Economics of Implementing Solar Thermal Heating Systems in the Textile Industry
Abstract
:1. Introduction
2. Methodology
- (a)
- Selection of location-based sample industries which are supposedly cotton-based textile industries; this is proposed for simulating the behavior of the proposed systems under various conditions available for operation. As stated before, these include availability of solar radiation, different daytime duration that is the available operating hours, and other climatic conditions.
- (b)
- Estimation of required thermal energy for various processing in cotton-based textiles production.
- (c)
- Determination of required solar collector area for process heating demand.
- (d)
- Fixation of appropriate solar thermal technologies.
- (e)
- Performance evaluation of the selected technology.
- (f)
- Assessment of technoeconomic feasibility of the proposed process.
2.1. Study Locations
2.2. Estimation of the Useful Thermal Energy Requirement
2.3. Selection of Solar Thermal Technologies
2.4. Model for Financial Analysis
3. Results and Discussion
3.1. Cost Analysis for Cotton Yarn Production via FPC
3.2. Parabolic-Trough-Based SIPH System for Steam Generation (for Fabric Processing)
3.3. Assessment of Financial Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Orzuk, H.K. Energy usage and cost in textile industry: A case study for Turkey. Energy 2005, 6, 21–23. [Google Scholar]
- Kalogirou, S.A. The potential of solar industrial process heat applications. Appl. Energy 2003, 76, 337–361. [Google Scholar] [CrossRef]
- Adel, M.; Dayem, A.; Mohmad, M.A. Potential of solar energy utilization in the textile industry—A case study. Renew. Energy 2001, 23, 685–694. [Google Scholar]
- Claudia, V.; Battisti, R.; Drigo, S. Potential of Solar Heat for Industrial Processes. Solar Heat and Cooling Program Task 33 (IV) of International Energy Agency Vienna. 2008. Available online: http://www.aee-intec.at/0uploads/dateien561.pdf (accessed on 20 May 2008).
- Procter, D.; Mors, R.N. Solar Energy for the Australian food processing industry. Sol. Energy 1977, 19, 63–72. [Google Scholar] [CrossRef]
- Anand, D.K. Use of solar energy for industrial process heat. In Proceedings of the International Solar Energy Society Congress, New Delhi, India, 16–21 January 1978; pp. 2001–2008. [Google Scholar]
- Gordon, J.M.; Rabl, A. Design, Analysis and Optimization of Solar Industrial Process Heat Plants without Storage. Sol. Energy 1982, 28, 519–530. [Google Scholar] [CrossRef]
- Baer, D.; Gordon, J.M.; Zarmi, Y. Design and Optimization of Solar Steam Systems for Constant Load Applications. Sol. Energy 1985, 35, 137–151. [Google Scholar] [CrossRef]
- Quijera, J.A.; Alriols, M.G.; Labidi, J. Integration of a solar thermal system in a dairy process. Renew. Energy 2011, 36, 1843–1853. [Google Scholar] [CrossRef]
- Taibi, E.; Gielen, D.; Bazilian, M. The potential for renewable energy in industrial applications. Renew. Sustain. Energy Rev. 2012, 16, 735–744. [Google Scholar] [CrossRef]
- Beath, C.A. Industrial Energy Usage in Australia and the Potential for implementation of Solar Thermal Heat and Power. Energy 2012, 43, 261–272. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. Carbon mitigation potential of solar industrial process heating: Paper industry in India. J. Clean. Prod. 2016, 112, 1683–1691. [Google Scholar] [CrossRef]
- Fuller, R.J. Solar industrial process heating in Australia—Past and current status. Renew. Energy 2021, 36, 216–221. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. Potential of solar industrial process heating in dairy industry in India and consequent carbon mitigation. J. Clean. Prod. 2017, 140, 714–724. [Google Scholar] [CrossRef]
- Paraschiv, S.; Barbuta, N.; Misu Lizica Paraschiv, S. Technical and economic analysis of a solar air heating system integration in a residential building wall to increase energy efficiency by solar heat gain and thermal insulation. Energy Rep. 2020, 6, 459–474. [Google Scholar] [CrossRef]
- Dehghan, M.; Pfeiffer, C.F.; Rakhshani, E.; Bakhshi-Jafarabadi, R. A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East. Energies 2021, 14, 4944. [Google Scholar] [CrossRef]
- Lauterbach, B.; Schmitt, U.; Jordon, K. The potential of solar heat for industrial processes in Germany Renew. Sustain. Energy Rev. 2012, 16, 5121–5130. [Google Scholar] [CrossRef]
- Ramos, C.; Ramirez, R.; Beltran, J. Potential Assessment in Mexico for Solar Process Heat Applications in Food and Textile Industries. Energy Procedia 2014, 49, 1879–1884. [Google Scholar] [CrossRef]
- ABPS. Final Report on Market Assessment of Solar Water Heating Systems in Industrial Sectors; ABPS Advisory Infrastructure Private Ltd.: Maharashtra, India, 2010. Available online: http://mnre.gov.in/filemanager/UserFiles/Report_Market_Assessment_of_SWH_in_Idustrial_Sector.pdf (accessed on 9 May 2011).
- Cundapía, R.; Moyaa, S.L.; Valenzuela, L. Approaches to modelling a solar field for direct generation of industrial steam. Renew. Energy 2017, 103, 666–681. [Google Scholar] [CrossRef]
- Joubert, E.C.; Hess, S.; Van Niekerk, J.L. Large-scale solar water heating in South Africa: Status, barriers and recommendations. Renew. Energy 2016, 97, 809–822. [Google Scholar] [CrossRef]
- GIZ Identification of Industrial Sectors Promising for Commercialization of Solar Energy in India. 2011. Available online: http://mnre.gov.in/file-ComSolar.pdf (accessed on 1 November 2011).
- Sharma, A.K.; Sharma, C.; Mullick, S.C.; Kandpal, T.C. GHG Mitigation Potential of Solar Industrial Process Heating in Producing Cotton based Textiles in India. J. Clean. Prod. 2017, 145, 74–84. [Google Scholar] [CrossRef]
- Gupta, S. Scope of solar energy utilization in the Indian textile factory. Sol. Energy 1989, 42, 311–388. [Google Scholar] [CrossRef]
- Ennio, A.; Carnevale, L.F.; Simone, P. Investigation on the feasibility of integration of high temperature solar energy in a textile factory. Renew. Energy 2011, 36, 3517–3529. [Google Scholar]
- Suresh, N.S.; Rao, B.S. Solar energy for process heating: A case study of selected Indian industries. J. Clean. Prod. 2017, 151, 439–451. [Google Scholar] [CrossRef]
- CII Annual Textile Statistics. Confederation of Indian Textile Industry 2015. Available online: http://www.citiindia.com/statistics/textile-statistics.html (accessed on 18 March 2016).
- Saxena, N.; Ganguli, S. Solar and Wind Power Estimation and Economic Load Dispatch Using Firefly Algorithm. Procedia Comput. Sci. 2015, 70, 688–700. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- Garcia, A.F.; Rojas, E.; Perez, M.; Silva, R.; Escobedo, Q.H.; Agugliaro, F.M. A parabolic trough collector for cleaner industrial process heat. J. Clean. Prod. 2015, 89, 272–285. [Google Scholar] [CrossRef]
- Serban, A.; Nicoleta, B.; Misu, A.; Ciucescu, N.; Paraschiv, S. Economic and Environmental Analysis of Investing in Solar Water Heating Systems. Sustainability 2016, 8, 1286. [Google Scholar] [CrossRef]
- Agrawal, H.; Yadav, A. Economic analysis of solar thermal system for melting of ice at high altitude regions using Scheffler solar concentrator. Int. J. Sustain. Eng. 2021, 14, 497–506. [Google Scholar] [CrossRef]
- Häberle Dirk Krüger, A. Concentrating Solar Power Technology, 2nd ed.; Lovegrove, K., Stein, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Jamadi, F.; Arabpour, M.; Abdolzadeh, M. Solar Collectors Utilizing in the Heating System of a Room-An Experimental Investigation. Int. J. Renew. Energy Res. 2017, 7, 1836–1849. [Google Scholar]
- Solar Collectors: Engineering Reference—Energy Plus 8.0. Available online: https://bigladdersoftware.com/ (accessed on 1 April 2013).
- Bellos, E.; Tzivanidis, C. Concentrating Solar Collectors for a Trigeneration System—A Comparative Study. Appl. Sci. 2020, 10, 4492. [Google Scholar] [CrossRef]
- Mehmood, U.; Agyekum, E.B.; Kamel, S.; Shahinzadeh, H.; Moshayedi, A.J. Exploring the Roles of Renewable Energy, Education Spending, and CO2 Emissions towards Health Spending in South Asian Countries. Sustainability 2022, 14, 3549. [Google Scholar] [CrossRef]
- Mirhedayati, A.S.; Hadadi, Z.; Zanjani, S.M.; Shahinzadeh, H.; Bayindir, R.; Shaneh, M.; Moradi, J. Optimal operation of combined heat and power in competitive electricity markets: A case study in IAUN. Int. J. Renew. Energy Res. 2021, 11, 1013–1022. [Google Scholar]
- Hussein, N.; Jabba, A. Review on Parabolic Solar Concentrator Trough and Parabolic Solar Concentrator Dish. J. Mech. Eng. Res. Dev. 2021, 44, 381–386. [Google Scholar]
- Pakhare, A.N.; Pandey, H.; Selvam, M.; Jawahar, C.P. Experimental Performance Evaluation of a Parabolic Solar Dish Collector with Nanofluid, Concentrated Solar Thermal Energy Technologies; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Sagade, A.; Shinde, N. Performance evaluation of parabolic dish type solar collector for industrial heating application. Int. J. Energy Technol. Policy 2012, 8, 80–93. [Google Scholar] [CrossRef]
- Masood, F.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Saidur, R.; Alam, M.A.; Akhter, J.; Yusuf, M.; Mehmood, M.; Ali, M. A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors. Sustainability 2022, 14, 5529. [Google Scholar] [CrossRef]
- Praveen, R.P.; Kotturu, V.V. Chandra Mouli, Performance enhancement of parabolic trough collector solar thermal power plants with thermal energy storage capability. Ain Shams Eng. J. 2022, 13, 101716. [Google Scholar] [CrossRef]
- Pujar, H.; Sajjan, S.C. Design and Fabrication of Solar Paraboloid Concentrator. In Proceedings of the 2nd International Conference on Non-Conventional Energy: Nanotechnology & Nanomaterials for Energy & Environment (ICNNEE), West Bengal, India, 17–19 October 2019. [Google Scholar]
- Kandpal, T.C.; Garg, H. Financial Evaluation of Renewable Energy Technologies; Macmillan India Ltd.: Basingstoke, UK, 2003. [Google Scholar]
- Ernest Orlando Lawrence Berkeley National Laboratory. Assessment of Energy Use and Energy Savings Potential in Selected Industrial Sectors in India. 2005. Available online: https://eta-publications.lbl.gov/sites/default/files/lbnl-57293.pdf (accessed on 31 August 2005).
- SRCC Parabolic trough Collector. Solar Rating and Certification Corporation. Certification Number, 10001961. 2014. Available online: https://secure.solar-rating.org/Certification/Ratings/RatingsSummaryPage.aspx?type=1 (accessed on 30 March 2015).
- BEE. Manual of Pali textile cluster. A Study of Bureau of Energy Efficiency India. 2014. Available online: http://sameeeksha.org/pdf/dpr/PAL_TXT10.pdf (accessed on 1 December 2014).
- BEE. Detail Report on Energy Efficient Boiler in Surat Textile Cluster; Bureau of Energy Efficiency: New Delhi, India, 2013. Available online: http://sameeeksha.org/pdf/dpr/surat_3TPH.pdf (accessed on 1 December 2013).
- MP&NG. Indian Petroleum and Natural Gas Statistics; Ministry of Petroleum & Natural Gas. Government of India: New Delhi, India, 2017. Available online: http://www.petroleum.nic.in/docs/pngstat.pdf (accessed on 30 September 2017).
- CEA. Data on Data on Petroleum Fuels used in Various Gas Turbines & Diesel Engine Power Plants in the Country During 2003–2004; Central Electricity Authority: New Delhi, India, 2005. Available online: http://www.cea.nic.in/reports/articles/thermal/data_petroleum_fuels.pdf (accessed on 31 December 2005).
- MNRE. Reference Manual and Checklist for Hospitality Sector. UNDP/GEF Project on Global Solar Water Heating; Ministry of New and Renewable Energy Government of India: New Delhi, India, 2012. Available online: http://www.teriin.org/ResUpdate/Manuals_and_Checklists.pdf (accessed on 31 January 2012).
- Sun Focus. India’s Quest for Solar Steam and Process Heat; A Quarterly Magazine on Concentrated Solar Heat; SVS Press: New Delhi, India, 2016; Volume 3, Available online: http://www.in.undp.org/content/dam/india/docs/Sun%20Focus_Jan_March%202016_LD.pdf?download (accessed on 14 April 2016).
- CSH. Concentrated Solar Heat. Case Studies. 2016. Available online: http://www.cshindia.in/images/pdf/SKF.pdf (accessed on 31 December 2016).
Location | Latitude (°N) | Longitude (°E) | Annual GHI (kWh/m2) | Annual DNI (kWh/m2) | Average Ambient Temperature (°C) |
---|---|---|---|---|---|
Ahmedabad | 23.02 | 72.57 | 1994 | 1837 | 27.2 |
Bellary | 15.13 | 76.92 | 2082 | 1897 | 27.3 |
Bhilwara | 25.32 | 74.58 | 1958 | 1864 | 26.2 |
Erode | 11.34 | 77.71 | 1877 | 1847 | 29.4 |
Guntur | 16.30 | 80.43 | 1789 | 1528 | 27.7 |
Madurai | 9.92 | 78.11 | 1890 | 1747 | 27.9 |
Pali | 25.77 | 73.32 | 1903 | 1714 | 26.7 |
Solapur | 17.65 | 75.90 | 1781 | 1628 | 28.1 |
Annual production of yarn (tons) | 4560 |
Daily production (tons) | 12.49 |
Hourly production (tons) | 0.52 |
Water use (liter/kg) | 15.1 |
Total water requirement hourly (liters) | 7860 |
Ti (water) (°C) | 15 |
To (water) (°C) | 95 |
Hourly energy requirement (GJ) | 2.64 |
Load in terms of kWh | 729 |
Thermal energy requirements (GJ/kg) | 5.05 |
Item | Range of Specific Thermal Energy Consumption (GJ/kg) | Average Thermal Energy Consumption (GJ/kg) | Heat Transfer Medium | Temperature |
---|---|---|---|---|
Yarn Production | 4.500–5.600 | 5.050 | Hot water | 85–95 °C |
Fabric processing | 45.750–67.500 | 56.625 | Steam | 130–180 °C |
Thermal Energy Requirement (GJ/h) = 5.08 | Design DNI (DNId) (W/m2) = 600 | ||||
---|---|---|---|---|---|
Location | Collector Area Required | Annual Energy Delivered | Annual Energy Dumped/Stored | Solar Fraction | |
(m2) | (GJ) | (GJ) | without Storage | with Storage | |
Guntur | 3705 | 9310 | 11,504 | 0.21 | 0.23 |
Solapur | 3701 | 8920 | 10,177 | 0.20 | 0.21 |
Erode | 3712 | 11,079 | 14,601 | 0.25 | 0.30 |
Madurai | 3708 | 9964 | 13,716 | 0.23 | 0.27 |
Ahmadabad | 3705 | 11,634 | 14,601 | 0.26 | 0.29 |
Pali | 3705 | 11,157 | 13,274 | 0.25 | 0.27 |
Bhilwara | 3710 | 10,894 | 14,159 | 0.25 | 0.30 |
Bellary | 3709 | 11,211 | 14,601 | 0.25 | 0.3 |
Parameter | Symbol | Parameter Value | References |
---|---|---|---|
Inlet temperature (for FPC) | Ti | 15 °C | [46,47] |
Outlet Temperature (for FPC) | To | 80 °C | |
Average value of required thermal energy per hour (for FPC) | RTEh(Ph) | 2.64 GJ/h | |
Efficiency of FPC | 60% | ||
Inlet temperature (for PTC) | Ti | 60 °C | [48,49,52] |
Outlet temperature (for PTC) | To | 180 °C | |
Mean fluid temperature | Tm | 120 °C | |
Average value of thermal energy required per hour (for PTC) | RTEh(Ph) | 5.08 GJ/h | |
Efficiency of PTC | η | 66% | |
Capital cost | Ccon | INR 7,000,000 | [50] |
Useful life | ncon | 30 years | |
Efficiency of fuel utilization in the boiler | 80% | ||
Price of LDO (INR per kg in December 2016) | UPf | INR 35.92 | [51] |
Unit price of furnace oil (INR per kg in December 2016) | UPf | INR 28 | |
Price of Natural gas (INR per kg in December 2016) | UPf | INR 42.60 | |
Price of LSHS (INR per kg December 2016) | UPf | INR 28.69 | |
Annual escalation in the prices of fuels | ξ | 5% | |
Calorific value of LDO | CVf | 0.04310 GJ/kg | [52] |
Calorific value of furnace oil | CVf | 0.0415 GJ/kg | |
Calorific value of LSHS | CVf | 0.04416 GJ/kg | |
Calorific value of natural gas | CVf | 0.0430 GJ/kg | |
Capital cost of FPC based SIPH system (INR per square meter) as in 2016 | Co | INR 12,000 | [53] |
Capital cost of PTC based SIPH system (INR per square meter) as in 2016 | Co | INR 26,500 | [54] |
Annual O&M costs | ACOM (Ac) | 1% of capital | [28] |
Annual escalation in O&M cost | 0.01% | ||
Annual deration in the collector performance | ξ | 0.005% | |
Useful life | nsolar | 25 years | |
Discount rate | D | 12% |
Type of Fuel | Levelized Cost of Useful Thermal Energy Delivered (INR/GJ) | |
---|---|---|
without Escalation | with Escalation (@5%) | |
Light diesel oil | 1105 | 1331 |
LSHS | 869 | 1023 |
Furnace oil | 897 | 1261 |
Natural gas | 1285 | 1643 |
Flat-Plate-Collector-Based SIPH Systems (for Yarn Production) | ||||
Location | Minimum Value of LCUTE Delivered (INR/GJ) | Discounted Payback Period (years) | Net Present Value (INR) | Internal Rate of Return (%) |
Ahmedabad | 864 | 12 | 20,194,374 | 17.50 |
Bellary | 828 | 11 | 22,327,807 | 18.30 |
Bhilwara | 864 | 12 | 22,067,709 | 17.50 |
Erode | 866 | 12 | 21,808,329 | 17.75 |
Guntur | 968 | 14 | 14,861,212 | 16.03 |
Madurai | 882 | 12 | 20,601,307 | 17.40 |
Pali | 798 | 11 | 24,940,457 | 18.40 |
Solapur | 861 | 14 | 14,513,988 | 15.90 |
Parabolic-trough-Based SIPH Systems (for Fabric Production) | ||||
Ahmedabad | 1035 | 20 | 8,799,988 | 13.20 |
Bellary | 1048 | 21 | 6,297,279 | 12.97 |
Bhilwara | 1110 | 19 | 10,880,904 | 13.75 |
Erode | 1307 | 19 | 10,491,153 | 13.55 |
Guntur | 1289 | Not viable | (−)5,941,627 | 10.30 |
Madurai | 1164 | 23 | 3,186,870 | 12.50 |
Pali | 1083 | 21 | 8,431,754 | 13.10 |
Solapur | 1412 | Not viable | (−)11,638,369 | 10.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Sinha, K.K.; Đurin, B.; Gupta, M.K.; Saxena, N.; Banerjee, M.K.; Kranjčić, N.; Singh, S.K.; Kanga, S. Economics of Implementing Solar Thermal Heating Systems in the Textile Industry. Energies 2022, 15, 4277. https://doi.org/10.3390/en15124277
Kumar P, Sinha KK, Đurin B, Gupta MK, Saxena N, Banerjee MK, Kranjčić N, Singh SK, Kanga S. Economics of Implementing Solar Thermal Heating Systems in the Textile Industry. Energies. 2022; 15(12):4277. https://doi.org/10.3390/en15124277
Chicago/Turabian StyleKumar, Pankaj, Krishna Kumar Sinha, Bojan Đurin, Mukesh Kumar Gupta, Nishant Saxena, Malay Kumar Banerjee, Nikola Kranjčić, Suraj Kumar Singh, and Shruti Kanga. 2022. "Economics of Implementing Solar Thermal Heating Systems in the Textile Industry" Energies 15, no. 12: 4277. https://doi.org/10.3390/en15124277
APA StyleKumar, P., Sinha, K. K., Đurin, B., Gupta, M. K., Saxena, N., Banerjee, M. K., Kranjčić, N., Singh, S. K., & Kanga, S. (2022). Economics of Implementing Solar Thermal Heating Systems in the Textile Industry. Energies, 15(12), 4277. https://doi.org/10.3390/en15124277