Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver
Abstract
:1. Introduction
2. Models and Methods
3. Results and Discussion
4. Conclusions
- (1)
- Volumetric convective heat transfer coefficient models have a greater impact on the numerical simulation results, while the extinction coefficient model has less effect on the overall simulation results. Using different extinction coefficient models results in an efficiency difference of up to 7.3%, while using different volumetric convective heat transfer coefficient models results in a much larger difference of up to 27.7%.
- (2)
- These significant performance differences from various volumetric parameter models show that further studies are highly needed to determine or to obtain accurate models for porous volumetric solar receivers before we can trust any optimization results. Currently, it is hard to tell which model is more accurate.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koçak, B.; Fernandez, A.I.; Paksoy, H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Sol. Energy 2020, 209, 135–169. [Google Scholar] [CrossRef]
- Ruidong, W.; Jun, M.A. Status and Future Development Prospects of CSP. IOP Conf. Ser. Earth Environ. Sci. 2021, 687, 012088. [Google Scholar] [CrossRef]
- Feng, C.; Shao, C.; Wang, X. CSP clustering in unit commitment for power system production cost modeling. Renew. Energy 2021, 168, 1217–1228. [Google Scholar] [CrossRef]
- Viebahn, P.; Lechon, Y.; Trieb, F. The potential role of concentrated solar power (CSP) in Africa and Europe—A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 2011, 39, 4420–4430. [Google Scholar] [CrossRef] [Green Version]
- Ávila-Marín, A.L. Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review. Sol. Energy 2011, 85, 891–910. [Google Scholar] [CrossRef]
- Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating Solar Power. Chem. Rev. 2015, 115, 12797–12838. [Google Scholar] [CrossRef]
- Fend, T.; Hoffschmidt, B.; Pitz-Paal, R.; Reutter, O.; Rietbrock, P. Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties. Energy 2004, 29, 823–833. [Google Scholar] [CrossRef]
- Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V. Thermo-Fluid-Dynamics of a Ceramic Foam Solar Receiver: A Parametric Analysis. Heat Transf. Eng. 2019, 41, 1085–1099. [Google Scholar] [CrossRef]
- Barreto, G.; Canhoto, P.; Collares-Pereira, M. Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam. Energy 2020, 200, 117476. [Google Scholar] [CrossRef]
- Natividade, J. Parametric Study of High-Temperature Volumetric Solar Absorbers. Master’s Thesis, Universidade de Lisboa—Instituto Superior Técnico, Lisbon, Portugal, 2015. [Google Scholar]
- Wang, P.; Li, J.B.; Xu, R.N.; Jiang, P.X. Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber. Energy 2021, 225, 120130. [Google Scholar] [CrossRef]
- Barreto, G.; Canhoto, P.; Collares-Pereira, M. Three-dimensional modelling and analysis of solar radiation absorption in porous volumetric receivers. Appl. Energy 2018, 215, 602–614. [Google Scholar] [CrossRef]
- Navalho, J.E.P.; Pereira, J.C.F. A comprehensive and fully predictive discrete methodology for volumetric solar receivers: Application to a functional parabolic dish solar collector system. Appl. Energy 2020, 267, 114781. [Google Scholar] [CrossRef]
- Ren, Y.; Qi, H.; Shi, J.; Chen, Q.; Wang, Y.; Ruan, L. Thermal Performance Characteristics of Porous Media Receiver Exposed to Concentrated Solar Radiation. J. Energy Eng. 2017, 143, 04017013. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.-L.; Yan, X.-W.; Sun, C. Heat transfer analysis of a volumetric solar receiver with composite porous structure. Energy Convers. Manag. 2017, 136, 262–269. [Google Scholar] [CrossRef]
- Kribus, A.; Gray, Y.; Grijnevich, M.; Mittelman, G.; Mey-Cloutier, S.; Caliot, C. The promise and challenge of solar volumetric absorbers. Sol. Energy 2014, 110, 463–481. [Google Scholar] [CrossRef]
- Godini, A.; Kheradmand, S. Optimization of volumetric solar receiver geometry and porous media specifications. Renew. Energy 2021, 172, 574–581. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, Y. Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics. Energy 2019, 172, 467–476. [Google Scholar] [CrossRef]
- Xie, T.; Xu, K.; Yang, B.; He, Y. Effect of pore size and porosity distribution on radiation absorption and thermal performance of porous solar energy absorber. Sci. China Technol. Sci. 2019, 62, 2213–2225. [Google Scholar] [CrossRef]
- Du, S.; Li, Z.; He, Y.-L.; Li, D.H.; Xie, X.; Gao, Y. Experimental and numerical analysis of the hydraulic and thermal performances of the gradually-varied porous volumetric solar receiver. Sci. China Technol. Sci. 2020, 63, 1224–1234. [Google Scholar] [CrossRef]
- Barreto, G.; Canhoto, P.; Collares-Pereira, M. Combined experimental and numerical determination of the asymmetry factor of scattering phase functions in porous volumetric solar receivers. Sol. Energy Mater. Sol. Cells 2020, 206, 110327. [Google Scholar] [CrossRef]
- Wu, Z.; Caliot, C.; Flamant, G.; Wang, Z. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. Int. J. Heat Mass Transf. 2011, 54, 1527–1537. [Google Scholar] [CrossRef]
- Viskanta, X.F.R.; Gore, J.P. Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Exp. Therm. Fluid Sci. 1998, 17, 285–293. [Google Scholar] [CrossRef]
- Younis, L.; Viskanta, R. Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transf. 1993, 36, 1425–1434. [Google Scholar] [CrossRef]
- Petrasch, J.; Wyss, P.; Steinfeld, A. Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf. 2007, 105, 180–197. [Google Scholar] [CrossRef]
- Chang, X.; De-You, L.; Yuan, Z.; Su, G.; Yan, Y. Unsteady Heat Transfer of Porous Media Solar Receiver. J. S. China Univ. Technol. (Nat. Sci. Ed.) 2011, 39, 42, 46, 51. [Google Scholar]
- Xue, C. Investigation on Forced Convection and Coupled Heat Transfer with High Temperature Radiation in Cellular Porous Material. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Hsu, P.-F.; Howell, J.R. Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia. Exp. Heat Transf. 1992, 5, 293–313. [Google Scholar] [CrossRef]
- Hendricks, T.J.; Howell, J.R. Absorption/Scattering Coefficients and Scattering Phase Functions in Reticulated Porous Ceramics. J. Heat Transf. 1996, 118, 79–87. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, Y. Performance analysis of a volumetric receiver composed of packed shaped particles with spectrally dependent emissivity. Int. J. Heat Mass Transf. 2018, 122, 421–431. [Google Scholar] [CrossRef]
- Cunsolo, S.; Oliviero, M.; Harris, W.M.; Andreozzi, A.; Bianco, N.; Chiu, W.K.S.; Naso, V. Monte Carlo determination of radiative properties of metal foams: Comparison between idealized and real cell structures. Int. J. Therm. Sci. 2015, 87, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Mulholland, G.W. Smoke production and properties. In SFPE Handbook of Fire Protection Engineering; National Fire Protection Association: Quincy, MA, USA, 1995; Chapter 30; pp. 217–227. [Google Scholar]
- Aichmayer, L.; Garrido, J.; Wang, W.; Laumert, B. Experimental evaluation of a novel solar receiver for a micro gas-turbine based solar dish system in the KTH high-flux solar simulator. Energy 2018, 159, 184–195. [Google Scholar] [CrossRef]
Model | Wu(a) | Wu(b) | Fu | Younis | Petrasch | Xu | Chen |
---|---|---|---|---|---|---|---|
Efficiency | 0.821 | 0.817 | 0.663 | 0.675 | 0.673 | 0.824 | 0.606 |
Model | Wu(a) | Wu(b) | Fu | Younis | Petrasch | Xu | Chen |
---|---|---|---|---|---|---|---|
Efficiency | 0.819 | 0.815 | 0.638 | 0.671 | 0.651 | 0.821 | 0.577 |
Model | Wu(a) | Wu(b) | Fu | Younis | Petrasch | Xu | Chen |
---|---|---|---|---|---|---|---|
Efficiency | 0.805 | 0.799 | 0.596 | 0.634 | 0.609 | 0.810 | 0.533 |
Model | Wu(a) | Wu(b) | Fu | Younis | Petrasch | Xu | Chen |
---|---|---|---|---|---|---|---|
Efficiency | 0.823 | 0.823 | 0.655 | 0.711 | 0.720 | 0.791 | 0.693 |
Model | Wu(a) | Wu(b) | Fu | Younis | Petrasch | Xu | Chen |
---|---|---|---|---|---|---|---|
Efficiency | 0.806 | 0.805 | 0.629 | 0.685 | 0.694 | 0.768 | 0.667 |
Model | Wu(a) | Wu(b) | Fu | Younis | Petrasch | Xu | Chen |
---|---|---|---|---|---|---|---|
Efficiency | 0.801 | 0.800 | 0.623 | 0.678 | 0.688 | 0.762 | 0.661 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, X.; Liu, T.; Liu, D. Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver. Energies 2022, 15, 3899. https://doi.org/10.3390/en15113899
Ni X, Liu T, Liu D. Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver. Energies. 2022; 15(11):3899. https://doi.org/10.3390/en15113899
Chicago/Turabian StyleNi, Xuewei, Tiening Liu, and Dong Liu. 2022. "Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver" Energies 15, no. 11: 3899. https://doi.org/10.3390/en15113899
APA StyleNi, X., Liu, T., & Liu, D. (2022). Effects of Volumetric Property Models on the Efficiency of a Porous Volumetric Solar Receiver. Energies, 15(11), 3899. https://doi.org/10.3390/en15113899