Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation
Abstract
:1. Introduction
2. Research Problem Statement
3. Consideration of Stress Factors in Modeling the Battery Degradation in Microgrids
4. Survey of Battery Degradation Models
Lifetime Model | Advantages | Disadvantages | Input Parameters and Stress Factors |
---|---|---|---|
Physicochemical model | High accuracy | High complexity and duration of the computational process. Requires extensive information about chemical and physical interactions | C-rate, DoD, SOC, Power, Ah-throughput |
Event-oriented aging model | Low computational complexity | Takes into account only the lifetime stress factor, which is the depth of discharge. Low accuracy. | DOD |
Semi-empirical model | Represents a trade-off between computational complexity and accuracy | Prediction accuracy with unknown profiles depends on the quality of the generated dataset; it is limited by the operating conditions of the data under study, beyond which the prediction accuracy decreases. It is difficult to accurately predict battery life at the early stages of degradation | T, DoD, SoC, C-rate, Ah-throughput, the number of cycles, Tcalendar, DoD, SoCcalendar, storage duration, Internal resistance. |
Data-driven model | Ability to describe the complex process of battery degradation without the need for an in-depth study of the mechanism. Ability to predict battery life at the early stages of degradation. Accounts for the non-linear degradation of the capacity. High accuracy | The difficulty is in the availability of large amounts of data; model accuracy is directly dependent on the quantity and quality of data | T, DoD, SoC, C-rate, internal resistance, capacity |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saez-de-Ibarra, A.; Martinez-Laserna, E.; Stroe, D.; Swierczynski, M.; Rodríguez, P. Sizing study of second life Li-ion batteries for enhancing renewable energy grid integration. IEEE Trans. Ind. Appl. 2016, 52, 4999–5008. [Google Scholar] [CrossRef]
- Rasmussen, C.N. Energy storage for improvement of wind power characteristics. In Proceedings of the 2011 IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Zantye, M.S.; Gandhi, A.; Wang, Y.; Vudata, S.P.; Bhattacharyya, D.; Hasan, M.F. Optimal design and integration of decentralized electrochemical energy storage with renewables and fossil plants. Energy Environ. Sci. 2022. [Google Scholar] [CrossRef]
- Pinson, P.; Papaefthymiou, G.; Klockl, B.; Verboomen, J. Dynamic sizing of energy storage for hedging wind power forecast uncertainty. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–8. [Google Scholar] [CrossRef]
- Lombardi, P.; Styczynski, Z.; Sokolnikova, T.; Suslov, K. Use of energy storage in Isolated Micro Grids. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014. [Google Scholar] [CrossRef]
- Perez, A.; Moreno, R.; Moreira, R.; Orchard, M.; Strbac, G. Effect of battery degradation on multi-service portfolios of energy storage. IEEE Trans. Sustain. Energy 2016, 7, 1718–1729. [Google Scholar] [CrossRef]
- Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. A Holistic Aging Model for Li(NiMnCo)O2 Based 18650 Lithium-Ion Batteries. J. Power Sources 2014, 257, 325–334. [Google Scholar] [CrossRef]
- Shang, Y.; Wu, W.; Guo, J.; Ma, Z.; Sheng, W.; Lv, Z. Chenran Fu Stochastic dispatch of energy storage in microgrids: An augmented reinforcement learning approach. Appl. Energy 2020, 261, 114423. [Google Scholar] [CrossRef]
- Korjani, S.; Mureddu, M.; Facchini, A.; Damiano, A. Aging cost optimization for planning and management of energy storage systems. Energies 2017, 10, 1916. [Google Scholar] [CrossRef]
- Suslov, K.; Shushpanov, I.; Buryanina, N.; Ilyushin, P. Flexible power distribution networks: New opportunities and applications. In Proceedings of the 9th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Prague, Czech Republic, 2–4 May 2020; pp. 57–64. [Google Scholar] [CrossRef]
- Gu, B.; Mao, C.; Liu, B.; Wang, D.; Fan, H.; Zhu, J.; Sang, Z. Optimal Charge/Discharge Scheduling for Batteries in Energy Router-based Microgrids of Prosumers via Peer-to-Peer Trading. IEEE Trans. Sustain. Energy 2022, 13, 1315–1328. [Google Scholar] [CrossRef]
- Tobajas, J.; Garcia-Torres, F.; Roncero-Sánchez, P.; Vázquez, J.; Bellatreche, L.; Nieto, E. Resilience-oriented schedule of microgrids with hybrid energy storage system using model predictive control. Appl. Energy 2022, 306, 118092. [Google Scholar] [CrossRef]
- Gupta, S.; Maulik, A.; Das, D.; Singh, A. Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers. Renew. Sustain. Energy Rev. 2021, 155, 111861. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Sukhanov, O.A. The Structure of Emergency-Management Systems of Distribution Networks in Large Cities. Russ. Electr. Eng. 2014, 85, 133–137. [Google Scholar] [CrossRef]
- Sufyan, M.; Abd, R.N.; Tan, C.; Muhammad, M.; Sheikh Raihan, S.R. Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. PLoS ONE 2019, 14, e0211642. [Google Scholar] [CrossRef]
- Suslov, K.V. A microgrid concept for isolated territories of Russia. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, H.; Hu, Y.; Li, C. A Grid-Connected Microgrid Model and Optimal Scheduling Strategy Based on Hybrid Energy Storage System and Demand-Side Response. Energies 2022, 15, 1060. [Google Scholar] [CrossRef]
- Andrenacci, N.; Vellucci, F.; Sglavo, V. The Battery Life Estimation of a Battery under Different Stress Conditions. Batteries 2021, 7, 88. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Aichhorn, A.; Zheng, J.; Greenleaf, M. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving. IEEE Trans. Smart Grid 2013, 5, 982–991. [Google Scholar] [CrossRef]
- Narayan, N.; Papakosta, T.; Vega-Garita, V.; Qin, Z.; Popovic-Gerber, J.; Bauer, P.; Zeman, M. Estimating battery lifetimes in Solar Home System design using a practical modelling methodology. Appl. Energy 2018, 228, 1629–1639. [Google Scholar] [CrossRef]
- Shin, H.; Hur, J. Optimal energy storage sizing with battery augmentation for renewable-plus-storage power plants. IEEE Access 2020, 8, 187730–187743. [Google Scholar] [CrossRef]
- Dulout, J.; Jammes, B.; Alonso, C.; Anvari-Moghaddam, A.; Luna, A.; Guerrero, J.M. Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems. In Proceedings of the 2017 IEEE Second International Conference on DC Microgrids (ICDCM), Nuremburg, Germany, 27–29 June 2017; pp. 582–587. [Google Scholar] [CrossRef]
- Shushpanov, I.; Suslov, K.; Ilyushin, P.; Sidorov, D. Towards the flexible distribution networks design using the reliability performance metric. Energies 2021, 14, 6193. [Google Scholar] [CrossRef]
- Ilyushin, P.V. Emergency and post-emergency control in the formation of micro-grids. E3S Web Conf. 2017, 25, 02002. [Google Scholar] [CrossRef]
- Carpinelli, G.; Mottola, F.; Proto, D. Addressing technology uncertainties in battery energy storage sizing procedures. Int. J. Emerg. Electr. Power Syst. 2017, 18, 2. [Google Scholar] [CrossRef]
- Huo, D.; Santos, M.; Sarantakos, I.; Resch, M.; Wade, N.; Greenwood, D. A reliability-aware chance-constrained battery sizing method for island microgrid. Energy 2022, 251, 123978. [Google Scholar] [CrossRef]
- Lan, H.; Wen, S.; Fu, Q.; Yu, D.C.; Zhang, L. Modeling analysis and improvement of power loss in microgrid. Math. Probl. Eng. 2015, 2015, 493560. [Google Scholar] [CrossRef]
- Soltani, N.Y.; Nasiri, A. Chance-constrained optimization of energy storage capacity for microgrids. IEEE Trans. Smart Grid 2020, 11, 2760–2770. [Google Scholar] [CrossRef]
- Yue, M.; Wang, X. Grid inertial response-based probabilistic determination of energy storage system capacity under high solar penetration. IEEE Trans. Sustain. Energy 2015, 6, 1039–1049. [Google Scholar] [CrossRef]
- Bahramirad, S.; Reder, W.; Khodaei, A. Reliability-constrained optimal sizing of energy storage system in a microgrid. IEEE Trans. Smart Grid 2012, 3, 2056–2062. [Google Scholar] [CrossRef]
- Knap, V.; Chaudhary, S.K.; Stroe, D.I.; Swierczynski, M.; Craciun, B.I.; Teodorescu, R. Sizing of an energy storage system for grid inertial response and primary frequency reserve. IEEE Trans. Power Syst. 2015, 31, 3447–3456. [Google Scholar] [CrossRef]
- Bhusal, N.; Gautam, M.; Benidris, M.; Louis, S.J. Optimal sizing and siting of multi-purpose utility-scale shared energy storage systems. In Proceedings of the 2020 52nd North American Power Symposium (NAPS), Tempe, AZ, USA, 11–13 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Baloyi, T.; Chowdhury, S. Sizing and Selection of Battery Energy Storage System for Time of Use Arbitrage in a Commercial Building in South Africa. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 23–27 August 2021; pp. 1–5. [Google Scholar]
- Luo, Y.; Shi, L.; Tu, G. Optimal sizing and control strategy of isolated grid with wind power and energy storage system. Energy Convers. Manag. 2014, 80, 407–415. [Google Scholar] [CrossRef]
- Astaneh, M.; Roshandel, R.; Dufo-López, R.; Bernal-Agustín, J.L. A novel framework for optimization of size and control strategy of lithium-ion battery based off-grid renewable energy systems. Energy Convers. Manag. 2018, 175, 99–111. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M.; Fadali, M.S. Stochastic performance assessment and sizing for a hybrid power system of Solar/Wind/Energy Storage. IEEE Trans. Sustain. Energy 2014, 5, 2. [Google Scholar] [CrossRef]
- Awad, A.S.; El-Fouly, T.H.; Salama, M.M. Optimal ESS allocation for benefit maximization in distribution networks. IEEE Trans. Smart Grid 2015, 8, 1668–1678. [Google Scholar] [CrossRef]
- Zhang, Y.; Lundblad, A.; Campana, P.E.; Benavente, F.; Yan, J. Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden. Energy Convers. Manag. 2017, 133, 249–263. [Google Scholar] [CrossRef]
- Alsaidan, I.; Khodaei, A.; Gao, W. A comprehensive battery energy storage optimal sizing model for microgrid applications. IEEE Trans. Power Syst. 2017, 33, 3968–3980. [Google Scholar] [CrossRef]
- Zhang, Y.J.A.; Zhao, C.; Tang, W.; Low, S.H. Profit-maximizing planning and control of battery energy storage systems for primary frequency control. IEEE Trans. Smart Grid 2018, 9, 712–723. [Google Scholar] [CrossRef]
- Fioriti, D.; Pellegrino, L.; Lutzemberger, G.; Micolano, E.; Poli, D. Optimal sizing of residential battery systems with multi-year dynamics and a novel rainflow-based model of storage degradation: An extensive Italian case study. Electr. Power Syst. Res. 2022, 203, 107675. [Google Scholar] [CrossRef]
- Amini, M.; Khorsandi, A.; Vahidi, B.; Hosseinian, S.H.; Malakmahmoudi, A. Optimal sizing of battery energy storage in a microgrid considering capacity degradation and replacement year. Electr. Power Syst. Res. 2021, 195, 107170. [Google Scholar] [CrossRef]
- Tahir, H.; Park, D.H.; Park, S.S.; Kim, R.Y. Optimal ESS size calculation for ramp rate control of grid-connected microgrid based on the selection of accurate representative days. Int. J. Electr. Power Energy Syst. 2022, 139, 108000. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V. Requirements for power stations islanding automation an influence of power grid parameters and loads. In Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 15–18 May 2018. [Google Scholar] [CrossRef]
- Eroshenko, S.A.; Ilyushin, P.V. Features of implementing multi-parameter islanding protection in power districts with distrib-uted generation units. In Proceedings of the 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 November 2018. [Google Scholar] [CrossRef]
- Ecker, M.; Nieto, N.; Käbitz, S.; Schmalstieg, J.; Blanke, H.; Warnecke, A.; Sauer, D.U. Calendar and cycle life study of Li (NiMnCo) O2-based 18650 lithium-ion batteries. J. Power Sources 2014, 248, 839–851. [Google Scholar] [CrossRef]
- Uddin, K.; Dubarry, M.; Glick, M.B. The viability of vehicle-to-grid operations from a battery technology and policy perspective. Energy Policy 2018, 113, 342–347. [Google Scholar] [CrossRef]
- Faessler, B. Stationary, second use battery energy storage systems and their applications: A research review. Energies 2021, 14, 2335. [Google Scholar] [CrossRef]
- Yang, Y.; Lian, C.; Ma, C.; Zhang, Y. Research on energy storage optimization for large-scale PV power stations under given long-distance delivery mode. Energies 2019, 13, 27. [Google Scholar] [CrossRef]
- Gonçalo, C.; Brouhard, T.; DeForest, N.; Wang, D.; Heleno, M.; Kotzur, L. Battery aging in multi-energy microgrid design using mixed integer linear programming. Appl. Energy 2018, 231, 1059–1069. [Google Scholar] [CrossRef]
- Lee, J.O.; Kim, Y.S.; Kim, T.H.; Moon, S.I. Novel droop control of battery energy storage systems based on battery degradation cost in islanded DC microgrids. IEEE Access 2020, 8, 119337–119345. [Google Scholar] [CrossRef]
- Ju, C.; Wang, P.; Goel, L.; Xu, Y. A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs. IEEE Trans. Smart Grid 2017, 9, 6047–6057. [Google Scholar] [CrossRef]
- Obukhov, S.G.; Plotnikov, I.A.; Masolov, V.G. A Study of Battery Storage Operating Life in Isolated Power Systems with Renewable Energy Sources. Ipolytech J. 2021, 25, 463–477. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, J.; Wang, X.; Chen, L.; Cao, G.; Wang, J.; He, X. Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2022, 2, 125–137. [Google Scholar] [CrossRef]
- Olmos, J.; Gandiaga, I.; Saez-de-Ibarra, A.; Larrea, X.; Nieva, T.; Aizpuru, I. Modelling the cycling degradation of Li-ion batteries: Chemistry influenced stress factors. J. Energy Storage 2021, 40, 102765. [Google Scholar] [CrossRef]
- Alipour, M.; Ziebert, C.; Conte, F.V.; Kizilel, R. A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells. Batteries 2020, 6, 35. [Google Scholar] [CrossRef]
- Stroe, D.I.; Świerczyński, M.; Stan, A.I.; Teodorescu, R.; Andreasen, S.J. Accelerated lifetime testing methodology for lifetime estimation of lithium-ion batteries used in augmented wind power plants. IEEE Trans. Ind. Appl. 2014, 50, 4006–4017. [Google Scholar] [CrossRef]
- Wang, J.; Purewal, J.; Liu, P.; Hicks-Garner, J.; Soukazian, S.; Sherman, E.; Sorenson, A.; Vu, L.; Tataria, H.; Verbrugge, M.W. Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide+ spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 2014, 269, 937–948. [Google Scholar] [CrossRef]
- Saxena, S.; Roman, D.; Robu, V.; Flynn, D.; Pecht, M. Battery stress factor ranking for accelerated degradation test planning using machine learning. Energies 2021, 14, 723. [Google Scholar] [CrossRef]
- Dubarry, M.; Qin, N.; Brooker, P. Calendar aging of commercial Li-ion cells of different chemistries—A review. Curr. Opin. Electrochem. 2018, 9, 106–113. [Google Scholar] [CrossRef]
- He, W.; Pecht, M.; Flynn, D.; Dinmohammadi, F. A physics-based electrochemical model for lithium-ion battery state-of-charge estimation solved by an optimised projection-based method and moving-window filtering. Energies 2018, 11, 2120. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Trans. Smart Grid 2016, 9, 1131–1140. [Google Scholar] [CrossRef]
- Sauer, D.U.; Wenzl, H. Comparison of different approaches for lifetime prediction of electrochemical systems—Using lead-acid batteries as example. J. Power Sources 2008, 176, 534–546. [Google Scholar] [CrossRef]
- Diaz, V.S.; Cantane, D.A.; Santos, A.Q.O.; Ando Junior, O.H. Comparative analysis of degradation assessment of battery energy storage systems in PV smoothing application. Energies 2021, 14, 3600. [Google Scholar] [CrossRef]
- Vermeer, W.; Chandra Mouli, G.R.; Bauer, P. Real-time building smart charging system based on PV forecast and Li-Ion battery degradation. Energies 2020, 13, 3415. [Google Scholar] [CrossRef]
- Lee, M.; Park, J.; Na, S.I.; Choi, H.S.; Bu, B.S.; Kim, J. An analysis of battery degradation in the integrated energy storage system with solar photovoltaic generation. Electronics 2020, 9, 701. [Google Scholar] [CrossRef]
- Sandelic, M.; Stroe, D.I.; Iov, F. Battery storage-based frequency containment reserves in large wind penetrated scenarios: A practical approach to sizing. Energies 2018, 11, 3065. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, T.; Meng, H.; Wei, W.; Cai, S.; Guo, L. Energy storage capacity allocation for distribution grid applications considering the influence of ambient temperature. IET Energy Syst. Integr. 2022, 4, 143–156. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Z.; Botterud, A.; Zhang, K.; Ding, Q. Stochastic coordinated operation of wind and battery energy storage system considering battery degradation. J. Mod. Power Syst. Clean Energy 2016, 4, 581–592. [Google Scholar] [CrossRef]
- Gräf, D.; Marschewski, J.; Ibing, L.; Huckebrink, D.; Fiebrandt, M.; Hanau, G.; Bertsch, V. What drives capacity degradation in utility-scale battery energy storage systems? The impact of operating strategy and temperature in different grid applications. J. Energy Storage 2022, 47, 103533. [Google Scholar] [CrossRef]
- Yan, G.; Liu, D.; Li, J.; Mu, G. A cost accounting method of the Li-ion battery energy storage system for frequency regulation considering the effect of life degradation. Prot. Control. Mod. Power Syst. 2018, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Scarabaggio, P.; Carli, R.; Cavone, G.; Dotoli, M. Smart control strategies for primary frequency regulation through electric vehicles: A battery degradation perspective. Energies 2020, 13, 4586. [Google Scholar] [CrossRef]
- Haidl, P.; Buchroithner, A.; Schweighofer, B.; Bader, M.; Wegleiter, H. Lifetime analysis of energy storage systems for sustainable transportation. Sustainability 2019, 11, 6731. [Google Scholar] [CrossRef]
- Baure, G.; Dubarry, M. Durability and reliability of EV batteries under electric utility grid operations: Impact of frequency regulation usage on cell degradation. Energies 2020, 13, 2494. [Google Scholar] [CrossRef]
- Świerczyński, M.; Stroe, D.I.; Lærke, R.; Stan, A.I.; Kjær, P.C.; Teodorescu, R.; Kær, S.K. Field experience from Li-ion BESS delivering primary frequency regulation in the Danish energy market. Ecs Trans. 2014, 61, 1. [Google Scholar] [CrossRef]
- Stroe, D.I.; Knap, V.; Swierczynski, M.; Stroe, A.I.; Teodorescu, R. Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective. IEEE Trans. Ind. Appl. 2016, 53, 430–438. [Google Scholar] [CrossRef]
- Peng, C.; Zou, J.; Lian, L.; Li, L. An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits. Appl. Energy 2017, 190, 591–599. [Google Scholar] [CrossRef]
- Dik, A.; Omer, S.; Boukhanouf, R. Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration. Energies 2022, 15, 803. [Google Scholar] [CrossRef]
- Lambert, T.; Gilman, P.; Lilienthal, P. Micropower system modeling with HOMER. Integr. Altern. Sources Energy 2006, 1, 379–385. [Google Scholar] [CrossRef]
- Hosen, M.S.; Jaguemont, J.; Van Mierlo, J.; Berecibar, M. Battery lifetime prediction and performance assessment of different modeling approaches. Iscience 2021, 24, 102060. [Google Scholar] [CrossRef]
- Jin, X.; Vora, A.P.; Hoshing, V.; Saha, T.; Shaver, G.M.; Wasynczuk, O.; Varigonda, S. Comparison of Li-ion battery degradation models for system design and control algorithm development. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 74–79. [Google Scholar] [CrossRef]
- Petit, M.; Prada, E.; Sauvant-Moynot, V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime. Appl. Energy 2016, 172, 398–407. [Google Scholar] [CrossRef]
- Li, J.; Landers, R.G.; Park, J. A comprehensive single-particle-degradation model for battery state-of-health prediction. J. Power Sources 2020, 456, 227950. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Dong, G.; Wei, J. A physics-based aging model for lithium-ion battery with coupled chemical/mechanical degradation mechanisms. Electrochim. Acta 2021, 395, 139133. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Q.; Huang, H.; Yang, B.; Dong, H.; Zhang, J. An electrochemical–thermal model of lithium-ion battery and state of health estimation. J. Energy Storage 2022, 47, 103528. [Google Scholar] [CrossRef]
- Gailani, A.; Al-Greer, M.; Short, M.; Crosbie, T. Degradation cost analysis of li-ion batteries in the capacity market with different degradation models. Electronics 2020, 9, 90. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Liu, B.; Wang, Y.; Ding, Y.; Pan, H. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation. Energy 2021, 215, 119078. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, X.; Zhong, L.; Yan, C.; Srinivasan, M.; Seh, Z.W.; Liu, C.; Pan, H.; Li, S.; Wen, Y.; et al. Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 2022, 34, 2101474. [Google Scholar] [CrossRef]
- Barzacchi, L.; Lagnoni, M.; Di Rienzo, R.; Bertei, A.; Baronti, F. Enabling early detection of lithium-ion battery degradation by linking electrochemical properties to equivalent circuit model parameters. J. Energy Storage 2022, 50, 104213. [Google Scholar] [CrossRef]
- Dişçi, F.N.; El-Kahlout, Y.; Balıkçı, A. Li-ion battery modeling and SOC estimation using extended Kalman filter. In Proceedings of the 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2017; pp. 166–169. [Google Scholar]
- Diab, Y.; Auger, F.; Schaeffer, E.; Wahbeh, M. Estimating lithium-ion battery state of charge and parameters using a continuous-discrete extended kalman filter. Energies 2017, 10, 1075. [Google Scholar] [CrossRef] [Green Version]
- Khandorin, M.M.; Bukreev, V.G. Method to estimate the available capacity of a lithium-ion battery when the battery temperature changes. TUSUR Rep. 2017, 20, 2. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, Z.; Lao, Z.; Wang, W.; Sun, W.; Lai, Y.; Wang, M. Strong tracking of a h-infinity filter in lithium-ion battery state of charge estimation. Energies 2018, 11, 1481. [Google Scholar] [CrossRef]
- Nikolian, A.; Firouz, Y.; Gopalakrishnan, R.; Timmermans, J.M.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Lithium ion batteries—Development of advanced electrical equivalent circuit models for nickel manganese cobalt lithium-ion. Energies 2016, 9, 360. [Google Scholar] [CrossRef]
- Patel, D.D.; Sharma, S.; Salameh, Z.M. Electric vehicle grade lithium polymer battery model using PSCAD. In Proceedings of the 2014 IEEE PES General Meeting | Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014. [Google Scholar] [CrossRef]
- El Mejdoubi, A.; Oukaour, A.; Chaoui, H.; Gualous, H.; Sabor, J.; Slamani, Y. State-of-Charge and State-of-Health Lithium-Ion Batteries’ Diagnosis According to Surface Temperature Variation. IEEE Trans. Ind. Electron. 2016, 63, 2391–2402. [Google Scholar] [CrossRef]
- Fei, Z.; Yang, F.; Tsui, K.L.; Li, L.; Zhang, Z. Early prediction of battery lifetime via a machine learning based framework. Energy 2021, 225, 120205. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wang, J.; Zhang, T. State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression. Energy 2022, 239, 121986. [Google Scholar] [CrossRef]
- Li, X.; Yuan, C.; Li, X.; Wang, Z. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression. Energy 2020, 190, 116467. [Google Scholar] [CrossRef]
- Crocioni, G.; Pau, D.; Gruosso, G. Li-Ion Batteries Releasable Capacity Estimation with Neural Networks on Intelligent IoT Microcontrollers. In Proceedings of the 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020; pp. 153–158. [Google Scholar] [CrossRef]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Fahmy, Y.; Emadi, A. A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles. Energies 2022, 15, 1185. [Google Scholar] [CrossRef]
- Lyu, Z.; Wang, G.; Tan, C. A novel Bayesian multivariate linear regression model for online state-of-health estimation of Lithium-ion battery using multiple health indicators. Microelectron. Reliab. 2022, 131, 114500. [Google Scholar] [CrossRef]
- Qu, X.; Song, Y.; Liu, D.; Cui, X.; Peng, Y. Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model. Microelectron. Reliab. 2020, 114, 113857. [Google Scholar] [CrossRef]
- Singh, S.; Weeber, M.; Birke, K.P. Implementation of Battery Digital Twin: Approach, Functionalities and Benefits. Batteries 2021, 7, 78. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Guo, Z.; Wang, H.; Sun, Z.; Mei, X. Design and optimization of a novel microchannel battery thermal management system based on digital twin. Energies 2022, 15, 1421. [Google Scholar] [CrossRef]
- Wang, S.; Guo, D.; Han, X.; Lu, L.; Sun, K.; Li, W.; UweSauer, D.; Ouyang, M. Impact of battery degradation models on energy management of a grid-connected DC microgrid. Energy 2020, 207, 118228. [Google Scholar] [CrossRef]
- Zeynali, S.; Rostami, N.; Ahmadian, A.; Elkamel, A. Stochastic energy management of an electricity retailer with a novel plug-in electric vehicle-based demand response program and energy storage system: A linearized battery degradation cost model. Sustain. Cities Soc. 2021, 74, 103154. [Google Scholar] [CrossRef]
Publication | Limitations of the Power Grid | Limitations of the BESS | Ref | ||||
---|---|---|---|---|---|---|---|
Optimal Power Flow | Uncertainty | Tariff-Based Energy Prices and Discount Rate | Reliability | Degradation | Cost per Unit of Capacity, Operation, and Maintenance | ||
1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 |
Shang Y., 2020 | ✓ | ✓ | [8] | ||||
Sufyan M., 2019 | ✓ | ✓ | [15] | ||||
Yang Y., 2013 | ✓ | [19] | |||||
Narayan N., 2018 | ✓ | ✓ | ✓ | [20] | |||
Shin H., 2020 | ✓ | ✓ | [21] | ||||
Dulout J., 2017 | ✓ | ✓ | [22] | ||||
Lan H., 2015 | ✓ | ✓ | [27] | ||||
Carpinelli G., 2017 | ✓ | [25] | |||||
Huo D., 2022 | ✓ | ✓ | [26] | ||||
Soltani N, 2020 | ✓ | ✓ | ✓ | [28] | |||
Yue M., 2015 | ✓ | ✓ | [29] | ||||
Bahramirad S., 2012 | ✓ | ✓ | [30] | ||||
Knap V., 2015 | ✓ | [31] | |||||
Bhusal N., 2021 | ✓ | [32] | |||||
Baloyi T., 2021 | [33] | ||||||
Luo Y., 2014 | ✓ | ✓ | [34] | ||||
Astaneh M., 2018 | ✓ | ✓ | [35] | ||||
Arabali A., 2014 | ✓ | ✓ | [36] | ||||
Awad A., 2015 | ✓ | ✓ | ✓ | [37] | |||
Zhang Y., 2017 | ✓ | [38] | |||||
Alsaidan I., 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | [39] | |
Zhang Y., 2018 | ✓ | [40] | |||||
Fioriti D., 2022 | ✓ | ✓ | ✓ | [41] | |||
Amini M., 2021 | ✓ | ✓ | ✓ | [42] | |||
Tahir H., 2022 | ✓ | ✓ | ✓ | [43] |
Publication | Microgrid Application | Chemistry | Type of Aging | Model of Aging | Stress Factors | Ref |
---|---|---|---|---|---|---|
Shin H. (2020) | PV, WT power smoothing | LMO | Cycle and calendar | Degradation model proposed by Xu et al. [62] | DoD and SoC, C-rate, cycle count, T, total operation time | [21] |
Dulout J. (2017) | PV power smoothing | LIB | Cycle and calendar | Lifetime model based on the concept of mechanical fatigue [63] | DOD | [22] |
Olmos J. (2021) | Electric transport and power systems | LFP NMC | Cycle | Empirical cycling degradation model | DoD, C-rate, T, mSOC = 50% | [55] |
Valentin Silvera Diaz (2021) | PV power smoothing | LFP | Cycle and calendar | Semi-empirical model | DoD, C-rate, T-calendar SOC-calendar | [64] |
Vermeer W. (2020) | PV, EV, V2G | NMC | Cycle and calendar | Semi-empirical model based [54] | C-rate, T, ampere-hours processed | [65] |
Lee M. et al. (2020) | PV power smoothing | LFP | Cycle | Cycle aging model | DOD | [66] |
Sandelic M. (2018) | Secondary frequency regulation in a system with WT | LFP | Cycle and calendar | Lifetime model based [7] | T, SOC, C-rate | [67] |
Wu Y. et al. (2022) | EV Charging station | LFP | Cycle | Modified Rainflow algorithm | T, DOD | [68] |
Wang Y. (2016) | WT-ESS, participation in the energy market | LIB | Cycle | A linearized battery degradation model including battery degradation percentage constraints and degradation cost | DOD | [69] |
Gräf D. (2022) | Grid frequency stabilization | NMC | Cycle | Semi-empirical model based [62] | T, C-rate | [70] |
Scarabaggio P (2020) | V2G, frequency stabilization | LFP | Cycle | Degradation experimental model based [71] | DOD | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamarova, N.; Suslov, K.; Ilyushin, P.; Shushpanov, I. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation. Energies 2022, 15, 6967. https://doi.org/10.3390/en15196967
Shamarova N, Suslov K, Ilyushin P, Shushpanov I. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation. Energies. 2022; 15(19):6967. https://doi.org/10.3390/en15196967
Chicago/Turabian StyleShamarova, Nataliia, Konstantin Suslov, Pavel Ilyushin, and Ilia Shushpanov. 2022. "Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation" Energies 15, no. 19: 6967. https://doi.org/10.3390/en15196967
APA StyleShamarova, N., Suslov, K., Ilyushin, P., & Shushpanov, I. (2022). Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation. Energies, 15(19), 6967. https://doi.org/10.3390/en15196967