The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-Earth Metals)
Abstract
:1. Introduction
2. Crystal Structures
2.1. REMgNi4
2.2. α-Hydride Phase (REMgNi4Hx1)
2.3. β-Hydride Phase (REMgNi4Hx2)
2.4. Y-Hydride Phase (REMgNi4Hx3)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takagi, S.; Orimo, S. Recent progress in hydrogen-rich materials from the perspective of bonding flexibility of hydrogen. Scr. Mater. 2015, 109, 1–5. [Google Scholar] [CrossRef]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Orimo, S.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef] [PubMed]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef]
- Kim, S.; Oguchi, H.; Toyama, N.; Sato, T.; Takagi, S.; Otomo, T.; Arunkumar, D.; Kuwata, N.; Kawamura, J.; Orimo, S. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 2019, 10, 1081. [Google Scholar] [CrossRef] [Green Version]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for hydrogen-based energy storage e past, recent progress and future outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Takagi, S.; Ikeshoji, T.; Sato, T.; Orimo, S. Pseudorotating hydride complexes with high hydrogen coordination: A class of rotatable polyanions in solid matter. Appl. Phys. Lett. 2020, 116, 173901. [Google Scholar] [CrossRef]
- Kisu, K.; Kim, S.; Shinohara, T.; Zhao, K.; Züttel, A.; Orimo, S. Monocarborane cluster as a stable fluorine-free calcium battery electrolyte. Sci. Rep. 2021, 11, 7563. [Google Scholar] [CrossRef]
- Zolliker, P.; Yvon, K.; Jorgensen, J.D.; Rotella, F.J. Structural studies of the hydrogen storage material Mg2NiH4. 2. Monoclinic low-temperature structure. Inorg. Chem. 1986, 25, 3590–3593. [Google Scholar] [CrossRef]
- Didisheim, J.-J.; Zolliker, P.; Yvon, K.; Fischer, P.; Schefer, J.; Gubelmann, M.; Williams, A.F. Dimagnesium iron (II) hydride, Mg2FeH6, containing octahedral FeH64– anions. Inorg. Chem. 1984, 23, 1953–1957. [Google Scholar] [CrossRef]
- Sato, T.; Ramirez-Cuesta, A.J.; Daemen, L.L.; Cheng, Y.; Orimo, S. Evidence of intermediate hydrogen states in the formation of a complex hydride. Inorg. Chem. 2018, 57, 867–872. [Google Scholar] [CrossRef]
- Sato, T.; Daemen, L.L.; Cheng, Y.; Ramirez-Cuesta, A.J.; Ikeda, K.; Aoki, T.; Otomo, T.; Orimo, S. Hydrogen-release reaction of a complex transition metal hydride with covalently bound hydrogen and hydride ions. ChemPhysChem 2019, 20, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Terashita, N.; Akiba, E. Hydriding Properties of (Mg1–xMx)Ni2 C15–Type Laves Phase Alloys. Mater. Trans. 2006, 47, 1890–1893. [Google Scholar] [CrossRef] [Green Version]
- Zhanga, H.; Zhenga, X.; Tianb, X.; Liuc, Y.; Lia, X. New approaches for rare earth-magnesium based hydrogen storage alloys. Prog. Nat. Sci. Mater. Int. 2017, 27, 50–57. [Google Scholar] [CrossRef]
- Modi, P.; Aguey-Zinsou, K.F. Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review. Front. Energy Res. 2021, 9, 616115. [Google Scholar] [CrossRef]
- Kadir, K.; Noréus, D.; Yamashita, I. Structural Determination of AMgNi4 (Where A = Ca, La, Ce, Pr, Nd, and Y) in the AuBe5 Type Structure. J. Alloys Compd. 2002, 345, 140–143. [Google Scholar] [CrossRef]
- Aono, K.; Orimo, S.; Fujii, H. Structural and Hydriding Properties of MgYNi4: A new intermetallic compound with C15b-type Laves phase structure. J. Alloys Compd. 2000, 309, L1–L4. [Google Scholar] [CrossRef]
- Shtender, V.V.; Denys, R.V.; Paul–Boncour, V.; Riabov, A.B.; Zavaliy, I.Y. Hydrogenation Properties and Crystal Structure of YMgT4 (T = Co, Ni, Cu) Compounds. J. Alloys Compd. 2014, 603, 7–13. [Google Scholar] [CrossRef]
- Sato, T.; Mochizuki, T.; Ikeda, K.; Honda, T.; Otomo, T.; Sagayama, H.; Yang, H.; Luo, W.; Lombardo, L.; Züttel, A.; et al. Crystal Structural Investigations for Understanding the Hydrogen Storage Properties of YMgNi4–Based Alloys. ASC Omega 2020, 5, 31192–31198. [Google Scholar] [CrossRef]
- Prigent, J.; Gupta, M. Ab initio study of the hydrogenation properties of Mg-based binary and ternary compounds Mg2X (X= Ni, Si) and YMgNi4. J. Alloys Compd. 2007, 446–447, 90–95. [Google Scholar] [CrossRef]
- Roquefere, J.-G.; Matar, S.F.; Bobet, J.-L. Stability of the hydrides REMgNi4H4 (RE = Y, Gd) from first principles. Int. J. Hydrog. Energy 2010, 35, 7858–7865. [Google Scholar] [CrossRef]
- Guénée, L.; Favre–Nicolin, V.; Yvon, K. Synthesis, Crystal Structure and Hydrogenation Properties of the Ternary Compounds LaNi4Mg and NdNi4Mg. J. Alloys Compd. 2003, 348, 129–137. [Google Scholar] [CrossRef]
- Chotard, J.-N.; Sheptyakov, D.; Yvon, K. Hydrogen Induced Site Depopulation in the LaMgNi4–Hydrogen System. Z. Kristallogr. 2008, 223, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Yuan, Z.; Bu, W.; Jia, Z.; Qi, Y.; Zhang, Y. Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy. Mater. Des. 2016, 93, 46–52. [Google Scholar] [CrossRef]
- Sakaki, K.; Terashita, N.; Tsunokake, S.; Nakamura, Y.; Akiba, E. In Situ X-ray Diffraction Study of Phase Transformation of Mg2−xPrxNi4 during Hydrogenation and Dehydrogenation (x = 0.6 and 1.0). J. Phys. Chem. C 2012, 116, 1401–1407. [Google Scholar] [CrossRef]
- Sakaki, K.; Terashita, N.; Tsunokake, S.; Nakamura, Y.; Akiba, E. Effect of Rare Earth Elements and Alloy Composition on Hydrogenation Properties and Crystal Structures of Hydrides in Mg2−xRExNi4. J. Phys. Chem. C 2012, 116, 19156–19163. [Google Scholar] [CrossRef]
- Sakaki, K.; Terashita, N.; Kim, H.; Proffen, T.; Majzoub, E.H.; Tsunokake, S.; Nakamura, Y.; Akiba, E. Crystal Structure and Local Structure of Mg2−xPrxNi4 (x = 0.6 and 1.0) Deuteride Using in Situ Neutron Total Scattering. Inorg. Chem. 2013, 52, 7010–7019. [Google Scholar] [CrossRef]
- Denys, R.V.; Riabov, A.B.; Černý, R.; Koval’chuk, I.V.; Zavaliy, I.Y. New CeMgCo4 and Ce2MgCo9 compounds: Hydrogenation properties and crystal structure of hydrides. J. Solid State Chem. 2012, 187, 1–6. [Google Scholar] [CrossRef]
- Verbovytskyya, Y.; Opryska, V.; Paul-Boncourb, V.; Zavaliya, I.; Berezovetsa, V.; Lyutyya, P.; Kosarchyna, Y. Solid Gas and Electrochemical Hydrogenation of the Selected Alloys (R’,R’’)2-xMgxNi4-yCoy (R’, R’’ = Pr, Nd; x = 0.8–1.2; y = 0–2). J. Alloys Compd. 2021, 876, 160155. [Google Scholar] [CrossRef]
- Shtender, V.V.; Denys, R.V.; Paul–Boncour, V.; Verbovytskyy, Y.V.; Zavaliy, I.Y. Effect of Co substitution on hydrogenation and magnetic properties of NdMgNi4 alloy. J. Alloys Compd. 2015, 639, 526–532. [Google Scholar] [CrossRef]
- Shtender, V.V.; Denys, R.V.; Zavaliy, I.Y.; Zelinska, O.Y.; Paul-Boncour, V.; Pavlyuk, V.V. Phase equilibriain the Tb-Mg-Co system at 500 ºC, crystal structure and hydrogenation properties of selected compounds. J. Solid State Chem. 2015, 232, 228–235. [Google Scholar] [CrossRef]
- Shtender, V.V.; Paul–Boncour, V.; Denys, R.V.; Crivello, J.-C.; Zavaliy, I.Y. TbMgNi4-xCox−(H,D)2 System. I: Synthesis, Hydrogenation Properties, and Crystal and Electronic Structures. J. Phys. Chem. C 2020, 124, 196–204. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic radii in crystal. J. Phys. Chem. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Aoki, K.; Masumoto, T. Solid State Amorphization of Intermetallic Compounds by Hydrogenation. J. Alloys Compd. 1993, 194, 251–261. [Google Scholar] [CrossRef]
- Aoki, K.; Li, X.-G.; Masumoto, T. Differential thermal analysis of hydrogen-induced amorphization in C15 Laves phase GdFe2. Acta Metall. Mater. 1992, 40, 221–227. [Google Scholar] [CrossRef]
- Ibarra, M.R.; del Moral, A. Magnetostriction and thermal expansion in rare earth-Ni2 intermetallic compounds. Proc-Int. Conf. Magn. Rare-Earths Actin. 1983, 1, 92–95. [Google Scholar]
- Switendick, A.C. Band Structure Calculations for Metal Hydrogen Systems. Z. Phys. Chem. 1979, 117, 89–112. [Google Scholar] [CrossRef] [Green Version]
- Borgschulte, A.; Terreni, J.; Billeter, E.; Daemen, L.; Cheng, Y.; Pandey, A.; Łodziana, Z.; Hemley, R.J.; Ramirez–Cuesta, A.J. Inelastic Neutron Scattering Evidence for Anomalous H–H Distances in Metal Hydrides. Proc. Natl. Acad. Sci. USA 2020, 117, 4021–4026. [Google Scholar] [CrossRef]
- Yartys, V.A.; Denys, R.D.; Hauback, B.C.; Fjellvåg, H.; Bulyk, I.I.; Riabov, A.B.; Kalychak, Y.M. Short hydrogen–hydrogen separations in novel intermetallic hydrides, RE3Ni3In3D4 (RE = La, Ce and Nd). J. Alloys Compd. 2002, 330–332, 132–140. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Vidya, R.; Kjekshus, A.; Fjellvåg, H.; Yartys, V.A. Short hydrogen–hydrogen separation in RNiInH1.333 (R = La, Ce, Nd). Phys. Rev. B 2003, 67, 014101. [Google Scholar] [CrossRef]
RE | Hydride (Chemical Composition and Unit Cell Parameters) | ΔH (kJ/mol H2) | Hydrogen (mass%) | |
---|---|---|---|---|
Y | β-hydride (Orthorhombic, Pmn21 (No. 31)): | |||
Y0.81Mg1.19Ni4.00D3.35 | a = 5.027 Å, b = 5.383 Å, c = 7.285 Å [20] | 1.00 | ||
YMgNi4D4 | a = 5.029 Å, b = 5.400 Å, c = 7.300 Å [19] | −35.8 * [18] −33.1 * [19] | 1.15 | |
Y1.06Mg0.94Ni4.00D3.86 | a = 5.041 Å, b = 5.416 Å, c = 7.303 Å [20] | −29.2 [20] | 1.09 | |
γ-hydride (Cubic, F-43m (No. 216)): | ||||
YMgCo2Ni2D4.9 | a = 7.346 Å [19] | −28.8 * [19] | 1.40 | |
YMgCo4D6.8 | a = 7.588 Å [19] | −27.9 * [19] | 1.93 | |
La | α-hydride (Cubic, F-43m (No. 216)): | |||
LaMgNi4D0.75 | a = 7.279 Å [24] | 0.19 | ||
β-hydride (Orthorhombic, Pmn21 (No. 31)): | ||||
LaMgNi4D3.7 | a = 5.126 Å, b = 5.524 Å, c = 7.455 Å [24] | 0.93 | ||
γ-hydride (Cubic, F-43m (No. 216)): | ||||
LaMgNi4D4.85 | a = 7.658 Å [24] | −25 [27] | 1.21 | |
Ce | γ-hydride (Cubic, F-43m (No. 216)): | |||
CeMgCo4D4.2 | a = 7.506 Å [29] | 1.05 | ||
Pr | β-hydride (Orthorhombic, Pmn21 (No. 31)): | |||
Pr1.0Mg1.0Ni4.0D~4 | a = 5.083 Å, b = 5.473 Å, c = 7.384 Å [28] | −42 [27] | ~1.00 | |
γ-hydride (Cubic, F-43m (No. 216)): | ||||
Pr0.6Mg1.4Ni4.0D~3.6 | a = 7.341 Å [28] | ~1.02 | ||
Pr1.0Mg1.0Ni4.0H~6 | a = 7.635 Å [26] | −20 [27] | ~1.49 | |
Nd | β-hydride (Orthorhombic, Pmn21 (No. 31)): | |||
NdMgNi4D3.6 | a = 5.077 Å, b = 5.474 Å, c = 7.379 Å [23] | −44 [27] | 0.89 | |
γ-hydride (Cubic, F-43m (No. 216)): | ||||
Nd1.0Mg1.0Ni4.0H~6 | a = 7.603 Å [27] | −17.7 [27] | ~1.48 | |
Sm | γ-hydride (Cubic, F-43m (No. 216)): | |||
Sm0.6Mg1.4Ni4H~3.6 | a = 7.319 Å [27] | ~1.00 | ||
Gd | γ-hydride (Cubic, F-43m (No. 216)): | |||
Gd0.6Mg1.4Ni4H~3.6 | a = 7.275 Å [27] | ~0.99 | ||
Tb | β-hydride (Orthorhombic, Pmn21 (No. 31)): | |||
TbMgNi4H3.8 | a = 5.018 Å, b = 5.418 Å, c = 7.283 Å [33] | 0.91 | ||
TbMgNi3CoH4.1 | a = 5.008 Å, b = 5.406 Å, c = 7.323 Å [33] | 0.98 | ||
TbMgNi2Co2H3.7 | a = 4.996 Å, b = 5.408 Å, c = 7.359 Å [33] | 0.88 | ||
TbMgNiCo3H3.7 | a = 4.981 Å, b = 5.390 Å, c = 7.350 Å [33] | 0.88 | ||
TbMgCo4H3.3 | a = 5.409 Å, b = 5.004 Å, c = 7.361 Å, β = 96.18°, Monoclinic, Pm (No. 6) [33] | 0.79 | ||
γ-hydride (Cubic, F-43m (No. 216)): | ||||
TbMgNi2Co2H~5 | a = 7.442 Å [33] | ~1.19 | ||
TbMgNiCo3D5.4 | a = 7.479 Å [33] | 1.28 | ||
TbMgCo4H5.2 | a = 7.504 Å [33] | 1.24 | ||
TbMgCo4D6 | a = 7.566 Å [33] | 1.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T.; Orimo, S.-i. The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-Earth Metals). Energies 2021, 14, 8163. https://doi.org/10.3390/en14238163
Sato T, Orimo S-i. The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-Earth Metals). Energies. 2021; 14(23):8163. https://doi.org/10.3390/en14238163
Chicago/Turabian StyleSato, Toyoto, and Shin-ichi Orimo. 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-Earth Metals)" Energies 14, no. 23: 8163. https://doi.org/10.3390/en14238163
APA StyleSato, T., & Orimo, S.-i. (2021). The Crystal Structures in Hydrogen Absorption Reactions of REMgNi4-Based Alloys (RE: Rare-Earth Metals). Energies, 14(23), 8163. https://doi.org/10.3390/en14238163