Catalytic Oxidation and Desulfurization of Calcium-Hydroxide Gypsum Wet Flue Gas Using Modified MIL-53(Fe)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MIL-53(Fe)
2.3. Preparation of MIL-53(Fe)-BA
2.4. Preparation of MIL-53(Fe)/Ca (OH)2 Desulfurizers
2.5. Preparation of MIL-53(Fe)-BA/Ca (OH)2 Desulfurizers
2.6. Characterization
2.7. Catalytic Oxidation of Calcium Sulfite
2.8. Desulfurization Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.T.; Dong, K.; Tian, L.; Zhan, S.Q.; Wang, X.Y.; Wang, J.F.; Tu, J.Y. Numerical analyses of sulfur dioxide transport by an atmospheric circulating drop. Atmos. Pollut. Res. 2019, 10, 759–767. [Google Scholar] [CrossRef]
- Cheng, T.; Zhou, X.C.; Yang, L.J.; Sun, Z.Q.; Wu, H. Emission Characteristics of Soluble Ions in Fine Particulates in Limestone-Gypsum Wet Flue Gas Desulfurization System. Energy Fuels 2020, 34, 3836–3842. [Google Scholar] [CrossRef]
- Krammer, G.; Reissner, H.K.; Staudinger, G. Cyclic activation of calcium hydroxide for enhanced desulfurization. Chem. Eng. Process. 2002, 41, 463–471. [Google Scholar] [CrossRef]
- Renedo, M.J.; Fernandez-Ferreras, J. Characterization and Behavior of Modified Calcium-Hydroxide-Based Sorbents in a Dry Desulfurization Process. Energy Fuels 2016, 30, 6350–6354. [Google Scholar] [CrossRef]
- Rendel, P.M.; Gavrieli, I.; Wolff-Boenisch, D.; Ganor, J. Towards establishing a combined rate law of nucleation and crystal growth—The case study of gypsum precipitation. J. Cryst. Growth 2018, 485, 28–40. [Google Scholar] [CrossRef]
- Song, Y.J.; Wang, T.; Cheng, L.; Li, C.Q.; Wang, H.; Wang, X.C. Simultaneous removal of SO2 and NO by CO reduction over prevulcanized Fe2O3/AC catalysts. Can. J. Chem. Eng. 2019, 97, 2015–2020. [Google Scholar] [CrossRef]
- Yang, L.; Huang, T.; Jiang, X.; Li, J.J.; Jiang, W.J. The effects of metal oxide blended activated coke on flue gas desulphurization. RSC Adv. 2016, 6, 55135–55143. [Google Scholar] [CrossRef]
- Chen, L.; Hu, Z.P.; Ren, J.T.; Wang, Z.; Yuan, Z.Y. Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates. Microporous Mesoporous Mater. 2021, 315, 110921. [Google Scholar] [CrossRef]
- Khalilian, Z.; Chermahini, A.N.; Momeni, M.M.; Sarpiri, J.N.; Motalebian, M. A new catalytic system for oxidative desulfurization of model diesel by hierarchical TiO2 nanotube arrays on titanium foil. J. Porous Mater. 2021, 28, 629–640. [Google Scholar] [CrossRef]
- Lin, S.C.; Ng, S.F.; Ong, W.J. Life cycle assessment of environmental impacts associated with oxidative desulfurization of diesel fuels catalyzed by metal-free reduced graphene oxide. Environ. Pollut. 2021, 288, 117677. [Google Scholar] [CrossRef]
- Riaz, A.; Saeed, M.; Munir, M.; Intisar, A.; Haider, S.; Tariq, S.; Hussain, N.; Kousar, R.; Bilal, M. Development of reduced graphene oxide-supported novel hybrid nanomaterials (Bi2WO6@rGO and Cu-WO4@rGO) for green and efficient oxidative desulfurization of model fuel oil for environmental depollution. Environ. Res. 2022, 212, 113160. [Google Scholar] [CrossRef] [PubMed]
- Tanimu, A.; Tanimu, G.; Ganiyu, S.A.; Gambo, Y.; Alasiri, H.; Alhooshani, K. Metal-Free Catalytic Oxidative Desulfurization of Fuels-A Review. Energy Fuels 2022, 36, 3394–3419. [Google Scholar] [CrossRef]
- Ji, H.F.; Liu, S.T.; Shi, H.F.; Wang, W.D. Phosphomolybdic acid-based sulfur-containing metal-organic framework as an efficient catalyst for dibenzothiophene oxidative desulfurization. J. Sulfur Chem. 2022, 43, 314–326. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.Y.; Dai, B. An amino functionalized zirconium metal organic framework as a catalyst for oxidative desulfurization. New J. Chem. 2022, 46, 9785–9791. [Google Scholar] [CrossRef]
- Liu, W.X.; Que, W.B.; Shen, X.H.; Yin, R.L.; Xu, X.L.; Zheng, D.; Feng, J.X.; Dai, X.J.; Niu, X.X.; Wu, F.F.; et al. Unlocking active metal site of Ti-MOF for boosted heterogeneous catalysis via a facile coordinative reconstruction. Nanotechnology 2022, 33, 025401. [Google Scholar] [CrossRef]
- Lv, H.T.; Yang, P.; Li, N.; Fan, Y. Defective MIL-125 Nanocrystals with Enhanced Catalytic Performance for Oxidative Denitrogenation. J. Cluster Sci. 2022. [Google Scholar] [CrossRef]
- Nejati, F.M.; Shahhosseini, S.; Rezaee, M. Cobalt-based sandwich-type polyoxometalate supported on amino-silane decorated magnetic graphene oxide: A recoverable catalyst for extractive-catalytic oxidative desulfurization of model oil. J. Environ. Chem. Eng. 2022, 10, 107949. [Google Scholar] [CrossRef]
- Wang, C.; Li, A.R.; Ma, Y.L.; Qing, S.L. Preparation of formate-free PMA@MOF-808 catalysts for deep oxidative desulfurization of model fuels. Environ. Sci. Pollut. Res. 2022, 29, 39427–39440. [Google Scholar] [CrossRef]
- Allers, T.; Luckas, M.; Schmidt, K.G. Modeling and Measurement of the Dissolution Rate of Solid Particles in Aqueous Suspensions—Part II: Experimental Results and Validation. Chem. Eng. Technol 2003, 26, 1225–1229. [Google Scholar] [CrossRef]
- Gao, X.; Huo, W.; Zhong, Y.; Luo, Z.Y.; Cen, K.F.; Ni, M.J.; Chen, L.M. Effects of Magnesium and Ferric Ions on Crystallization of Calcium Sulfate Dihydrate Under the Simulated Conditions of Wet Flue-gas Desulfurization. Chem. Res. Chin. Univ. 2008, 24, 688–693. [Google Scholar]
- Yu, D.Y.; Wang, L.P.; Yang, T.Y.; Yang, G.P.; Wang, D.; Ni, H.G.; Wu, M.H. Tuning Lewis acidity of iron-based metal-organic frameworks for enhanced catalytic ozonation. Chem. Eng. J. 2021, 404, 127075. [Google Scholar] [CrossRef]
- Yu, D.Y.; Wu, M.H.; Hu, Q.; Wang, L.L.; Lv, C.C.; Zhang, L. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism. J. Hazard. Mater. 2019, 367, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.Y.; Li, L.B.; Wu, M.; Crittenden, J.C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B 2019, 251, 66–75. [Google Scholar] [CrossRef]
- Zheng, X.-X.; Fang, Z.-P.; Dai, Z.-J.; Cai, J.-M.; Shen, L.-J.; Zhang, Y.-F.; Au, C.-T.; Jiang, L.-L. Iron-Based Metal–Organic Frameworks as Platform for H2S Selective Conversion: Structure-Dependent Desulfurization Activity. Inorg. Chem. 2020, 59, 4483–4492. [Google Scholar] [CrossRef]
- Ji, P.F.; Drake, T.; Murakarni, A.; Oliveres, P.; Skone, J.H.; Lin, W.B. Tuning Lewis Acidity of Metal-Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies. J. Am. Chem. Soc. 2018, 140, 10553–10561. [Google Scholar] [CrossRef]
- Xiong, Z.B.; Lu, C.M.; Guo, D.X.; Zhang, X.L.; Han, K.H. Selective catalytic reduction of NOx with NH3 over iron-cerium mixed oxide catalyst: Catalytic performance and characterization. J. Chem. Technol. Biotechnol. 2013, 88, 1258–1265. [Google Scholar]
- Zhan, Y.Y.; Shen, L.J.; Xu, C.B.; Zhao, W.T.; Cao, Y.N.; Jiang, L.L. MOF-derived porous Fe2O3 with controllable shapes and improved catalytic activities in H2S selective oxidation. CrystEngcomm 2018, 20, 3449–3454. [Google Scholar] [CrossRef]
- Dunn, J.P.; Stenger, H.G.; Wachs, I.E. Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts. Catal. Today 1999, 53, 543–556. [Google Scholar] [CrossRef]
- Luo, H.; Gu, Y.; Liu, D.; Sun, Y. Advances in Oxidative Desulfurization of Fuel Oils over MOFs-Based Heterogeneous Catalysts. Catalysts 2021, 11, 1557. [Google Scholar] [CrossRef]
- Yılmaz, E.; Sert, E.; Atalay, F.S. Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). J. Taiwan. Inst. Chem. E. 2016, 65, 323–330. [Google Scholar] [CrossRef]
- Zheng, X.; Qi, S.; Cao, Y.; Shen, L.; Au, C.; Jiang, L. Morphology evolution of acetic acid-modulated MIL-53(Fe) for efficient selective oxidation of H2S. Chin. J. Catal. 2021, 42, 279–287. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q.; Xing, L.; Yang, L.J.; Qi, T.Y.; Xu, P.Y.; Zhang, S.H.; Wang, L.D. Cobalt-based metal-organic frameworks promoting magnesium sulfite oxidation with ultrahigh catalytic activity and stability. J. Colloid Interface Sci. 2020, 559, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.Y.; Sun, Y.L.; Zhu, B.Z. The promoting mechanism of doping Mn, Co, and Ce on gas adsorption property and anti-SO2 oxidation over gamma-Fe2O3 (001) surface: A density functional theory study. Colloids Surf. A 2021, 628, 127218. [Google Scholar] [CrossRef]
- Cui, L.; Lu, J.W.; Song, X.D.; Tang, L.S.; Li, Y.Z.; Dong, Y. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel 2021, 285, 119209. [Google Scholar] [CrossRef]
- Xiao, H.P.; Dou, C.Z.; Li, J.; Yuan, Z.H.; Lv, H.K. Experimental Study on SO2-to-SO3 Conversion Over Fe-Modified Mn/ZSM-5 Catalysts During the Catalytic Reduction of NOx. Catal. Surv. Asia 2019, 23, 332–343. [Google Scholar] [CrossRef]
- Brandt, C.; Fabian, I.; van Eldik, R. Kinetics and Mechanism of the Iron(III)-catalyzed Autoxidation of Sulfur(IV) Oxides in Aqueous Solution. Evidence for the Redox Cycling of Iron in the Presence of Oxygen and Modeling of the Overall Reaction Mechanism. Inorg. Chem. 1994, 33, 687–701. [Google Scholar] [CrossRef]
- Barron, C.H.; O’Hern, H.A. Reaction kinetics of sodium sulfite oxidation by the rapid-mixing method. Chem. Eng. Sci. 1966, 21, 397–404. [Google Scholar] [CrossRef]
- Du, L.; Wang, Y.J.; Wang, K.; Luo, G.S. Effects of nanoparticles with different wetting abilities on the gas-liquid mass transfer. Chem. Eng. Sci. 2014, 114, 105–113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Li, S.; Chen, C.; Zheng, D.; Wu, Z.; Yu, C.; Pu, S.; Liu, F.-Q. Catalytic Oxidation and Desulfurization of Calcium-Hydroxide Gypsum Wet Flue Gas Using Modified MIL-53(Fe). Energies 2022, 15, 5851. https://doi.org/10.3390/en15165851
Yao Y, Li S, Chen C, Zheng D, Wu Z, Yu C, Pu S, Liu F-Q. Catalytic Oxidation and Desulfurization of Calcium-Hydroxide Gypsum Wet Flue Gas Using Modified MIL-53(Fe). Energies. 2022; 15(16):5851. https://doi.org/10.3390/en15165851
Chicago/Turabian StyleYao, Yong, Shizhu Li, Chuangting Chen, Dongchen Zheng, Zhichao Wu, Chi Yu, Shuying Pu, and Fa-Qian Liu. 2022. "Catalytic Oxidation and Desulfurization of Calcium-Hydroxide Gypsum Wet Flue Gas Using Modified MIL-53(Fe)" Energies 15, no. 16: 5851. https://doi.org/10.3390/en15165851
APA StyleYao, Y., Li, S., Chen, C., Zheng, D., Wu, Z., Yu, C., Pu, S., & Liu, F.-Q. (2022). Catalytic Oxidation and Desulfurization of Calcium-Hydroxide Gypsum Wet Flue Gas Using Modified MIL-53(Fe). Energies, 15(16), 5851. https://doi.org/10.3390/en15165851