Special Cement Slurries for Strengthening Salt Rock Mass
Abstract
:1. Introduction
- Specific physico-chemical and mechanical properties of the extracted mineral;
- Variety of rocks found in the salt rock mass (salt, shales, clayey, mudstones);
- The manner of arrears.
- -
- Water hazards;
- -
- Heart attack risk;
- -
- Uncontrolled movement of the rock massif.
- Sealing and/or strengthening of the rock mass by borehole injection methods with the use of appropriately selected sealing slurries;
Cement Slurries for Sealing the Salt Rock Mass
- Complex binding processes of cement slurries;
- Chemical composition and mineralization of water;
- Variable cement slurry consistency as a function of time;
- The stability of the cement slurry;
- Technology of injection and extruding the slurry into a sealed rock mass;
- Slurry flow resistance in the circulation system of the cement slurry from the place of its preparation to the place of its placement in the rock mass.
- Surface charge;
- Concentration of ions in the slurry;
- Adsorption phenomena.
- High durability and low solubility of hydration products;
- Low overall porosity and high tightness of the hardened cement slurry.
- Good adhesion to rocks with different lithological education (both to evaporative rocks as well as to swelling clays and clay shales);
- Possibility to adjust the technological parameters of both fresh and hardened cement slurries;
- Eliminating the dissolution of the salt rock mass by the cement slurry and its filtrate;
- Increased resistance to corrosive factors, especially to brines (reservoir waters) with strong mineralization;
- Adequate rheological parameters to the conditions of the sealed rock mass;
- Relatively low unit costs of their preparation.
2. Materials and Methods
2.1. Materials
- -
- Fly ash from hard coal combustion in conventional furnaces;
- -
- Bentonite, calcium, sodium;
- -
2.2. Methods
- API Recommended Practice for Testing Oil-Well Cements and Cement Additives. API RP 10 B. April 1997,
- PN—EN 197—1: 2002, Cement. Part 1. Composition, requirements and compliance criteria for common cements,
- PN—EN ISO 10426—2. Oil and gas industry. Cements and materials for cementing holes. Lot 2: Tests for drilling cements. 2012.
- for fresh sealing slurries:
- ✓
- Density—with the use of a Baroid shoulder scale, flow—by means of a truncated cone (AzNII);
- ✓
- Conventional (relative) viscosity using a Ford cup No. 4;
- ✓
- Sedimantation (standstill)—using a measuring cylinder;
- ✓
- Filtration—using a baroid filter press;
- ✓
- Setting time—using the Vicat apparatus;
- ✓
- Rheological properties (plastic viscosity, apparent viscosity, flow limit)—using a rotary viscometer with coaxial cylinders, Ofite 900 type, with twelve rotational speeds (600, 300, 200, 100, 60, 30, 20, 10, 6, 3, 2.1 rpm, corresponding to shear rates: 1022.04; 511.02; 340.7; 170.4; 102.2; 51.1; 34.08; 17.04; 10.22; 5, 11; 3.41; 1.70 s-1);
- For hardened cement slurries:
- ✓
- Bending strength;
- ✓
- Compressive strength.
- model Newton
- model Bingham
- model Ostwalda de Wael
- model Casson
- model Herschel—Bulkley
3. Results and Discussions
- -
- Change in the pore structure;
- -
- Creation of a homogeneous, tight contact zone: slurry-rock (soil);
- -
- Modification of the morphology of the basic product of hydration which is the C-S-H phase.
- -
- There is a significant reduction in the rate of diffusion and liquid gases in the slurry (this applies to, for example, chloride ions);
- -
- As a result of the decrease in Ca(OH)2 content, the reactions of the formation of soluble calcium salts in contact with many corrosive environments are limited or eliminated;
- -
- Due to the tight microstructure, carbonization is slower;
- -
- As a result of the chemical imbalance of ettringite formation, the resistance to sulphate corrosion increases (this is the main, but not the only cause);
- -
- -
- Reduction of filtration;
- -
- Elimination of downtime and increasing the stability of the cement slurry;
- -
- Adjusting the strength parameters of the hardened cement slurries to the parameters of the sealed rock mass;
- -
- Reduction of the permeability of hardened cement slurries.
- Accelerating the beginning of binding of the cement slurry and shortening its end of binding,
- Improvement of rheological properties (slurry liquefaction).
4. Conclusions
- 1.
- In order to strengthen and seal the salt rock, it is recommended to use slurries based on hydraulic binders (cement, ground granulated blast furnace slag), which are modified with the addition of clay and sodium carbonate. The working liquid should be a fully saturated brine.
- 2.
- The addition of clay to brine slurries significantly extends the setting time and reduces the strength parameters of the hardened cement slurry.
- 3.
- The addition of Na2CO3 causes:
- -
- Improving the rheological parameters of the cement slurry, increases the fluidity of the cement slurry and favors better filling of voids and caverns in salt mine workings;
- -
- Shortening the setting time of the cement slurry.
- 4.
- Among the rheological models used to describe the relationship between shear stress and shear rate, the Herschel-Bulkley models have the highest values of correlation coefficients.
- 5.
- Rectilinear models (Newton and Bingham) of the tested cement slurries should not be used for accurate calculations of the flow resistance that may occur in the process of sealing casing columns in boreholes.
- 6.
- The developed recipes for brine sealing slurries were applied with great effectiveness in works related to:
- -
- Strengthening and sealing of the salt rock mass;
- -
- Tight filling of liquidated workings in salt mines.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonet, A.; Stryczek, S.; Brudnik, K. Technology of Liquidation of Filling Holes in Salt Mines. Drill. Oil Gas, 2008; 293–298. [Google Scholar]
- Hliniak, B. Rola faz glinianowych w zaczynach uszczelniających na przykładzie Kopalni Soli “Wieliczka”. In Praca Doktorska. Wydział Wiertnictwa, Nafty i Gazu; AGH: Kraków, Poland, 2000. [Google Scholar]
- Jahanbakhsh, A.; Liu, Q.; Hadi Mosleh, M.; Agrawal, H.; Farooqui, N.M.; Buckman, J.; Recasens, M.; Maroto-Valer, M.; Korre, A.; Durucan, S. An Investigation into CO2–Brine–Cement–Reservoir Rock Interactions for Wellbore Integrity in CO2 Geological Storage. Energies 2021, 14, 5033. [Google Scholar] [CrossRef]
- Stryczek, S.; Wiśniowski, R. Metodyka Grawitacyjnego Zatłaczania Zaczynów Uszczelniających do Wyrobisk Górniczych w Kopalniach soli. Arch. Min. Sci. 2004, 49, 55–69. [Google Scholar]
- Kamiński, P. A New Method of Regulation of Loads Acting on the Shaft Lining in Sections Located in the Salt Rock Mass. Energies 2021, 14, 42. [Google Scholar] [CrossRef]
- Gonet, A.; Stryczek, S. Podstawy Geoinżynierii; Wydawnictwa AGH: Kraków, Poland, 2020. [Google Scholar]
- Kremieniewski, M. Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath. Energies 2020, 13, 1583. [Google Scholar] [CrossRef] [Green Version]
- Bensted, J. Drilling Cements. Part 2: Use of Drilling Cements for Cementation of Wells. Cement, Lime, Concrete. R.9/71 nr.2. 2004, pp. 61–72. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BTB4-0001-0093 (accessed on 17 August 2022).
- Bensted, J.; Drilling Cements. Drilling Cements. Part 5: Applications of fly ash in well cementing. Cement, Lime, Concrete 2008, nr.1. pp. 17–30. Available online: http://cementwapnobeton.pl/pdf/2008/2008_1/Bensted-01-08.pdf (accessed on 17 August 2022).
- Kremieniewski, M.; Błaż, S.; Stryczek, S.; Wiśniowski, R.; Gonet, A. 2021 Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock. Energies 2021, 14, 5187. [Google Scholar] [CrossRef]
- Giergiczny, Z. Fly Ash in the Composition of Cement and Concrete; Monography Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013. [Google Scholar]
- Grzeszczyk, S.; Lipowski, G. Popioły Lotne i ich Wpływ na Reologię i Hydratację Cementów; Oficyna Wydawnicza Politechniki Opolskiej: Opole, Poland, 2002. [Google Scholar]
- Kremieniewski, M. Wpływ drobnoziarnistej krzemionki na parametr czasu oczekiwania na cement—WOC. Nafta-Gaz 2019, 75, 683–690. [Google Scholar] [CrossRef]
- Hliniak, B.; Stryczek, S.; The Influence of Brine on the Technological Parameters of Fresh Sealing Slurries. Wiert. Naft. Gaz. 2000, pp. 89–95. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-AGH5-0005-0111 (accessed on 17 August 2022).
- Nelson, E.B. Well Cementing; Schlumberger Educational Services: Houston, TX, USA, 1990. [Google Scholar]
- Stryczek, S.; Gonet, A.; Wiśniowski, R.; Złotkowski, A. Sealing Starts for Filling Voids in the Salt Rock Mass. Drill. Oil Gas 2011, 391–400. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-AGHM-0030-0033 (accessed on 17 August 2022).
- Gonet, A.; Stryczek, S.; Kremieniewski, M. Modern Methods of Strengthening and Sealing Salt Mines. Energies 2022, 15, 5303. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, P.; Rao, J.; Wang, Z.; Zong, Y.; Zhang, J. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals 2022, 12, 1019. [Google Scholar] [CrossRef]
- Zhitkovsky, V.; Dvorkin, L.; Kochkarev, D.; Ribakov, Y. Using Experimental Statistical Models for Predicting Strength and Deformability of Self-Compacting Concrete with Ground Blast-Furnace Slag. Materials 2022, 15, 4110. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, J.; Liang, X.; Wang, S.; Ma, Z. Ecological risk assessment of soil and water loss by thermal enhanced methane recovery: Numerical study using two-phase flow simulation. J. Clean. Prod. 2022, 334, 130183. [Google Scholar] [CrossRef]
- Kremieniewski, M. Zaczyny o obniżonej gęstości stosowane w warunkach występowania komplikacji w otworze wiertniczym. Nafta-Gaz 2021, nr 11, 736–743. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, C.; Sun, Q.; Gu, Q. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill. Materials 2022, 15, 4397. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Guo, Y.; Dong, C.; Xu, J.; Lai, W.; Du, B. Mechanical Properties of Clay Based Cemented Paste Backfill for Coal Recovery from Deep Mines. Energies 2021, 14, 5764. [Google Scholar] [CrossRef]
- Kremieniewski, M.; Rzepka, M.; Stryczek, S.; Wiśniowski, R. Microstructure of Porous Space in Cement Sheath Used for Sealing Oil Wells . AGH Drill. Oil Gas 2018, 35, 433–442. [Google Scholar]
- Mitchell, R.F.; Miska, S.Z. Fundamentals of Drilling Engineering; Textbook Series; Society of Petroleum Engineers: Richardson, Singapore, 2011; Volume 12. [Google Scholar]
- Stryczek, S.; Małolepszy, J.; Gonet, A.; Wiśniowski, R.; Kotwica, Ł. Wpływ dodatków mineralnych na kształtowanie się właściwości technologicznych zaczynów uszczelniających stosowanych w wiertnictwie i geoinżynierii. Monografia pod redakcją Stryczka, S. Wydawnictwo, S.C.M.R. Wioska z Chorzowa. Kraków 2011. (Projekt współfinansowany przez UE w ramach środków Europejskiego Funduszu społecznego—Kapitał Ludzki). s.164.
- Wiśniowski, R.; Stryczek, S.; Skrzypaszek, K. Directions of research on the rheology of drilling fluids. Drill. Oil Gas 2007, 595–607. Available online: file:///C:/Users/kremieniewski/Downloads/Kierunki_rozwoju_bada%C5%84_nad_reologi%C4%85.pdf (accessed on 17 August 2022).
- Wiśniowski, R.; Stryczek, S.; Skrzypaszek, K. Determination of the resistance of the laminar flow of cement slurries, described by the Herschel-Bulkley model. Drill. Oil Gas 2006, 533–542. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-AGH5-0007-0209?q=bwmeta1.element.baztech-volume-1507-0042-wiertnictwo_nafta_gaz-2006-r__231;58&qt=CHILDREN-STATELESS (accessed on 17 August 2022).
- Wiśniowski, R. Methodology for determining rheological models of drilling fluids. Drill. Oil Gas 2001, 247–261. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-AGH5-0005-0091 (accessed on 17 August 2022).
- Hamad, M.A.; Nasr, M.; Shubbar, A.; Al-Khafaji, Z.; Al Masoodi, Z.; Al-Hashimi, O.; Kot, P.; Alkhaddar, R.; Hashim, K. Production of Ultra-High-Performance Concrete with Low Energy Consumption and Carbon Footprint Using Supplementary Cementitious Materials Instead of Silica Fume: A Review. Energies 2021, 14, 8291. [Google Scholar] [CrossRef]
- Kremieniewski, M. Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry. Energies 2022, 15, 2768. [Google Scholar] [CrossRef]
- Dvorkin, L.; Zhitkovsky, V.; Sitarz, M.; Hager, I. Cement with Fly Ash and Metakaolin Blend—Drive towards a More Sustainable Construction. Energies 2022, 15, 3556. [Google Scholar] [CrossRef]
- Kurdrowski, W. Chemia Cementu i Betonu; PWN, Polski Cement: Kraków, Poland, 2010. [Google Scholar]
- Neville, A.M. Properties of Concrete, 5th ed.; Polish Cement; Cement Producers Association: Cracow, Poland, 2012. [Google Scholar]
- Pan, S.; Ding, J.; Peng, Y.; Lu, S.; Li, X. Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement. Energies 2022, 15, 2013. [Google Scholar] [CrossRef]
- Dvorkin, L.; Marchuk, V.; Hager, I.; Maroszek, M. Design of Cement–Slag Concrete Composition for 3D Printing. Energies 2022, 15, 4610. [Google Scholar] [CrossRef]
- He, H.; Guo, X.; Jin, L.; Peng, Y.; Tang, M.; Lu, S. The Effect of Adjusting Sinter Raw Mix on Dioxins from Iron Ore Co-Sintering with Municipal Solid Waste Incineration Fly Ash. Energies 2022, 15, 1136. [Google Scholar] [CrossRef]
- Małolepszy, J. Hydration and properties of slag-alkali binder. Drill. Oil Gas 1989. [Google Scholar]
- Dvorkin, L.; Duży, P.; Brudny, K.; Choińska, M.; Korniejenko, K. Adhesive Strength of Modified Cement–Ash Mortars. Energies 2022, 15, 4229. [Google Scholar] [CrossRef]
- Stryczek, S. Prognozowanie czasu wiązania solankowych zaczynów uszczelniających. Arch. Min. Sci. 1997, 45. [Google Scholar]
- Stryczek, S.; Gonet, A. Brine ash and cement slurries. Drill. Oil Gas 2001, 229–239. [Google Scholar]
- Kremieniewski, M. Poprawa stabilności sedymentacyjnej zaczynów cementowych. Pr. Nauk. Inst. Naft. I Gazu 2017, 216, 156. [Google Scholar]
- Kremieniewski, M. Poprawa wczesnej wytrzymałości mechanicznej płaszcza cementowego z zaczynów lekkich. Pr. Nauk. Inst. Naft. I Gazu 2019, 286. [Google Scholar]
- Stryczek, S.; Hliniak, B. Influence of Brine of Rrheological Parameters of Sealing Slurries. Arch. Min. Sci. 2000, 45, 283–301. [Google Scholar]
- Stryczek, S.; Wiśniowski, R. Rheological models of saline sealing slurries with fly ashes content—Modele reologiczne solankowych zaczynów uszczelniających z dodatkiem popiołów lotnych. Arch. Min. Sci. 2001, 46, 337–355. [Google Scholar]
- Stryczek, S.; Wiśniowski, R.; Gonet, A.; Złotkowski, A. Influence of brine on the rheological properties of sealing slurries with superplasticizers admixture . Drill. Oil Gas 2011, 401–409. [Google Scholar]
- Wiśniowsk, R.; Skrzypaszek, K. Komputerowe wspomaganie wyznaczania modelu reologicznego cieczy—Program Flow-Fluid Coef. Nowocz. Tech. I Technol. Bezwykopowe 2001, 2, 72–77. [Google Scholar]
- Stryczek, S. Właściwości reologiczne solankowych zaczynów cementowo—bentonitowych. Tech. Poszuk. Geol. 1988, 37, 89–94. [Google Scholar]
- Rzepka, M.; Stryczek, S. Laboratoryjne metody oceny trwałości stwardniałych zaczynów cementowych stosowanych do uszczelniania otworów wiertniczych. Wiert. Naft. Gaz 2007, 24, 443–449. [Google Scholar]
- Rzepka, M. Wpływ Warunków Otworowych na Procesy Korozyjne Zachodzące w Stwardniałych Zaczynach Cementowych Stosowanych w Wiertnictwie. Ph.D. Thesis, Wydział Wiertnictwa, Nafty i Gazu, AGH, Kraków, Poland, 2005. [Google Scholar]
Composition | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Full saturated brine, m3 | Składniki receptury potrzebne do sporządzenia 1 m3 solankowego zaczynu | 0.636 | 0.713 | 0.786 | 0.834 | 0.558 | 0.639 | 0.713 | 0.495 | 0.507 | 0.531 |
Portland cement class CEM I 32,5 R, kg | 1050 | 819.6 | 589.4 | 416.9 | 136.2 | 116.9 | 260.9 | 197.8 | 304.4 | 531.3 | |
Ground granular blast furnace slag, kg | - | - | - | - | 1192 | 974.4 | 608.7 | - | - | - | |
Fly ash, kg | - | - | - | - | - | - | - | 791.2 | 690.0 | 510.1 | |
Bentonite clay, kg | 57.26 | 42.76 | 31.44 | 50.03 | - | - | - | - | 20.3 | 21.3 | |
Sodium carbonate, Na2CO3, kg | 9.54 | 17.82 | 31.44 | 33.35 | 34.06 | 23.39 | 17.39 | - | - | - | |
Water-binder coefficient, w/b | 0.684 | 0.972 | 1.446 | 2.000 | 0.500 | 0.700 | 1.000 | 0.600 | 0.600 | 0.600 | |
The density of the cement slurry, kg/m3 | 1880 | 1735 | 1595 | 1501 | 2044 | 1894 | 1757 | 1582 | 1624 | 1700 | |
Mass of dry ingredients needed to prepare 1 m3 of cement slurry, kg | 1117 | 880.18 | 652.31 | 500.28 | 1362.0 | 1115.0 | 887.0 | 989.0 | 1000.0 | 1100.0 |
Composition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 |
Flow by cone AzNII, nm | 90 | 260 | 260 | >260 | 170 | 260 | >260 | >260 | >260 | 220 |
Relative viscosity according to Ford cup No. 4, s | - | 19.4 | 13.5 | 11.4 | 42.2 | 13.3 | 11.3 | 17.1 | 22.3 | 27.5 |
Free water, % | 0.5 | 0.8 | 1.5 | 4.5 | 0.5 | 3.0 | 8.2 | 7.0 | 2.5 | 1.2 |
Setting time h:min | 1:45 | 1:50 | 10:15 | 27:15 | 4:10 | 7:20 | 22:10 | 12:15 | 13:05 | 13:40 |
11:40 | 12:25 | 33:25 | 78:00 | 8:20 | 27:30 | 35:20 | 28:30 | 25:15 | 21:05 |
Rheological Model | Rheological Parameters | Composition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | ||
Newtonian model | Newton’s dynamic viscosity, Pa∙s | 0.046 | 0.014 | 0.093 | 0.084 | 0.226 | 0.038 | 0.027 | 0.391 | 0.109 | 0.056 |
Correlation coefficient, - | 0.994 | 0.992 | 0.986 | 0.981 | 0.987 | 0.991 | 0.962 | 0.957 | 0.860 | 0.937 | |
Bingham’s model | Plastic viscosity, Pa∙s | 0.043 | 0.016 | 0.009 | 0.008 | 0.234 | 0.035 | 0.025 | 0.340 | 0.089 | 0.049 |
Flow limit, Pa | 1.508 | 0.217 | 0.071 | 0.065 | 7.153 | 1.545 | 2.066 | 11.325 | 12.924 | 5.555 | |
Correlation coefficient, - | 0.996 | 0.988 | 0.985 | 0.987 | 0.998 | 0.998 | 0.988 | 0.989 | 0.947 | 0.993 | |
Ostwald-de Waele’s model | Coefficient of consistency, Pa∙ss | 0.440 | 0.082 | 0.041 | 0.035 | 2.531 | 0.376 | 0.437 | 3.683 | 2.521 | 2.094 |
Exponent, - | 0.619 | 0.691 | 0.716 | 0.655 | 0.586 | 0.623 | 0.575 | 0.575 | 0.532 | 0.421 | |
Correlation coefficient, - | 0.951 | 0.947 | 0.926 | 0.945 | 0.969 | 0.974 | 0.987 | 0.993 | 0.997 | 0.946 | |
Casson’s model | Casson’s viscosity, Pa∙s | 0.036 | 0.012 | 0.008 | 0.007 | 0.176 | 0.028 | 0.018 | 0.255 | 0.065 | 0,032 |
Flow limit, Pa | 0.449 | 0.058 | 0.016 | 0.014 | 2.636 | 0.467 | 0.753 | 4.033 | 4.942 | 2.987 | |
Correlation coefficient, - | 0.998 | 0.998 | 0.998 | 0.994 | 0.999 | 0.998 | 0.994 | 0.995 | 0.965 | 0.995 | |
Herschel-Bulkley’s model | Flow limit, Pa | 1.40 | 0.215 | 0.087 | 0.077 | 5.280 | 0.827 | 0.932 | 3.122 | 3.379 | 4.309 |
Coefficient of consistency, Pa∙sn | 1.021 | 0.014 | 0.008 | 0.007 | 0.428 | 0.089 | 0.143 | 1.933 | 4.261 | 0.152 | |
Exponent, - | 1.026 | 0.987 | 1.015 | 1.02 | 0.903 | 0.865 | 0.753 | 0.709 | 0.452 | 0.844 | |
Correlation coefficient, - | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.997 | 0.999 | 0.999 | 0.997 | |
Apparent viscosity at 1022.04, s−1, Pa∙s | 0.008 | 0.044 | 0.014 | 0.012 | 0.047 | 0.037 | 0.026 | 0.099 | 0.089 | 0.051 |
Composition | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Flexural strength, MPa | After the curing time [day] | 7 | 3.15 | 2.85 | 0.15 | 0.00 | 2.21 | 1.12 | 2.34 | 1.03 | 1.87 | 2.05 |
28 | 14.62 | 12.32 | 5.34 | 1.84 | 10.43 | 8.32 | 4.01 | 3.06 | 3.89 | 4.07 | ||
Compressive strength, MPa | 7 | 3.25 | 3.84 | 1.53 | 0.000 | 2.94 | 1.45 | 0.94 | 0.89 | 0.28 | 0.23 | |
28 | 18.56 | 21.43 | 6.46 | 2.87 | 6.42 | 7.32 | 5.26 | 3.42 | 3.32 | 4.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stryczek, S.; Gonet, A.; Kremieniewski, M. Special Cement Slurries for Strengthening Salt Rock Mass. Energies 2022, 15, 6087. https://doi.org/10.3390/en15166087
Stryczek S, Gonet A, Kremieniewski M. Special Cement Slurries for Strengthening Salt Rock Mass. Energies. 2022; 15(16):6087. https://doi.org/10.3390/en15166087
Chicago/Turabian StyleStryczek, Stanisław, Andrzej Gonet, and Marcin Kremieniewski. 2022. "Special Cement Slurries for Strengthening Salt Rock Mass" Energies 15, no. 16: 6087. https://doi.org/10.3390/en15166087
APA StyleStryczek, S., Gonet, A., & Kremieniewski, M. (2022). Special Cement Slurries for Strengthening Salt Rock Mass. Energies, 15(16), 6087. https://doi.org/10.3390/en15166087