Predicting the Future-Big Data and Machine Learning
1. Introduction
2. The Articles
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuentes, A.G.; Serrano, N.M.B.; Lasheras, F.S.; Valverde, G.F.; Sánchez, A.S. Prediction of Health-Related Leave Days among Workers in the Energy Sector by Means of Genetic Algorithms. Energies 2020, 13, 2475. [Google Scholar] [CrossRef]
- Lin, H.; Sun, Q. Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks. Energies 2020, 13, 1543. [Google Scholar] [CrossRef] [Green Version]
- Matyjaszek, M.; Fidalgo Valverde, G.; Krzemień, A.; Wodarski, K.; Riesgo Fernández, P. Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production. Energies 2020, 13, 2017. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Sánchez, B.M.; Paredes-Sánchez, J.P.; García-Nieto, P.J. Energy Multiphase Model for Biocoal Conversion Systems by Means of a Nodal Network. Energies 2020, 13, 2728. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, W.; Gong, X. Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning. Energies 2019, 12, 3308. [Google Scholar] [CrossRef] [Green Version]
- Puente, C.; Palacios, R.; González-Arechavala, Y.; Sánchez-Úbeda, E.F. Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques. Energies 2020, 13, 3117. [Google Scholar] [CrossRef]
- Vélez, Á.P.; Sánchez, A.B.; Fernández, M.M.; Muñiz, Z.F.; Vélez, P.; Fernández, M.; Muñiz, F. Multivariate Analysis to Relate CTOD Values with Material Properties in Steel Welded Joints for the Offshore Wind Power Industry. Energies 2019, 12, 4001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Liu, C.; Laine, A.F.; Guo, J. Understanding and Modeling Climate Impacts on Photosynthetic Dynamics with FLUXNET Data and Neural Networks. Energies 2020, 13, 1322. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Lasheras, F. Predicting the Future-Big Data and Machine Learning. Energies 2021, 14, 8041. https://doi.org/10.3390/en14238041
Sánchez Lasheras F. Predicting the Future-Big Data and Machine Learning. Energies. 2021; 14(23):8041. https://doi.org/10.3390/en14238041
Chicago/Turabian StyleSánchez Lasheras, Fernando. 2021. "Predicting the Future-Big Data and Machine Learning" Energies 14, no. 23: 8041. https://doi.org/10.3390/en14238041
APA StyleSánchez Lasheras, F. (2021). Predicting the Future-Big Data and Machine Learning. Energies, 14(23), 8041. https://doi.org/10.3390/en14238041