Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments
Abstract
:1. Introduction
- Demonstrate how existing PV and solar thermal standards can be used for thermal and electrical characterization of BIPVT units.
- Compare the results obtained with indoor and outdoor performance characterization experiments of an air-based BIPVT unit and highlight the challenges of doing such comparison.
- Compare the performance of an air-type BIPVT collector with in-channel perforated baffle plates with that of a BIPVT unit with a hybrid PV/solar thermal collector absorber to demonstrate the thermal and electrical impact of such design.
2. Air-Type BIPVT Collector
3. Experimental Setup
3.1. Indoor Electrical Characterization
3.2. Indoor Thermal Characterization
3.3. Outdoor Electrical and Thermal Characterization
4. Results and Discussion
4.1. Indoor Performance
4.1.1. Electrical Performance
4.1.2. Thermal Performance
4.2. Outdoor Performance
4.2.1. Electrical Performance
4.2.2. Thermal Performance
4.3. Indoor and Outdoor Experiment Comparison
4.3.1. Comparison Challenges
- Environmental testing conditions
- BIPVT collector area
- Experimental setup.
Environmental Testing Conditions
BIPVT Collector Area
Experimental Setup
4.3.2. Results
4.4. BIPVT Thermal Enhancement Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chaibi, Y.; Malvoni, M.; El Rhafiki, T.; Kousksou, T.; Zeraiuli, Y. Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems. Clean. Eng. Technol. 2021, 4, 100132. [Google Scholar] [CrossRef]
- University College London (UCL). 2020 Global Status Report for Buildings and Construction; United Nations Environment Programme: Nairobi, Kenya, 2020; p. 10. [Google Scholar]
- IEA PVPS. Trends in photovoltaic applications 2019. In Task 1 Strategic PV Analysis and Outreach; IEA PVPS: Rheine, Germany, 2019. [Google Scholar]
- Kumar, S.P.; Agyekum, E.B.; Velkin, V.I.; Yaqoob, S.J.; Adebayo, T.S. Thermal management of solar photovoltaic module to enhance output performance: An experimental passive cooling approach using discontinuous aluminum heat sink. Int. J. Renew. Energy Res. 2021, 11, 1700–1712. [Google Scholar]
- Agyekum, E.B.; Kumar, S.P.; Alwan, N.T.; Velkin, V.I.; Adebayo, T.S. Experimental study on performance enhancement of a photovoltaic module using a combination of phase change material and aluminum fins-Exergy, energy and economic (3E) analysis. Inventions 2021, 6, 69. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Kumar, S.P.; Alwan, N.T.; Velkin, V.I.; Shcheklein, S.E.; Yaqoob, S.J. Experimental investigation of the effect of a combination of active and passive cooling mechanism on the thermal characteristics and efficiency of solar PV module. Inventions 2021, 6, 63. [Google Scholar] [CrossRef]
- Zondag, A.H.; De Vries, W.D.; Van Helden, W.G.J.; van Zolingen, R.J.C.; van Steenhoven, A.A. The yield of different combined pv-thermal collector designs. Sol. Energy 2003, 74, 253–269. [Google Scholar] [CrossRef]
- De Vries, D.W. Design of a Photovoltaic/Thermal Combi-Panel; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 1998. [Google Scholar]
- Adeli, M.M.; Sobhnamayan, F.; Farahat, S.; Alavi, M.A. Experimental performance evaluation of a photovoltaic thermal (PV/T) air collector and its optimization. J. Mech. Eng. 2012, 58, 309–318. [Google Scholar] [CrossRef]
- Rahim, N.A.; Rahim, N.A.A.; Selvaraj, J.; Tyagi, V.V. Outdoor performance of solar PV/T air system. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology (CEAT), Langkawi, Malaysia, 18–20 November 2013; pp. 192–197. [Google Scholar]
- Tomar, V.; Tiwari, G.N.; Bhatti, T.S. Performance of different photovoltaic-thermal (PVT) configurations integrated on prototype test cells: An experimental approach. Energy Convers. Manag. 2017, 154, 394–419. [Google Scholar] [CrossRef]
- Ozakin, A.N.; Kaya, F. Experimental thermodynamic analysis of air-type PVT system using fins in different materials: Optimization of control parameters by Taguchi method and ANOVA. Sol. Energy 2020, 197, 199–211. [Google Scholar] [CrossRef]
- Ciftci, E.; Khanlari, A.; Sozen, A.; Aytac, I.; Tuncer, A.D. Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renew. Energy 2021, 180, 410–423. [Google Scholar] [CrossRef]
- Mojumder, J.C.; Chong, W.T.; Ong, H.C.; Leong, K.Y.; Mamoon, A.A. An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fin design. Energy Build. 2016, 130, 272–285. [Google Scholar] [CrossRef]
- Yang, T.; Athienitis, A.K. Experimental investigation of a two-inlet air-type building integrated photovoltaic/thermal (BIPV/T) system. Appl. Energy 2015, 159, 70–79. [Google Scholar] [CrossRef]
- Cremers, J.; Mitina, I.; Palla, N.; Klotz, F.; Jobard, X.; Eicker, U. Experimental analyses of different PVT collector designs for heating and cooling applications in buildings. Energy Procedia 2015, 78, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Dittmann, S.; Friesen, T.; Frontini, F.; Bohren, A.; Zenhausern, D.; Rommel, M. Indoor and outdoor testing of an unglazed PVT collector. In Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC2014), Amsterdam, The Netherlands, 22–26 September 2014; pp. 3637–3640. [Google Scholar]
- Bahtiar; Zohri, M.; Fudholi, A. Indoor and outdoor investigation comparison of photovoltaic thermal solar air collector. Bull. Electr. Eng. Inform. 2020, 9, 1311–1317. [Google Scholar] [CrossRef]
- ISO 9806:2013; Solar Energy—Solar Thermal Collectors—Test Methods. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 9806:2017; Solar Energy—Solar Thermal Collectors—Test Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- IEC 60891 Ed.2:2009; Photovoltaic Devices—Procedures for Temperature and Irradiance Corrections to Measured I–V Characteristics. International Electrotechnical Commission: Geneva, Switzerland, 2009.
- Kim, J.H.; Yu, J.S.; Kim, J.T. An experimental study on the energy and exergy performance of an air-type PVT collector with perforated baffle. Energies 2021, 14, 2919. [Google Scholar] [CrossRef]
- IEC 60904-9:2020; Photovoltaic Devices—Part 9: Classification of Solar Simulator Characteristics. International Organization for Standardization: Geneva, Switzerland, 2020.
- ASHRAE. Chapter 6—Psychometrics. In ASHRAE Fundamentals Handbook (SI); ASHRAE: Atlanta, GA, USA, 2001. [Google Scholar]
- Delisle, V.; Kim, J.-T.; Kim, J.; Gagné, A.; Ayoub, J. Performance Assessment of a New Air-Type Building-Integrated Photovoltaic Thermal Solar Collector; EU PVSEC: Amsterdam, The Netherlands, 2017. [Google Scholar]
- International Organization for Standardization. Guide to the Expression of Uncertainty in Measurement; International Organization for Standardization: Geneva, Switzerland, 1995; pp. 1–101. [Google Scholar]
Reference | Design Type | Collector Area Tested | Standards Used | Experimental Conditions | Performance (~800 Wm2 and 2.5 m/s Wind) |
---|---|---|---|---|---|
Adeli et al. [9] | PVT air collector | 0.46 m2 | - | Odoor tests | , at , , |
Tomar et al. [11] | GtoG PV and GtoT PV module with air space | 0.69 m2 | - | Outdoor tests | , |
Ciftci et al. [13] | PVT system with fins | - | - | Outdoor tests 0.01–0.014 kg/s | at , , 0.014 kg/s |
Mojumder et al. [14] | Air type PVT collector with cooling fins | 0.31 m2 | ISO 9806:1994 | Outdoor tests 0.02–0.14 kg/s | , at , 0.14 kg/s |
Yang et al. [15] | Two-inlet air based BIPVT | 1.07 m2 | - | Indoor tests | at 370 kg/h, |
Cremers et al. [16] | 1. Laminated glass-PV-absorber module (serpintine copper tubes) with a air gap of 66 mm2. Laminated glass-PV-glass with holohedral polypropylene absorber with ann air gap of 80 mm | 1. 3.8 m2 2. 4.4 m2 | ISO 9806:2013 | Outdoor tests 3 days | at , , and at stagnation and open circuit mode |
S. Dittmann et al. [17] | Commercial unglazed PVT collector with a heat exchanger plate on its back side | 1.64 m2 | Electrical characterization:IEC 61215:2005 Thermal characterization: EN12975/ISO9806 | Electrical characterization: Indoor tests Thermal characterization: Outdoor/indoor tests | at STC at and is at MPP |
Bathtiar et al. [18] | PVT system solar air collector | - | - | Outdoor tests 0.02 kg/s | , at indoor test , at outdoor test |
Parameter | Module 1 (Indoor) | Module 2 (Outdoor) |
---|---|---|
Cell type | Monocrystalline silicon | Monocrystalline silicon |
Gross length | 1.68 m | 1.90 m |
Gross width | 1.04 m | 1.11 m |
Number of cells | 60 | 66 |
Depth | 6 mm | 6 mm |
PV power at maximum power point () | 286 W | 308 W |
Voltage at maximum power point () | 33.9 V | 33.0 V |
Current at maximum power point () | 8.4 A | 9.3 A |
Open-circuit voltage () | 41.1 V | 44.5 V |
Short-circuit current () | 9.0 A | 9.7 A |
Electrical efficiency at maximum power point () | 17.0% | 14.6% |
Measurement | Instrument Type | Instrument Accuracy |
---|---|---|
Ambient temperature | RTD Class A | |
Outlet temperature | RTD Class B | |
Inlet temperature open-loop | Thermocouple Type T | |
Inlet temperature closed-loop | RTD Class B | |
Ambient relative humidity | – | |
Ambient pressure | Manometer | |
Air flowrate | Orifice plate flowmeter | |
Wind speed | Hot-wire anemometer | |
Irradiance | Pyranometer | |
PV cell temperature | Thermocouple Type T | |
Net long-wave irradiance | Pyrgeometer | |
Current | I-V curve tracer | |
Voltage | I-V curve tracer |
kg/h | (W/m2) | Open-Loop | Closed-Loop | ||||
---|---|---|---|---|---|---|---|
Still Air 1 | 2.4 m/s | 4.6 m/s | 35 °C | 45 °C | 55 °C | ||
85 | 821 | x o | x | x | o | o | o |
939 | x | x | x | ||||
1060 | x | x | x | ||||
195 | 821 | x | x | x | o | ||
939 | x | x | x | ||||
1060 | x | x | x | ||||
350 | 821 | x | x | x | |||
939 | x | x | x | ||||
1060 | x | x | x |
Parameter | Maximum Deviation (ISO 9806:2017 [20]) | Maximum Deviation Used |
---|---|---|
Airflow rate | 2% | 2% |
PV temperatures , | – | 0.8 °C |
Outlet temperature | 1.5 °C | 0.25 °C |
Inlet temperature | 1.5 °C | 1.3 °C |
Ambient temperature | 1.5 °C | 0.6 °C |
Net long-wave irradiance | 20 W/m2 | 15 W/m2 |
Irradiance | 50 W/m2 | Not applicable |
Wind speed | 1.0 m/s deviation from set value | Not applicable |
Measurement | Instrument Type | Instrument Accuracy |
---|---|---|
Ambient temperature | Humidity and temperature transmitter | |
Outlet temperature | ||
Inlet temperature | ||
Ambient relative humidity | ||
Air flowrate | Insertion mass flow meter | |
Wind speed | Ultrasonic anemometer | |
Irradiance | Pyranometer | |
PV cell temperature | Thermocouple Type T | 0.5% |
Current | I-V curve tracer | ±1 mA |
Voltage | I-V curve tracer | ±5 mV |
Parameters | Electrical Experimental Value Range | Thermal Experimental Value Range |
---|---|---|
Irradiance | 817–988 W/m2 | 722–1015 W/m2 |
Ambient temperature | 11–28 °C | 11–31 °C |
Outlet airflow rate | 111–234 kg/h | 113–234 kg/h |
Inlet air temperature setpoint | 10, 15, 20, 25, 30 °C | 15, 20, 25, 30 °C |
Outlet temperature | 23–42 °C | 36–40 °C |
Wind speed | 0.5–1.8 m/s | 0.9–1.9 m/s |
Parameters | Indoor Experiment | Outdoor Experiment |
---|---|---|
Irradiance () | 967 W/m2 | 967 W/m2 |
Maximum power () | 259 W * | 289 W |
PV module temperature () | 45 °C | 45 °C |
Electrical Efficiency () | 15.3% * | 14.2% |
Open-circuit voltage temperature coefficient () | −0.26%/°C | −0.27%/°C |
Maximum power point temperature coefficient () | −0.36%/°C | −0.53%/°C |
Parameters | Indoor Experiment | Outdoor Experiment |
---|---|---|
Gross BIPVT area () | 3.49 m2 | 2.11 m2 |
Irradiance () | 939 W/m2 | 946 W/m2 |
Wind speed () | 2.4 m/s | 0.9–1.9 m/s |
Outlet airflow rate () | 195 kg/h | 174 kg/h |
Thermal efficiency () | 31.1% | 28.6% |
Inlet reduced temperature () | 0.0016 m2·K/W | 0.0009 m2·K/W |
Parameters | Design A | Design B |
---|---|---|
Gross area for 2 units () | 3.27 m2 | 3.49 m2 |
Number of cells | 30 | 60 |
Maximum power () 1 | 120.3 ± 2.5 W | 287.8 ± 3.6 W |
Electrical efficiency () 1 | 7.8 ± 0.2% | 17.7 ± 0.2% |
Parameters | Design A | Design B |
---|---|---|
Outlet specific airflow rate () | 107 kg/(h·m2) | 100 kg/(h·m2) |
Irradiance () | 818 W/m2 | 821 W/m2 |
Wind speed () | 0 m/s | 0 m/s |
Air temperature rise () | 16.2 °C | 15.6 °C |
Thermal efficiency () | 60.3% | 53.9% |
Electrical efficiency () | 6.4% | 14.1% |
Maximum power () | 170.7 W | 403.8 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Yu, J.-S.; Gaucher-Loksts, E.; Roy, B.; Delisle, V.; Kim, J.-T. Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments. Energies 2022, 15, 3779. https://doi.org/10.3390/en15103779
Kim J-H, Yu J-S, Gaucher-Loksts E, Roy B, Delisle V, Kim J-T. Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments. Energies. 2022; 15(10):3779. https://doi.org/10.3390/en15103779
Chicago/Turabian StyleKim, Jin-Hee, Ji-Suk Yu, Erin Gaucher-Loksts, Benjamin Roy, Véronique Delisle, and Jun-Tae Kim. 2022. "Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments" Energies 15, no. 10: 3779. https://doi.org/10.3390/en15103779
APA StyleKim, J.-H., Yu, J.-S., Gaucher-Loksts, E., Roy, B., Delisle, V., & Kim, J.-T. (2022). Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments. Energies, 15(10), 3779. https://doi.org/10.3390/en15103779