Solar Heating with Flat-Plate Collectors in Residential Buildings: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Solar Heating Overview
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalogirou, S. Solar Energy Engineering, Processes and Systems, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Baddou, Y. Solar Thermal Systems for Domestic Water Heating applications in Residential Buildings. Efficiency and Economic Viability Analysis of Monitored Plants. Master’s Thesis, Euro-Mediterranean University of Fes-Morocco, Fes, Morocco, Polytechnic University of Catalonia-Barcelona-Spain, Barcelona, Spain, 2017. [Google Scholar]
- Thirugnanasambandam, M.; Iniyan, S.; Goic, R. A review of solar thermal technologies. Renew. Sustain. Energy Rev. 2019, 14, 312–322. [Google Scholar] [CrossRef]
- International Energy Agency Statistics. Data Browser. 2022. Available online: https://www.iea.org/statistics/ (accessed on 1 June 2022).
- Salamoni, I.; Rüther, R. Potencial Brasileiro da Geração Solar Fotovoltaica Conectada à Rede Elétrica: Análise de Paridade de Rede. In Proceedings of the IX Encontro Nacional e V Latino Americano de Conforto no Ambiente Construído, Ouro Preto, Brazil, 8–10 August 2007. [Google Scholar]
- Yirfa, N.N. Feasibility Study on Substituting Electric Water Heaters with Solar Water Heaters in Ghana; A Case Study of Official Residential Facility of Goldfields Ghana Limited, Tarkwa Mine. 2014. Available online: http://dspace.knust.edu.gh:8080/jspui/handle/123456789/6384 (accessed on 5 February 2022).
- Bereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M. Lessons from Applying the Systematic Literature Review Process within the Software Engineering Domain. J. Syst. Softw. 2007, 80, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Biolchini, J.; Mian, P.; Natali, A.; Conte, T.; Travassos, G. Scientific research ontology to support systematic review in software engineering. Adv. Eng. Inform. 2007, 21, 133–151. [Google Scholar] [CrossRef]
- Hepbasli, A.; Kalinci, Y. A review of heat pump water heating systems. Renew. Sustain. Energy Rev. 2009, 13, 1211–1229. [Google Scholar] [CrossRef]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Sadhishkumar, S.; Balusamy, T. Performance improvement in solar water heating systems—A review. Renew. Sustain. Energy Rev. 2014, 37, 191–198. [Google Scholar] [CrossRef]
- Willem, H.; Lin, Y.; Lekov, A. Review of energy efficiency and system performance of residential heat pump water heaters. Energy Build. 2017, 143, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Hohne, P.A.; Kusakana, K.; Numbi, B.P. A review of water heating technologies: An application to the South African context. Energy Rep. 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Fernández-González, D.; Ruiz-Bustinza, I.; González-Gasca, C.; Piñuela Noval, J.; Mochón-Castaños, J.; Sancho-Gorostiaga, J.; Verdeja, L.F. Concentrated solar energy applications in materials science and metallurgy. Sol. Energy 2018, 170, 520–540. [Google Scholar] [CrossRef]
- Lytvynenko, Y.M.; Schur, D.V. Utilization the concentrated solar energy for process of deformation of sheet metal. Renew. Energy 1999, 16, 753–756. [Google Scholar] [CrossRef]
- Meier, A.; Gremaud, N.; Steinfeld, A. Economic evaluation of the industrial solar production of lime. Energy Convers. Manag. 2005, 46, 905–926. [Google Scholar] [CrossRef]
- Charpentier, L.; Dawi, K.; Eck, J.; Pierrat, B.; Sans, J.-L.; Balat-Pichelin, M. Concentrated Solar Energy to Study High Temperature Materials for Space and Energy. J. Sol. Energy Eng. 2011, 133, 031005. [Google Scholar] [CrossRef]
- Mulrow, C.D. Systematic reviews rationale for systematic reviews. Br. Med. J. 1994, 309, 597–599. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Da Cunha Bezerra, M.C.; Gohr, C.F.; Morioka, S.N. Organizational capabilities towards corporate sustainability benefits: A systematic literature review and an integrative framework proposal. J. Clean. Prod. 2020, 247, 119114. [Google Scholar] [CrossRef]
- Comakli, O.; Kaygusuz, K.; Ayhan, T. Solar-assisted heat pump and energy storage for residential heating. Sol. Energy 1993, 51, 357–366. [Google Scholar] [CrossRef]
- Al-Homoud, A.A.; Suri, R.K.; Al-Roumi, R.; Maheshwari, G.P. Experiences with solar cooling systems in Kuwait. Renew. Energy 1996, 9, 664–669. [Google Scholar] [CrossRef]
- Ibrahim, A.; Othman, M.Y.; Ruslan, M.H.; Mat, S.; Sopian, K. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev. 2011, 15, 352–365. [Google Scholar] [CrossRef]
- Kalogirou, S.; Tripanagnostopoulos, Y.; Souliotis, M. Performance of solar systems employing collectors with colored absorber. Energy Build. 2005, 37, 824–835. [Google Scholar] [CrossRef]
- Argiriou, A.A.; Balaras, C.A.; Kontoyiannidis, S.; Michel, E. Numerical simulation and performance assessment of a low capacity solar assisted absorption heat pump coupled with a sub-floor system. Sol. Energy 2005, 79, 290–301. [Google Scholar] [CrossRef]
- Gunerhan, H.; Hepbasli, A. Exergetic modeling and performance evaluation of solar water heating systems for building applications. Energy Build. 2007, 39, 509–516. [Google Scholar] [CrossRef]
- Notton, G.; Motte, F.; Cristofari, C.; Canaletti, J.-L. Performances and numerical optimization of a novel thermal solar collector for residential building. Renew. Sustain. Energy Rev. 2014, 33, 60–73. [Google Scholar] [CrossRef]
- Chargui, R.; Sammouda, H. Effects of different collector’s area on the coupling of a thermosiphon collector and a single zone. Energy Convers. Manag. 2014, 77, 356–368. [Google Scholar] [CrossRef]
- Aydin, D.; Utlu, Z.; Kincay, O. Thermal performance analysis of a solar energy sourced latent heat storage. Renew. Sustain. Energy Rev. 2015, 50, 1213–1225. [Google Scholar] [CrossRef]
- Pang, W.; Cui, Y.; Zhang, Q.; Wilson, G.J.; Yan, H. A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions. Renew. Sustain. Energy Rev. 2020, 119, 109599. [Google Scholar] [CrossRef]
- Syed, A.; Izquierdo, M.; Rodríguez, P.; Maidment, G.; Missenden, J.; Lecuona, A.; Tozer, R. A novel experimental investigation of a solar cooling system in Madrid. Int. J. Refrig. 2005, 28, 859–871. [Google Scholar] [CrossRef]
- Sayegh, M.A. The solar contribution to air conditioning systems for residential buildings. Desalination 2007, 209, 171–176. [Google Scholar] [CrossRef]
- Balghouthi, M.; Chahbani, M.H.; Guizani, A. Feasibility of solar absorption air conditioning in Tunisia. Build. Environ. 2008, 43, 1459–1470. [Google Scholar] [CrossRef]
- Lizarte, R.; Izquierdo, M.; Marcos, J.D.; Palacios, E. An innovative solar-driven directly air-cooled LiBr–H2O absorption chiller prototype for residential use. Energy Build. 2012, 47, 1–11. [Google Scholar] [CrossRef]
- Lhendup, T.; Aye, L.; Fuller, R.J. Seasonal coolth storage system for residential buildings in Australia. J. Cent. South Univ. 2012, 19, 740–747. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Taherian, H. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors. Int. J. Green Energy 2012, 9, 766–779. [Google Scholar] [CrossRef]
- Infante Ferreira, C.; Kim, D.-S. Techno-economic review of solar cooling technologies based on location-specific data. Int. J. Refrig. 2014, 39, 23–37. [Google Scholar] [CrossRef]
- Guo, J.; Lin, S.; Bilbao, J.I.; White, S.D.; Sproul, A.B. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification. Renew. Sustain. Energy Rev. 2017, 67, 1–14. [Google Scholar] [CrossRef]
- Ammari, E.-T.; Aksas, M.; Benmachiche, A.H. Performance Study of Small Capacity Solar Autonomous Absorption Air-Conditioning System Coupled with a Low-Energy Residential Building Under Batna (Algeria) Climate. Int. J. Air-Cond. Refrig. 2018, 26, 1850006. [Google Scholar] [CrossRef]
- Figaj, R.; Szubel, M.; Przenzak, E.; Filipowicz, M. Feasibility of a small-scale hybrid dish/flat-plate solar collector system as a heat source for an absorption cooling unit. Appl. Therm. Eng. 2019, 163, 114399. [Google Scholar] [CrossRef]
- Hassan, M.M.; Beliveau, Y. Modeling of an integrated solar system. Build. Environ. 2008, 43, 804–810. [Google Scholar] [CrossRef]
- Sutthivirode, K.; Namprakai, P.; Roonprasang, N. A new version of a solar water heating system coupled with a solar water pump. Appl. Energy 2009, 86, 1423–1430. [Google Scholar] [CrossRef]
- Hugo, A.; Zmeureanu, R. Residential Solar-Based Seasonal Thermal Storage Systems in Cold Climates: Building Envelope and Thermal Storage. Energies 2012, 5, 3972–3985. [Google Scholar] [CrossRef] [Green Version]
- Hang, Y.; Qu, M.; Zhao, F. Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy Build. 2012, 45, 181–188. [Google Scholar] [CrossRef]
- Şerban, A.; Bărbuţă-Mişu, N.; Ciucescu, N.; Paraschiv, S.; Paraschiv, S. Economic and Environmental Analysis of Investing in Solar Water Heating Systems. Sustainability 2016, 8, 1286. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Pandey, A.K.; Tunio, M.A.; Selvaraj, J.; Hoque, K.E.; Rahim, N.A. Thermal and economic analysis of low-cost modified flat-plate solar water heater with parallel two-side serpentine flow. J. Therm. Anal. Calorim. 2016, 123, 793–806. [Google Scholar] [CrossRef]
- Lenz, A.M.; De Souza, S.N.M.; Nogueira, C.E.C.; Gurgacz, F.; Prior, M.; Pazuch, F.A. Analysis of absorbed energy and efficiency of a solar flat plate collector. Acta Sci. Technol. 2017, 39, 279. [Google Scholar] [CrossRef] [Green Version]
- Bamisile, O.O.; Babatunde, A.A.; Dagbasi, M.; Wole-Osho, I. Assessment of Solar Water Heating in Cyprus: Utility, Development and Policy. Int. J. Renew. Energy Res. 2017, 7, 1448–1453. [Google Scholar]
- Zhou, Z.; Liu, J.; Wang, C.; Huang, X.; Gao, F.; Zhang, S.; Yu, B. Research on the application of phase-change heat storage in centralized solar hot water system. J. Clean. Prod. 2018, 198, 1262–1275. [Google Scholar] [CrossRef]
- Vega, J.; Cuevas, C. Simulation study of a combined solar and heat pump system for heating and domestic hot water in a medium rise residential building at Concepción in Chile. Appl. Therm. Eng. 2018, 141, 565–578. [Google Scholar] [CrossRef]
- Rey, A.; Zmeureanu, R. Multi-objective optimization framework for the selection of configuration and equipment sizing of solar thermal combisystems. Energy 2018, 145, 182–194. [Google Scholar] [CrossRef]
- Rosato, A.; Ciervo, A.; Ciampi, G.; Sibilio, S. Effects of solar field design on the energy, environmental and economic performance of a solar district heating network serving Italian residential and school buildings. Renew. Energy 2019, 143, 596–610. [Google Scholar] [CrossRef]
- Huang, J.; Fan, J.; Furbo, S.; Li, L. Solar Water Heating Systems Applied to High-Rise Buildings—Lessons from Experiences in China. Energies 2019, 12, 3078. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, N.M.; Abdolzadeh, M.; Rahnama, M. Techno-economic analysis of applying linear parabolic and flat plate solar collectors for heating a building and their comparative evaluation. Environ. Prog. Sustain. Energy 2019, 38, 13121. [Google Scholar] [CrossRef]
- Chung, K.-M.; Chang, K.-C.; Chou, C.-C. Wind loads on residential and large-scale solar collector models. J. Wind Eng. Ind. Aerodyn. 2011, 99, 59–64. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. BIPVT systems for residential applications: An energy and economic analysis for European climates. Appl. Energy 2016, 184, 1411–1431. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Wang, Z.; Yang, W.; Zhao, X. Experimental investigation of the performance of the novel HP-BIPV/T system for use in residential buildings. Energy Build. 2016, 130, 295–308. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A.; Vicidomini, M. Transient analysis, exergy and thermo-economic modelling of façade integrated photovoltaic/thermal solar collectors. Renew. Energy 2019, 137, 109–126. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Chen, Q.; Zhang, X. Performance analysis of a rooftop wind solar hybrid heat pump system for buildings. Energy Build. 2013, 65, 75–83. [Google Scholar] [CrossRef]
- Chargui, R.; Awani, S. Determining of the optimal design of a closed loop solar dual source heat pump system coupled with a residential building application. Energy Convers. Manag. 2017, 147, 40–54. [Google Scholar] [CrossRef]
- Calise, F.; D’Accadia, M.D.; Figaj, R.D.; Vanoli, L. Thermoeconomic optimization of a solar-assisted heat pump based on transient simulations and computer Design of Experiments. Energy Convers. Manag. 2016, 125, 166–184. [Google Scholar] [CrossRef]
- Nord, N.; Qvistgaard, L.H.; Cao, G. Identifying key design parameters of the integrated energy system for a residential Zero Emission Building in Norway. Renew. Energy 2016, 87, 1076–1087. [Google Scholar] [CrossRef] [Green Version]
- Vall, S.; Castell, A.; Medrano, M. Energy Savings Potential of a Novel Radiative Cooling and Solar Thermal Collection Concept in Buildings for Various World Climates. Energy Technol. 2018, 6, 2200–2209. [Google Scholar] [CrossRef]
- Buonomano, A.; Calise, F.; Palombo, A. Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation. Renew. Sustain. Energy Rev. 2018, 82, 1874–1908. [Google Scholar] [CrossRef]
- Gao, G.; Li, J.; Cao, J.; Yang, H.; Pei, G.; Su, Y. The study of a seasonal solar CCHP system based on evacuated flat-plate collectors and organic Rankine cycle. Therm. Sci. 2020, 24, 915–924. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Beier, L.-J.; Tan, J.; Brown, C.; Lian, B.; Zhong, W.; Wang, Y.; Ji, C.; Dai, P.; Li, T.; et al. An integrated, solar-driven membrane distillation system for water purification and energy generation. Appl. Energy 2019, 237, 534–548. [Google Scholar] [CrossRef]
- Rabbani, D.; Hooshyar, H. Application of flat plate solar collector for thermal disinfection of wastewater effluents. Iran. J. Environ. Health Sci. Eng. 2011, 8, 117–122. [Google Scholar]
- Anastaselos, D.; Oxizidis, S.; Manoudis, A.; Papadopoulos, A.M. Environmental performance of energy systems of residential buildings: Toward sustainable communities. Sustain. Cities Soc. 2016, 20, 96–108. [Google Scholar] [CrossRef]
- Reda, F. Long term performance of different SAGSHP solutions for residential energy supply in Finland. Appl. Energy 2015, 144, 31–50. [Google Scholar] [CrossRef]
- Gaglia, A.G.; Tsikaloudaki, A.G.; Laskos, C.M.; Dialynas, E.N.; Argiriou, A.A. The impact of the energy performance regulations’ updated on the construction technology, economics and energy aspects of new residential buildings: The case of Greece. Energy Build. 2017, 155, 225–237. [Google Scholar] [CrossRef]
- Casano, G.; Fossa, M.; Piva, S. Design and experimental characterization of a CPC solar collector. Int. J. Heat Technol. 2017, 35, S179–S185. [Google Scholar] [CrossRef]
- Ghaebi, H.; Bahadori, M.N.; Saidi, M.H. Economic and Environmental Evaluations of Different Operation Alternatives of an Aquifer Thermal Energy Storage in Tehran, Iran. Sci. Iran. 2017, 24, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Kalogirou, S.A.; Agathokleous, R.; Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: Energy and economic optimization for hot water production in different climates. Renew. Energy 2019, 136, 632–644. [Google Scholar] [CrossRef]
- Ghaebi, H.; Bahadori, M.N.; Saidi, M.H. Different Operational Alternatives of Aquifer Thermal Energy Storage System for Cooling and Heating of a Residential Complex under Various Climatic Conditions of Iran. Sci. Iran. 2018, 26, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tian, Z.; Fan, J. A comprehensive analysis on development and transition of the solar thermal market in China with more than 70% market share worldwide. Energy 2019, 174, 611–624. [Google Scholar] [CrossRef]
Category | References | Amount | Quotes |
---|---|---|---|
Efficiency (collector/system) (C1) | Comakli, et al. [21]; Kalogirou, et al. [24]; Argiriou et al. [25]; Gunerhan; Hepbasli [26]; Notton et al. [27]; Chargui; Sammouda [28]; Aydin et al. [29]; Pang et al. [30]. | 08 | 255 |
Cooling/Refrigeration (C2) | Al-Homoud et al. [22]; Syed et al. [31]; Sayegh [32]; Balghouthi et al. [33]; Lizarte et al. [34]; Lhendup et al. [35]; Hosseinzadeh; Taherian, [36]; Ferreira; Kim [37]; Guo et al. [38]; Ammari et al. [39]; Figaj et al. [40]. | 11 | 415 |
Water heating (C3) | Hassan; Beliveau [41]; Sutthivirode et al. [42]; Hugo; Zmeureanu [43]; Hang et al. [44]; Şerban et al. [45]; Hossain et al. [46]; Lenz et al. [47]; Bamisile et al. [48]; Zhou, Zhihua et al. [49]; Vegas; Cuevas [50]; Rey; Zmeureanu [51]; Rosato et al. [52]; Huang et al. [53]; Hashemi et al. [54]. | 15 | 220 |
Architecture and Design (C4) | Chung et al. [55]; Ibrahim et al. [23]; Buonomano et al. [56]; Wang et al. [57]; Buonomano et al. [58]. | 05 | 303 |
Hybrid systems (C5) | Hang et al. [44]; Li et al. [59]; Chargui; Awani [60]. | 03 | 109 |
Heating and Cooling (C6) | Li et al. [59]; Calise et al. [61]; Nord et al. [62]; Vall et al. [63]; Buonomano et al. [64]; Gao et al. [65]. | 06 | 97 |
Environment (C7) | Li et al. [66]; Rabbani; Hooshyar [67]; Anastaselos et al. [68]. | 03 | 36 |
Innovations (C8) | Reda [69]; Gaglia et al. [70]; Casano et al. [71]; Ghaebi et al. [72]; Kalogiro et al. [73]; Ghaebi et al. [74]. | 06 | 50 |
Market analysis (C9) | Huang et al. [75]. | 01 | 8 |
Cluster | Simulation | Experimental |
---|---|---|
C1 | 4 | 4 |
C2 | 4 | 7 |
C3 | 6 | 8 |
C4 | 1 | 4 |
C5 | 1 | 2 |
C6 | 2 | 3 |
C7 | 1 | 2 |
C8 | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Júnior, O.E.d.; Lima, J.A.d.; Abrahão, R.; Lima, M.H.A.d.; Santos Júnior, E.P.; Coelho Junior, L.M. Solar Heating with Flat-Plate Collectors in Residential Buildings: A Review. Energies 2022, 15, 6130. https://doi.org/10.3390/en15176130
Silva Júnior OEd, Lima JAd, Abrahão R, Lima MHAd, Santos Júnior EP, Coelho Junior LM. Solar Heating with Flat-Plate Collectors in Residential Buildings: A Review. Energies. 2022; 15(17):6130. https://doi.org/10.3390/en15176130
Chicago/Turabian StyleSilva Júnior, Olinto Evaristo da, João Alves de Lima, Raphael Abrahão, Mateus Henrique Alves de Lima, Edvaldo Pereira Santos Júnior, and Luiz Moreira Coelho Junior. 2022. "Solar Heating with Flat-Plate Collectors in Residential Buildings: A Review" Energies 15, no. 17: 6130. https://doi.org/10.3390/en15176130
APA StyleSilva Júnior, O. E. d., Lima, J. A. d., Abrahão, R., Lima, M. H. A. d., Santos Júnior, E. P., & Coelho Junior, L. M. (2022). Solar Heating with Flat-Plate Collectors in Residential Buildings: A Review. Energies, 15(17), 6130. https://doi.org/10.3390/en15176130