Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria
Abstract
:1. Introduction
1.1. Literature State of the Art
1.2. Article Contribution and Organization
- Determination of the optimal sizing of PV, WT, BT, DG, and inverter integrated HMS based on a recent approach called MOSSA;
- A rule-based EMS that manages the energy flow between different HRESs is proposed;
- Analysis is performed using solar radiation, wind speed, and ambient temperature data obtained from the Djelfa region in Algeria;
- The multiobjective optimization approach considered COE and LPSP as objective functions and renewable factor (RF) as a constraint.
2. Modeling of Hybrid Microgrid System Components
2.1. PV Array Modeling
2.2. Wind Turbine Modeling
2.3. Battery Bank Modeling
- Charging process, if;
- Discharging process, if;
2.4. Diesel Generator Modeling
2.5. Inverter Modelling
3. Definition of the Study Site and System Specifications
3.1. Location and Meteorological Conditions
3.2. Load Assessment
3.3. Specifications of Hybrid Microgrid System Components
4. Energy Management Strategy of Hybrid Microgrid System
- System efficiency enhancement, thus achieving low cost and energy-saving benefits;
- Maximization of utilization of the renewable energy sources (PV and WT);
- Protection of the battery bank and minimization of its degradation;
- Minimization of fuel consumption.
- Mode 1: In this mode, the generated power from renewable energy sources (PV and WT) is sufficient to supply the load demand requirement. The extra energy is used to charge the battery bank system;
- Mode 2: In this mode, the generated power from the renewable energy sources exceeds the load demand requirement while the battery is fully charged. In this case, the surplus of energy is consumed in a dump load;
- Mode 3: In this mode, the generated power from the renewable energy sources is less than the load demand requirements. In this case the battery bank will cover the power generation deficiency to fit the load demand requirements;
- Mode 4: In this mode, the power generated from the renewable energy sources is not sufficient to meet the load demand requirement and at the same time, the battery bank storage level is low. In this case, the diesel generator will operate to cover the gap in power generation to fit the load demand requirement and further ensure the battery bank’s charging
5. Optimization Problem Formulation of the Studied Stand-Alone Microgrid
5.1. Multiobjective Optimization
5.2. Objective Functions
5.2.1. Loss of Power Supply Probability
5.2.2. Cost of Energy
5.3. Constraints
Renewable Factor
5.4. Design Variables
5.5. Multiobjective Salp Swarm Algorithm
5.5.1. Basic Salp Swarm Algorithm
5.5.2. Multiobjective Salp Swarm Algorithm
Algorithm 1. Pseudo code of the MOSSA algorithm [72,78] | |||||
1 | Set the hyper-parameter: | ||||
2 | Max_iter: | Maximum of iteration | |||
3 | ArchiveMaxSize: | Max capacity of archive (repository) | |||
4 | Dim: | The number of parameters on each salp | |||
5 | and : | The upper bound and the lower bound of salp population | |||
6 | Obj-no: | The objective number to be estimated | |||
7 | Initialize the salp population considering and | ||||
8 | Define the objective function (loss function): @ Ob-func | ||||
9 | while (end criterion is not met) do | ||||
10 | Calculate the fitness of each search agent (salp) with Ob-func | ||||
11 | Determine the non-dominated salps | ||||
12 | Update the repository considering the obtained non-dominated salps | ||||
13 | if (the repository becomes full) then | ||||
14 | Call the repository maintenance procedure to remove one repository resident | ||||
15 | Add the non-dominated salp to the repository | ||||
16 | end | ||||
17 | Choose a source of food from repository: F = SelectFood (repository) | ||||
18 | Update by | ||||
19 | for each salp: do | ||||
20 | ifthen | ||||
21 | Update the position of the leading salp by: | ||||
22 | |||||
23 | else | ||||
24 | Update the position of the follower salp by: | ||||
25 | |||||
26 | end | ||||
27 | end | ||||
28 | Amend the salps based on the upper and lower bounds of variables | ||||
29 | end | ||||
30 | return repository |
6. Results and Discussion
Comparison between MOSSA and the Other Techniques
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renew. Energy 2009, 34, 1134–1144. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D. The wind energy (r)evolution: A short review of a long history. Renew. Energy 2011, 36, 1887–1901. [Google Scholar] [CrossRef]
- Fathabadi, H. Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology. Energy 2017, 132, 1–11. [Google Scholar] [CrossRef]
- Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 2018, 154, 581–591. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP). UNDP and Energy Access for the Poor: Energizing the Millennium Development Goals. In Environment & Energy, United Nations Development Programme; UNDP: New York, NY, USA, 2011. [Google Scholar]
- Borhanazad, H.; Mekhilef, S.; Gounder Ganapathy, V.; Modiri-Delshad, M.; Mirtaheri, A. Optimization of micro-grid system using MOPSO. Renew. Energy 2014, 71, 295–306. [Google Scholar] [CrossRef]
- Celik, A.N. Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods. Energy Convers. Manag. 2003, 44, 1951–1968. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L. Design and control strategies of PV-diesel systems using genetic algorithms. Sol. Energy 2005, 79, 33–46. [Google Scholar] [CrossRef]
- Wiemann, M.; Rolland, S.; Glania, G. Hybrid Mini-Grids for Rural Electrification: Lessons Learned. In Proceedings of the Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1270–1273. [Google Scholar]
- Bukar, A.L.; Modu, B.; Gwoma, Z.M.; Mustapha, M.; Buji, A.B.; Lawan, M.B.; Tijjani, I.; Benisheik, U.A.; Bukar, A.; Mai, K.B. Economic Assessment of a PV/Diesel/Battery Hybrid Energy System for a Non-Electrified Remote Village in Nigeria. Eur. J. Eng. Res. Sci. 2017, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Nadjemi, O.; Nacer, T.; Hamidat, A.; Salhi, H. Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms. Renew. Sustain. Energy Rev. 2017, 70, 1352–1365. [Google Scholar] [CrossRef]
- Al-falahi, M.D.A.; Jayasinghe, S.D.G.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef]
- Khatib, T.; Ibrahim, I.A.; Mohamed, A. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Convers. Manag. 2016, 120, 430–448. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems. Renew. Sustain. Energy Rev. 2015, 50, 755–769. [Google Scholar] [CrossRef]
- Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A. Ben Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [Google Scholar] [CrossRef]
- Bashir, N.; Modu, B. Techno-economic analysis of off-grid renewable energy systems for rural electrification in Northeastern Nigeria. Int. J. Renew. Energy Res. 2018, 8, 1217–1228. [Google Scholar]
- Ajlan, A.; Tan, C.W.; Abdilahi, A.M. Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renew. Sustain. Energy Rev. 2017, 75, 559–570. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-López, R. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2009, 13, 2111–2118. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Abubakar Mas’ud, A.; Wright, D. Design and economic assessment of alternative renewable energy systems using capital cost projections: A case study for Saudi Arabia. Sustain. Energy Technol. Assess. 2021, 48, 101675. [Google Scholar] [CrossRef]
- Seedahmed, M.M.A.; Ramli, M.A.M.; Bouchekara, H.R.E.H.; Milyani, A.H.; Rawa, M.; Nur Budiman, F.; Firmansyah Muktiadji, R.; Mahboob Ul Hassan, S. Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia. Alex. Eng. J. 2022, 61, 6523–6540. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y. A Comparative Study of the Optimal Sizing and Management of Off-Grid Solar/Wind/Diesel and Battery Energy Systems for Remote Areas. Front. Energy Res. 2021, 9, 752043. [Google Scholar] [CrossRef]
- Tozzi, P.; Jo, J.H. A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization. Renew. Sustain. Energy Rev. 2017, 80, 390–398. [Google Scholar] [CrossRef]
- Kazem, H.A.; Khatib, T.; Sopian, K. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy Build. 2013, 61, 108–115. [Google Scholar] [CrossRef]
- Ayop, R.; Isa, N.M.; Tan, C.W. Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renew. Sustain. Energy Rev. 2018, 81, 2731–2743. [Google Scholar] [CrossRef]
- Abdul Aziz, N.I.; Sulaiman, S.I.; Shaari, S.; Musirin, I.; Sopian, K. Optimal sizing of stand-alone photovoltaic system by minimizing the loss of power supply probability. Sol. Energy 2017, 150, 220–228. [Google Scholar] [CrossRef]
- Sanajaoba, S.; Fernandez, E. Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy System. Renew. Energy 2016, 96, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, S.C.; Li, G.; Li, J.; Feng, Z. Components sizing of hybrid energy systems via the optimization of power dispatch simulations. Energy 2013, 52, 165–172. [Google Scholar] [CrossRef]
- Khatod, D.K.; Pant, V.; Sharma, J. Analytical approach for well-being assessment of small autonomous power systems with solar and wind energy sources. IEEE Trans. Energy Convers. 2010, 25, 535–545. [Google Scholar] [CrossRef]
- Lujano-Rojas, J.M.; Dufo-López, R.; Bernal-Agustín, J.L. Probabilistic modelling and analysis of stand-alone hybrid power systems. Energy 2013, 63, 19–27. [Google Scholar] [CrossRef]
- Fathy, A.; Kaaniche, K.; Alanazi, T.M. Recent Approach Based Social Spider Optimizer for Optimal Sizing of Hybrid PV/Wind/Battery/Diesel Integrated Microgrid in Aljouf Region. IEEE Access 2020, 8, 57630–57645. [Google Scholar] [CrossRef]
- Farh, H.M.H.; Al-Shamma, A.A.; Al-shaalan, A.M.; Alkuhayli, A. Technical and Economic Evaluation for Off-Grid Hybrid Renewable Energy System Using Novel Bonobo Optimizer. Sustainability 2022, 14, 1533. [Google Scholar] [CrossRef]
- Jufri, F.H.; Aryani, D.R.; Garniwa, I.; Sudiarto, B. Optimal battery energy storage dispatch strategy for small-scale isolated hybrid renewable energy system with different load profile patterns. Energies 2021, 14, 3139. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Bouchekara, H.R.E.H.; Alghamdi, A.S. Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renew. Energy 2018, 121, 400–411. [Google Scholar] [CrossRef]
- Bouchekara, H.R.E.H.; Javaid, M.S.; Shaaban, Y.A.; Shahriar, M.S.; Ramli, M.A.M.; Latreche, Y. Decomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertainty. Energy Rep. 2021, 7, 52–69. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Yiew, L.K.; Ayop, R.; Tan, W.S. A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm. Energy Convers. Manag. 2020, 221, 113161. [Google Scholar] [CrossRef]
- Omar, A.S. Multi-Objective Optimization of a Stand-alone Hybrid PV/wind/battery/diesel Micro-grid. In Proceedings of the IEEE Conference on Power Electronics and Renewable Energy, CPERE 2019, Aswan, Egypt, 23–25 October 2019; pp. 391–396. [Google Scholar]
- Bouchekara, H.R.E.H.; Shahriar, M.S.; Irshad, U.B.; Sha’aban, Y.A.; Mahmud, M.A.P.; Javaid, M.S.; Ramli, M.A.M.; Farjana, S.H. Optimal sizing of hybrid photovoltaic/diesel/battery nanogrid using a parallel multiobjective PSO-based approach: Application to desert camping in Hafr Al-Batin city in Saudi Arabia. Energy Rep. 2021, 7, 4360–4375. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, J.; Zhao, G.; Zeng, B. Optimal sizing of an island hybrid microgrid based on improved multi-objective grey wolf optimizer. Processes 2020, 8, 1581. [Google Scholar] [CrossRef]
- Fathy, A. Reliable and efficient approach for mitigating the shading effect onphotovoltaic module based on Modified Artificial Bee Colony algorithm. Renew. Energy 2015, 81, 78–88. [Google Scholar] [CrossRef]
- Ayop, R.; Tan, C.W. A comprehensive review on photovoltaic emulator. Renew. Sustain. Energy Rev. 2017, 80, 430–452. [Google Scholar] [CrossRef]
- Huld, T.; Gottschalg, R.; Beyer, H.G.; Topič, M. Mapping the performance of PV modules, effects of module type and data averaging. Sol. Energy 2010, 84, 324–338. [Google Scholar] [CrossRef]
- Daud, A.K.; Ismail, M.S. Design of isolated hybrid systems minimizing costs and pollutant emissions. Renew. Energy 2012, 44, 215–224. [Google Scholar] [CrossRef]
- Hamrouni, N.; Jraidi, M. Chérif, a Solar radiation and ambient temperature effects on the performances of a PV pumping system. Rev. Energ. Renouvelables 2008, 11, 95–106. [Google Scholar]
- Sukamongkol, Y.; Chungpaibulpatana, S.; Ongsakul, W. A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads. Renew. Energy 2002, 27, 237–258. [Google Scholar] [CrossRef]
- Wang, L.; Tan, A.C.C.; Cholette, M.; Gu, Y. Comparison of the effectiveness of analytical wake models for wind farm with constant and variable hub heights. Energy Convers. Manag. 2016, 124, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Justus, C.G. Wind energy statistics for large arrays of wind turbines (New England and Central U.S. Regions). Sol. Energy 1978, 20, 379–386. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Abbadi, N.M. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia. Renew. Energy 2007, 32, 738–749. [Google Scholar] [CrossRef]
- Jaramillo, O.A.; Borja, M.A. Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case. Renew. Energy 2004, 29, 1613–1630. [Google Scholar] [CrossRef]
- Farrugia, R.N. The wind shear exponent in a Mediterranean island climate. Renew. Energy 2003, 28, 647–653. [Google Scholar] [CrossRef]
- IES 2005 Wind Turbines-Part 1: Design Requirements. In International Standard; International Electrotechnical Commission: 2005; Volume 2005, p. 88. Available online: https://www.iec.ch/dyn/www/f?p=103:7:508880294409522::::FSP_ORG_ID:1282 (accessed on 6 April 2022).
- Patel, M.R. Book Review: Wind and Solar Power Systems—Design, Analysis, and Operation; CRC Press: Boca Raton, FL, USA, 2006; Volume 30, ISBN 0849316057. [Google Scholar]
- Wang, L.; Singh, C. PSO-based multi-criteria optimum design of a grid-connected hybrid power system with multiple renewable sources of energy. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, Honolulu, HI, USA, 1–5 April 2007; pp. 250–257. [Google Scholar] [CrossRef]
- Guangqian, D.; Bekhrad, K.; Azarikhah, P.; Maleki, A. A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renew. Energy 2018, 122, 551–560. [Google Scholar] [CrossRef]
- Kharrich, M.; Kamel, S.; Alghamdi, A.S.; Eid, A.; Mosaad, M.I.; Akherraz, M.; Abdel-Akher, M. Optimal design of an isolated hybrid microgrid for enhanced deployment of renewable energy sources in Saudi Arabia. Sustainability 2021, 13, 4708. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Ibrik, I.H. Techno-economic feasibility of energy supply of remote villages in Palestine by PV-systems, diesel generators and electric grid. Renew. Sustain. Energy Rev. 2006, 10, 128–138. [Google Scholar] [CrossRef]
- Jayachandran, M.; Ravi, G. Design and Optimization of Hybrid Micro-Grid System. Energy Procedia 2017, 117, 95–103. [Google Scholar] [CrossRef]
- Satish Kumar Ramoji, B.J.K. Optimal Economical Sizing of A PV-Wind Hybrid Energy System Using Genetic Algorithm and Teaching Learning Based Optimization. Int. J. Green Energy 2011, 8, 25–43. [Google Scholar]
- Hatata, A.Y.; Osman, G.; Aladl, M.M. An optimization method for sizing a solar/wind/battery hybrid power system based on the artificial immune system. Sustain. Energy Technol. Assess. 2018, 27, 83–93. [Google Scholar] [CrossRef]
- Skarstein, O.; Uhlen, K. Design considerations with respect to long-term diesel saving in wind/diesel plants. Wind Eng. 1989, 13, 72–87. [Google Scholar]
- Azoumah, Y.; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, P. Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The “flexy-energy” concept. Energy Policy 2011, 39, 131–141. [Google Scholar] [CrossRef]
- Deshmukh, M.K.; Deshmukh, S.S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A. A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy 2007, 35, 5708–5718. [Google Scholar] [CrossRef] [Green Version]
- Darras, C.; Sailler, S.; Thibault, C.; Muselli, M.; Poggi, P.; Hoguet, J.C.; Melscoet, S.; Pinton, E.; Grehant, S.; Gailly, F.; et al. Sizing of photovoltaic system coupled with hydrogen/oxygen storage based on the ORIENTE model. Int. J. Hydrogen Energy 2010, 35, 3322–3332. [Google Scholar] [CrossRef]
- MERRA-2 Re-Analysis. WEB SERVICES—SODA. Available online: http://www.soda-pro.com/web-services/meteodata (accessed on 6 October 2021).
- Yang, H.; Zhou, W.; Lu, L.; Fang, Z. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- Rajkumar, R.K.; Ramachandaramurthy, V.K.; Yong, B.L.; Chia, D.B. Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy. Energy 2011, 36, 5148–5153. [Google Scholar] [CrossRef]
- Kaabeche, A.; Belhamel, M.; Ibtiouen, R. Techno-economic valuation and optimization of integrated photovoltaic/wind energy conversion system. Sol. Energy 2011, 85, 2407–2420. [Google Scholar] [CrossRef]
- Fathy, A. A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt. Renew. Energy 2016, 95, 367–380. [Google Scholar] [CrossRef]
- Kashefi Kaviani, A.; Riahy, G.H.; Kouhsari, S.M. Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renew. Energy 2009, 34, 2380–2390. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Aljarah, I.; Habib, M.; Faris, H.; Al-Madi, N.; Heidari, A.A.; Mafarja, M.; Elaziz, M.A.; Mirjalili, S. A dynamic locality multi-objective salp swarm algorithm for feature selection. Comput. Ind. Eng. 2020, 147, 106628. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mohammed, S.; Ali, H.A.; Hussein, S.E. Breast Cancer Segmentation from Thermal Images Based on Chaotic Salp Swarm Algorithm. IEEE Access 2020, 8, 122121–122134. [Google Scholar] [CrossRef]
- Lasmari, A.; Zellagui, M.; El-sehiemy, R.A.; Chenni, R. Multi-objective salp swarm algorithm for performance enhancement of electrical distribution system including DG and DSTATCOM simultaneously. In Proceedings of the 4th International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES), Tipasa, Algeria, 22–24 November 2020. [Google Scholar]
- Shaheen, A.M.; El-Sehiemy, R.A. A Multiobjective Salp Optimization Algorithm for Techno-Economic-Based Performance Enhancement of Distribution Networks. IEEE Syst. J. 2021, 15, 1458–1466. [Google Scholar] [CrossRef]
- El Sehiemy, R.A.; Selim, F.; Bentouati, B.; Abido, M.A. A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems. Energy 2020, 193, 116817. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Chen, X. A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting. Energies 2018, 11, 1561. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018, 48, 805–820. [Google Scholar] [CrossRef]
- Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 2017, 46, 79–95. [Google Scholar] [CrossRef]
Reference | Year | Location | Objective Function | Algorithm |
---|---|---|---|---|
Bouchekara, H.R.E.H. [36] | 2021 | Saudi Arabia | Minimize the Annual LPSP/COE | Multiobjective Evolutionary Algorithm |
Bukar, A.L. [37] | 2020 | Nigeria | Minimize the Annual COE/DPSP | Multiobjective Grasshopper Optimization Algorithm |
Bouchekara, H.R. [39] | 2021 | Saudi Arabia | Minimize the Annual COE/LPSP | Parallel Multiobjective PSO (PMOPSO) |
Farh, H.M.H. [33] | 2022 | Saudi Arabia | Minimize the total Annualized System Cost (ASC) | Bonobo Optimizer |
Seedahmed, M.M. [22] | 2022 | Saudi Arabia | Minimize the Annual COE | HOMER |
Thirunavukkarasu, M. [23] | 2021 | India | Minimize the Annual NPC/COE | HOMER |
Fathy, A. [32] | 2020 | Saudi Arabia | Minimize the Annual COE | Social Spider Optimizer |
Omar, A.S. [38] | 2019 | Egypt | Minimize the Annual LPSP/COE and Maximize RF | Multiobjective Dragonfly Algorithm (MODA) |
Bukar, A.L. [12] | 2019 | Nigeria | Minimize the Annual COE | Grasshopper Optimization Algorithm |
Zhu, W. [40] | 2020 | China | Minimize the Annual CACS/DPSP | Multiobjective Grey Wolf Optimizer |
Particulars | Details |
---|---|
Country | Algeria |
State | Djelfa |
District | Aïn El Ibel |
Municipality | Aïn El Ibel |
Latitude | 34.346° |
Longitude | 3.163° |
Altitude above sea level | 1098 m |
Study site | Central PV Aïn El Ibel (SKTM) |
Period of measurement | 1 January 2020–31 December 2020 |
Appliances | Power (W) | Quantity | Electric Load (W) |
---|---|---|---|
Refrigerator | 220 | 2 | 440 |
Television | 150 | 3 | 450 |
Mobile Charger | 12 | 6 | 72 |
Water Pump | 450 | 2 | 900 |
Radio | 12 | 1 | 12 |
Lamps Bulb | 75 | 5 | 375 |
Lamps CFL | 18 | 8 | 144 |
Fluorescent Light | 40 | 5 | 200 |
Laptop | 46 | 3 | 138 |
Desktop computer | 120 | 2 | 240 |
Mixer | 450 | 1 | 450 |
Deep freezer | 260 | 1 | 260 |
Air conditioner | 430 | 2 | 860 |
Washing machine | 420 | 1 | 420 |
Microwave | 900 | 1 | 900 |
Component | Parameter | Value | Unit |
---|---|---|---|
Photovoltaic | Rated power PV regulator efficiency Lifetime PV regulator cost Initial cost | 7.3 95 24 1500 2150 | kW % Year $ $/kW |
Wind Turbine | Model Rated power Cut-in wind speed Rated wind speed Cut-out wind speed Number of blades Tower height Efficiency Lifetime Wind turbine regulator cost Price | Eolica 2 kW 2 2.0 9.0 20.0 3 20 95 24 1000 2000 | kW m/s m/s m/s m % Year $ $/kW |
Battery | Rated power Efficiency Lifetime SOC_Min SOC_Max DOD Initial cost | 40 85 2 30 100 70 220 | kW h % Year % % % USD/kW h |
Diesel Generator | Rated power Lifetime Initial cost | 4 24,000 1000 | kW hours USD/kW h |
Inverter | Lifetime Efficiency Initial cost | 24922500 | Year % $ |
Economic Parameters | Project lifetime Fuel inflation rate O&M + Running cost Real interest Discount rate | 24 5 20 13 8 | Year % % % % |
Algorithms | Parameters |
---|---|
MOSSA | Population size: 100 Number of iterations: 100 Archive size: 200 : Equation (28) : rand |
MODA | Population size: 100 Number of iterations: 100 Archive size: 200 |
MOGOA | Population size: 100 Number of iterations: 100 Archive size: 200 : 1 : 0.00004 |
MOALO | Population size: 100 Number of iterations: 100 Archive size: 200 |
Solution # | PV (KW) | NAD | NWT | COE (USD/kW h) | LPSP (%) | RE (%) | The AEC from PV (MW) | The AEC from WT (MW) | The AEC from BT (MW) | The AEC from DG (MW) |
---|---|---|---|---|---|---|---|---|---|---|
Solution # 1 | 65.883 | 3 | 10 | 0.255 | 27.079 | 90.46 | 121.8 | 38.87 | 118.33 | 15.33 |
Solution # 2 | 64.715 | 3 | 10 | 0.252 | 27.118 | 90.31 | 119.64 | 38.87 | 118.18 | 15.36 |
Solution # 3 | 64.436 | 3 | 10 | 0.251 | 27.153 | 90.27 | 119.12 | 38.87 | 118.09 | 15.36 |
Solution # 4 | 63.734 | 2.953 | 10 | 0.249 | 27.213 | 90.17 | 117.82 | 38.87 | 116.21 | 15.4 |
Solution # 5 | 63.773 | 2.979 | 10 | 0.249 | 27.215 | 90.17 | 117.9 | 38.87 | 117.18 | 15.4 |
Solution # 6 | 51.454 | 2.721 | 10 | 0.214 | 27.859 | 88.18 | 95.12 | 38.87 | 105.3 | 15.84 |
Solution # 7 | 46.642 | 2.781 | 10 | 0.201 | 28.105 | 87.2 | 86.23 | 38.87 | 106.61 | 16.01 |
Solution # 8 | 44.638 | 3 | 10 | 0.196 | 28.126 | 86.8 | 82.52 | 38.87 | 114.34 | 16.02 |
Solution # 9 | 42.836 | 3 | 10 | 0.191 | 28.252 | 86.36 | 79.19 | 38.87 | 113.74 | 16.11 |
Solution # 10 | 41.726 | 2.711 | 10 | 0.187 | 28.424 | 85.9 | 77.14 | 38.87 | 102.74 | 16.36 |
Solution # 11 | 32.414 | 2.697 | 10 | 0.161 | 29.353 | 82.49 | 59.92 | 38.87 | 98.07 | 17.22 |
Solution # 12 | 30.978 | 2.844 | 10 | 0.158 | 29.382 | 82.04 | 57.27 | 38.87 | 102.35 | 17.27 |
Solution # 13 | 29.081 | 3 | 10 | 0.152 | 29.57 | 81.12 | 53.76 | 38.87 | 106.38 | 17.49 |
Solution # 14 | 26.493 | 2.766 | 10 | 0.145 | 30.028 | 79.41 | 48.98 | 38.87 | 96.35 | 18.09 |
Solution # 15 | 25.132 | 2.733 | 10 | 0.141 | 30.294 | 78.46 | 46.46 | 38.87 | 94.21 | 18.38 |
Solution # 16 | 24.935 | 2.711 | 10 | 0.139 | 30.48 | 77.94 | 46.1 | 38.87 | 92.95 | 18.55 |
Solution # 17 | 23.83 | 2.887 | 10 | 0.136 | 30.715 | 77.17 | 44.05 | 38.87 | 97.6 | 18.7 |
Solution # 18 | 23.59 | 2.697 | 10 | 0.135 | 30.962 | 76.61 | 43.61 | 38.87 | 90.98 | 18.9 |
Solution # 19 | 23.843 | 1.169 | 10 | 0.134 | 31.026 | 75.63 | 44.08 | 38.87 | 41.5 | 19.87 |
Solution # 20 | 24.093 | 1 | 9 | 0.133 | 31.121 | 75.24 | 44.54 | 36.58 | 35.83 | 20.09 |
Solution # | PV (KW) | NAD | NWT | COE (USD/kW h) | LPSP (%) | RE (%) | The AEC from PV (MW) | The AEC from WT (MW) | The AEC from BT (MW) | The AEC from DG (MW) |
---|---|---|---|---|---|---|---|---|---|---|
Solution #1 | 78.057 | 1.215 | 10 | 0.286 | 27.149 | 90.99 | 144.3 | 38.87 | 49.24 | 16.24 |
Solution #2 | 76.811 | 1.119 | 10 | 0.283 | 27.154 | 90.99 | 142 | 38.87 | 45.48 | 16.3 |
Solution #3 | 76.499 | 1.137 | 10 | 0.282 | 27.155 | 90.96 | 141.42 | 38.87 | 46.15 | 16.29 |
Solution #4 | 75.377 | 1.478 | 10 | 0.28 | 27.158 | 90.99 | 139.35 | 38.87 | 59.52 | 16.07 |
Solution #5 | 74.679 | 1.478 | 10 | 0.278 | 27.177 | 90.91 | 138.06 | 38.87 | 59.49 | 16.08 |
Solution #6 | 73.399 | 1.437 | 10 | 0.274 | 27.215 | 90.76 | 135.69 | 38.87 | 57.8 | 16.13 |
Solution #7 | 73.368 | 1.452 | 10 | 0.274 | 27.223 | 90.77 | 135.63 | 38.87 | 58.41 | 16.11 |
Solution #8 | 74.282 | 1.135 | 9 | 0.273 | 27.642 | 90.47 | 137.32 | 36.65 | 45.69 | 16.53 |
Solution #9 | 54.734 | 2.271 | 10 | 0.221 | 28.132 | 88.41 | 101.19 | 38.87 | 88.25 | 16.07 |
Solution #10 | 44.195 | 1.926 | 10 | 0.193 | 28.425 | 86.12 | 81.7 | 38.87 | 74.02 | 16.74 |
Solution #11 | 43.87 | 1.882 | 10 | 0.192 | 28.495 | 86.01 | 81.1 | 38.87 | 72.32 | 16.77 |
Solution #12 | 34.075 | 2.6 | 10 | 0.165 | 29.184 | 83.16 | 62.99 | 38.87 | 95.47 | 17.07 |
Solution #13 | 33.13 | 1 | 10 | 0.16 | 29.523 | 81.51 | 61.25 | 38.87 | 37.85 | 18.38 |
Solution #14 | 29.655 | 1.342 | 9 | 0.149 | 30.257 | 79.62 | 54.82 | 36.65 | 48.94 | 18.64 |
Solution #15 | 28.743 | 1.436 | 9 | 0.146 | 30.482 | 78.93 | 53.14 | 36.65 | 51.86 | 18.8 |
Solution #16 | 28.717 | 1.4 | 9 | 0.146 | 30.496 | 78.9 | 53.09 | 36.65 | 50.59 | 18.82 |
Solution #17 | 28.683 | 1.47 | 9 | 0.146 | 30.502 | 78.88 | 53.03 | 36.65 | 53 | 18.79 |
Solution #18 | 28.853 | 1.383 | 9 | 0.144 | 30.711 | 78.48 | 53.34 | 36.65 | 49.77 | 18.98 |
Solution #19 | 25.706 | 1 | 8 | 0.134 | 31.347 | 75.4 | 47.52 | 33.86 | 35.8 | 20.08 |
Solution #20 | 25.637 | 1.003 | 8 | 0.134 | 31.411 | 75.25 | 47.39 | 33.86 | 35.83 | 20.11 |
Solution # | PV (KW) | NAD | NWT | COE (USD/kW h) | LPSP (%) | RE (%) | The AEC from PV (MW) | The AEC from WT (MW) | The AEC from BT (MW) | The AEC from DG (MW) |
---|---|---|---|---|---|---|---|---|---|---|
Solution #1 | 85.825 | 1.014 | 10 | 0.307 | 27.021 | 91.74 | 158.66 | 38.26 | 41.47 | 16.26 |
Solution #2 | 74.989 | 1.007 | 10 | 0.277 | 27.332 | 90.68 | 138.63 | 38.26 | 40.91 | 16.47 |
Solution #3 | 66.413 | 2.695 | 10 | 0.254 | 27.442 | 90.32 | 122.78 | 38.26 | 106.10 | 15.53 |
Solution #4 | 64.188 | 2.098 | 10 | 0.247 | 27.825 | 89.81 | 118.66 | 38.26 | 82.63 | 15.91 |
Solution #5 | 64.188 | 2.098 | 10 | 0.247 | 27.831 | 89.80 | 118.66 | 38.26 | 82.62 | 15.91 |
Solution #6 | 64.309 | 2.721 | 9 | 0.244 | 28.119 | 89.64 | 118.89 | 34.06 | 105.80 | 15.85 |
Solution #7 | 63.919 | 2.686 | 9 | 0.241 | 28.356 | 89.43 | 118.17 | 34.06 | 104.17 | 15.99 |
Solution #8 | 50.841 | 3.000 | 9 | 0.208 | 28.459 | 87.56 | 93.99 | 34.06 | 114.34 | 16.03 |
Solution #9 | 48.944 | 2.079 | 8 | 0.198 | 29.275 | 86.14 | 90.48 | 32.20 | 79.02 | 17.01 |
Solution #10 | 48.446 | 1.117 | 8 | 0.196 | 29.304 | 85.55 | 89.56 | 32.20 | 43.23 | 17.68 |
Solution #11 | 43.247 | 1.130 | 9 | 0.184 | 29.350 | 84.57 | 79.95 | 34.06 | 43.38 | 17.69 |
Solution #12 | 43.326 | 1.115 | 9 | 0.184 | 29.387 | 84.49 | 80.10 | 34.06 | 42.84 | 17.75 |
Solution #13 | 37.080 | 1.897 | 9 | 0.167 | 29.811 | 82.92 | 68.55 | 34.06 | 70.51 | 17.60 |
Solution #14 | 26.733 | 1.005 | 10 | 0.143 | 30.331 | 77.88 | 49.42 | 38.26 | 36.79 | 19.39 |
Solution #15 | 25.487 | 1.117 | 9 | 0.134 | 31.378 | 75.53 | 47.12 | 34.06 | 39.69 | 19.94 |
Solution #16 | 20.161 | 1.102 | 9 | 0.119 | 32.600 | 70.42 | 37.27 | 34.06 | 37.51 | 21.14 |
Solution #17 | 16.490 | 1.131 | 8 | 0.105 | 34.570 | 63.46 | 30.48 | 32.20 | 36.34 | 22.50 |
Solution #18 | 12.920 | 2.682 | 9 | 0.102 | 34.950 | 61.84 | 23.89 | 34.06 | 76.89 | 22.47 |
Solution #19 | 15.144 | 1.950 | 7 | 0.101 | 35.199 | 58.41 | 28.00 | 27.21 | 56.98 | 22.96 |
Solution #20 | 12.565 | 1.242 | 6 | 0.084 | 38.810 | 45.94 | 23.23 | 23.32 | 34.44 | 25.17 |
Solution # | PV (KW) | NAD | NWT | COE (USD/kW h) | LPSP (%) | RE (%) | The AEC from PV (MW) | The AEC from WT (MW) | The AEC from BT (MW) | The AEC from DG (MW) |
---|---|---|---|---|---|---|---|---|---|---|
Solution #1 | 78.813 | 2.39 | 10 | 0.29 | 27.018 | 91.67 | 145.7 | 38.87 | 95.56 | 15.38 |
Solution #2 | 75.317 | 1.953 | 10 | 0.28 | 27.228 | 91.19 | 139.24 | 38.87 | 78.09 | 15.69 |
Solution #3 | 64.59 | 2.666 | 10 | 0.251 | 27.339 | 90.21 | 119.41 | 38.87 | 105.12 | 15.49 |
Solution #4 | 62.96 | 1.842 | 10 | 0.245 | 27.54 | 89.64 | 116.39 | 38.87 | 72.98 | 16.08 |
Solution #5 | 51.387 | 2.629 | 10 | 0.214 | 27.882 | 88.13 | 95 | 38.87 | 101.8 | 15.89 |
Solution #6 | 46.735 | 1.629 | 10 | 0.2 | 28.358 | 86.56 | 86.4 | 38.87 | 63.15 | 16.81 |
Solution #7 | 42.991 | 1 | 10 | 0.189 | 28.602 | 85.19 | 79.48 | 38.87 | 39.15 | 17.52 |
Solution #8 | 38.052 | 1.555 | 10 | 0.174 | 29.262 | 83.85 | 70.35 | 38.87 | 58.83 | 17.43 |
Solution #9 | 35.045 | 1.644 | 10 | 0.166 | 29.414 | 82.86 | 64.79 | 38.87 | 61.53 | 17.61 |
Solution #10 | 33.112 | 1.615 | 10 | 0.161 | 29.561 | 82.08 | 61.21 | 38.87 | 59.93 | 17.81 |
Solution #11 | 29.121 | 2.008 | 10 | 0.151 | 29.829 | 80.53 | 53.84 | 38.87 | 72.39 | 18.05 |
Solution #12 | 28.185 | 1 | 10 | 0.147 | 30.008 | 79.02 | 52.11 | 38.87 | 37.07 | 19.09 |
Solution #13 | 24.526 | 1.532 | 10 | 0.135 | 31.072 | 76.37 | 45.34 | 38.87 | 53.61 | 19.43 |
Solution #14 | 20.076 | 1.517 | 10 | 0.123 | 32.053 | 72.44 | 37.11 | 38.87 | 51.13 | 20.44 |
Solution #15 | 15.922 | 1.535 | 10 | 0.112 | 33.344 | 67.56 | 29.43 | 38.87 | 49.33 | 21.57 |
Solution #16 | 16.957 | 1.49 | 8 | 0.107 | 34.326 | 64.96 | 31.35 | 31.53 | 47.24 | 22.03 |
Solution #17 | 12.117 | 1.395 | 9 | 0.097 | 35.741 | 58.93 | 22.4 | 34.55 | 41.29 | 23.39 |
Solution #18 | 12.169 | 3 | 8 | 0.095 | 36.589 | 56.12 | 22.5 | 31.53 | 81.18 | 23.37 |
Solution #19 | 12.474 | 1 | 7 | 0.089 | 37.443 | 51.31 | 23.06 | 27.52 | 29.39 | 24.63 |
Solution #20 | 13.973 | 1.103 | 6 | 0.087 | 38.106 | 49.55 | 25.83 | 22.94 | 31.89 | 24.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belboul, Z.; Toual, B.; Kouzou, A.; Mokrani, L.; Bensalem, A.; Kennel, R.; Abdelrahem, M. Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria. Energies 2022, 15, 3579. https://doi.org/10.3390/en15103579
Belboul Z, Toual B, Kouzou A, Mokrani L, Bensalem A, Kennel R, Abdelrahem M. Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria. Energies. 2022; 15(10):3579. https://doi.org/10.3390/en15103579
Chicago/Turabian StyleBelboul, Zakaria, Belgacem Toual, Abdellah Kouzou, Lakhdar Mokrani, Abderrahman Bensalem, Ralph Kennel, and Mohamed Abdelrahem. 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria" Energies 15, no. 10: 3579. https://doi.org/10.3390/en15103579
APA StyleBelboul, Z., Toual, B., Kouzou, A., Mokrani, L., Bensalem, A., Kennel, R., & Abdelrahem, M. (2022). Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria. Energies, 15(10), 3579. https://doi.org/10.3390/en15103579