, 7121. https://doi.org/10.3390/en15197121
de Oliveira FM, Mariano ACS, Salvadori F, Ando Junior OH. Power Management and Power Quality System Applied in a Single-Phase Nanogrid. Energies. 2022; 15(19):7121. https://doi.org/10.3390/en15197121
Chicago/Turabian Stylede Oliveira, Fernando Marcos, Augusto Cesar Santos Mariano, Fabiano Salvadori, and Oswaldo Hideo Ando Junior. 2022. "Power Management and Power Quality System Applied in a Single-Phase Nanogrid" Energies 15, no. 19: 7121. https://doi.org/10.3390/en15197121
APA Stylede Oliveira, F. M., Mariano, A. C. S., Salvadori, F., & Ando Junior, O. H. (2022). Power Management and Power Quality System Applied in a Single-Phase Nanogrid. Energies, 15(19), 7121. https://doi.org/10.3390/en15197121