# Multi-Criteria Analysis of a Developed Prefabricated Footing System on Reactive Soil Foundation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. The Developed Prefabricated Footing

#### 2.2. Structural Performance Using a Hydromechanical Model

#### 2.3. Life Cycle Cost Analysis

#### 2.4. Life Cycle Assessment

## 3. Results and Discussion

#### 3.1. Structural Performance

#### 3.2. Life Cycle Cost Analysis

#### 3.3. Life Cycle Assessment: Energy and Ghg

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

Structural performance terms and parameters | |||

Notation | Parameter | Notation | Parameter |

$\alpha $ | lateral restraint factor | ${B}_{w}$ | beam width |

${\alpha}_{sw},n,m$ | sorption parameters | D | beam depth |

$\Delta $ | substructure deformation | DEB | dapped-end beam |

${\Delta}_{max}$ | allowable deformation | ${d}_{t},{d}_{c}$ | concrete damage variables |

$\Delta \overline{u}$ | average suction change | E | elastic modulus |

${\gamma}_{w}$ | unit weight of water | ${E}_{c}$ | concrete elastic modulus |

$\kappa $ | logarithmic soil bulk constant | ${E}_{s}$ | steel elastic modulus |

$\mu $ | coefficent of friction | $EI/L$ | Unit stiffness |

${\nu}_{c}$ | Poisson’s ratio of concretel | ${e}_{0},e$ | initial/void ratio |

${\nu}_{s}$ | Poisson’s ratio of steel | FEM | finite element model |

${\nu}_{soil}$ | Poisson’s ratio of soil | ${f}_{i}$ | other concrete variables |

$\omega $ | gravimetric soil moisture | ${f}_{{k}_{u}}$ | unsaturated factor |

${\psi}_{w}$ | soil suction | G | shear modulus |

${\rho}_{b},{\rho}_{w}$ | soil/water bulk density | ${G}_{s}$ | specific gravity of solids |

$\sigma ,{\sigma}^{\prime}$ | total and effective stress | ${H}_{s}$ | active depth zone |

${\sigma}_{0}^{eq},{\sigma}^{eq}$ | initial/equivalent soil stress | H${}_{1}$/H${}_{1}$-D | highly reactive soil |

${\sigma}_{t},{\sigma}_{c}$ | tensile/compressive stress | H${}_{2}$/H${}_{2}$-D | very highly reactive soil |

${\sigma}_{dev}$ | deviatoric stress | h | water potential head |

${\sigma}_{t0},{\sigma}_{c0}$ | tensile/compressive failure $\sigma $ | ${h}_{soil}$ | soil layer thickness |

$\theta $ | volumetric soil moisture | ${I}_{pt},{I}_{ss}$ | instability/shrinkage index |

${\theta}_{r},{\theta}_{s}$ | residual/saturated $\theta $ | ${k}_{sat}$ | saturated conductivity |

${\stackrel{\u02da}{\epsilon}}_{t}^{pl},{\stackrel{\u02da}{\epsilon}}_{c}^{pl}$ | equivalent plastic strain rates | ${k}_{u}$ | unsaturated conductivity |

${\tilde{\epsilon}}_{t}^{pl},{\tilde{\epsilon}}_{c}^{pl}$ | equivalent plastic strains | L or W | length/width of a footing |

${\epsilon}_{es}$ | soil effective strain | M/D-D | moderately reactive soil |

${\epsilon}_{ms}$ | moisture-swelling strain | ${m}_{sw}^{2}$ | slope of the sorption curve |

${\epsilon}_{ms}^{\prime}$ | test moisture-swelling strain | Q | volumetric water flux |

${\epsilon}_{T}$ | simplified total soil strain | S | degree of saturation |

${\epsilon}_{t},{\epsilon}_{c}$ | elastic concrete strains | ${T}_{m}$ | temperature of concrete |

${\epsilon}_{t}^{pl},{\epsilon}_{c}^{pl}$ | plastic concrete strains | ${y}_{s}$ | expected soil movement |

Cost analysis terms and parameters | |||

Notation | Parameter | Notation | Parameter |

${A}_{f}$ | floor area | ${C}_{fc}$ | fixed cost |

${C}_{C}$ | construction cost | ${C}_{ic}$ | indirect cost |

${C}_{D}$ | disposal cost | ${d}_{r}$ | discount rate |

${C}_{D}^{PV}$ | present value of disposal cost | LCC | life cycle cost |

${C}_{D}^{FV}$ | future value of disposal cost | ${t}_{c}$ | construction duration |

${C}_{dc}$ | direct cost | ${t}_{d}$ | structure deployment period |

Sustainability assessment terms and parameters | |||

Notation | Parameter | Notation | Parameter |

$E{C}_{C}$ | construction embodied GHG | $E{E}_{C}$ | construction embodied energy |

$E{C}_{D}$ | demolition embodied GHG | $E{E}_{D}$ | demolition embodied energy |

$E{C}_{M}$ | material embodied GHG | $E{E}_{M}$ | material embodied energy |

$E{C}_{R}$ | reuse/recycling GHG | $E{E}_{R}$ | reuse/recycling energy |

$E{C}_{T}$ | transportation GHG | $E{E}_{T}$ | transportation energy |

LCA | life cycle assessment | LCI | life cycle inventory |

## Appendix A. Details of the Numerical Simulations Using the Hydromechanical Model by Teodosio et al.

#### Appendix A.1. Simplified Hydromechanical Finite Element Model

#### Appendix A.2. Numerical Simulations

#### Appendix A.2.1. Validation of the Developed Model

#### Appendix A.2.2. Developed Prefabricated Footings and Monolithic Waffle Rafts

**Figure A2.**Input material properties for the Concrete Damaged Plasticity (CDP) model. The response of the CDP model for (

**a**) uniaxial tensile loading and (

**b**) uniaxial compressive loading are presented.

## Appendix B. Supplementary Results of the Numerical Simulations

**Figure A3.**Comparison of footing damage due to swelling soil between the developed prefabricated footing systems and waffle rafts for (

**a**,

**b**) Class M-D soil, (

**c**,

**d**) Class H${}_{1}$-D soil, and (

**e**,

**f**) Class H${}_{2}$-D soil. A value of DAMAGET (${d}_{t}$) greater than zero reflects concrete cracking, classified as: DAMAGET (${d}_{t}$) < 0.25 = hairline cracks, 0.25 ≤ DAMAGET (${d}_{t}$) < 0.85 = fine but noticeable cracks, 0.85 ≤ DAMAGET (${d}_{t}$) < 0.99 = distinct cracks, and DAMAGET (${d}_{t}$) ≥ 0.99 = wide cracks or gaps [24].

**Figure A4.**Comparison of steel stress in footing systems due to swelling soil and applied loads between the developed prefabricated footing systems and waffle rafts for (

**a**,

**b**) Class M-D soil, (

**c**,

**d**) Class H${}_{1}$-D soil, and (

**e**,

**f**) Class H${}_{2}$-D soil. Values of stress are in Pascal.

**Figure A5.**Comparison of footing damage due to shrinking soil between the developed prefabricated footing systems and waffle rafts for (

**a**,

**b**) Class M-D soil, (

**c**,

**d**) Class H${}_{1}$-D soil, and (

**e**,

**f**) Class H${}_{2}$-D soil. A value of DAMAGET (${d}_{t}$) greater than zero reflects concrete cracking, classified as: DAMAGET (${d}_{t}$) < 0.25 = hairline cracks, 0.25 ≤ DAMAGET (${d}_{t}$) < 0.85 = fine but noticeable cracks, 0.85 ≤ DAMAGET (${d}_{t}$) < 0.99 = distinct cracks, and DAMAGET (${d}_{t}$) ≥ 0.99 = wide cracks or gaps [24].

**Figure A6.**Comparison of steel stress in footing systems due to shrinking soil and applied loads between the developed prefabricated footing systems and waffle rafts for (

**a**,

**b**) Class M-D soil, (

**c**,

**d**) Class H${}_{1}$-D soil, and (

**e**,

**f**) Class H${}_{2}$-D soil. Values of stress are in Pascal.

## References

- Azman, M.; Ahamad, M.; Hussin, W. Comparative study on prefabrication construction process. Int. Surv. Res. J.
**2012**, 2, 45–58. [Google Scholar] - Lichtenberg, J. Slimbouwen, a strategy for efficient and sustainable building innovation. In Proceedings of the Construction in the XXI Century: Local and Global Challenges, Symposium Proceedings, CIB W065/N055/W086, Rome, Italy, 16–20 October 2006; pp. 206–207. Available online: http://hdl.handle.net/1822/6794 (accessed on 10 October 2021).
- Ross, K.; Cartwright, P.; Novakovic, O. A Guide to Modern Methods of Construction; IHS BRE Press: London, UK, 2006. [Google Scholar]
- Wong, R.; Hao, J.; Zou, P. The application of precast concrete technology in buildings and civil structures construction: Hong Kong experience. In Proceedings of the Second International Conference on Construction in the 21st Century (CITC-II), Sustainability and Innovation in Management and Technology, Hong Kong, China, 10–12 December 2003; pp. 629–634. [Google Scholar]
- Gibb, A.G. Off-Site Fabrication: Prefabrication, Pre-Assembly and Modularisation; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Ngwepe, L.; Aigbavboa, C. A theoretical review of building life cycle stages and their related environmental impacts. J. Civil Eng. Environ. Technol.
**2015**, 2, 7–15. [Google Scholar] - Aye, L.; Ngo, T.; Crawford, R.H.; Gammampila, R.; Mendis, P. Life cycle greenhouse gas emissions and energy analysis of prefabricated reusable building modules. Energy Build.
**2012**, 47, 159–168. [Google Scholar] [CrossRef] - Sharma, A.; Saxena, A.; Sethi, M.; Shree, V.; Varun. Life cycle assessment of buildings: A review. Renew. Sustain. Energy Rev.
**2011**, 15, 871–875. [Google Scholar] [CrossRef] - Piroozfar, A.E.; Larsen, O.P.; Altan, H. Customization in building design and construction: A contribution to sustainability. In Handbook of Research in Mass Customization and Personalization; World Scientific: Singapore, 2010; pp. 911–939. [Google Scholar]
- Smith, D.; Tardif, M. BIM: A Strategic Implementation Guide for Architects, Engineers, Constructors and Real Estate Asset Managers; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Nelson, S. Modular housing: Prefab and proudly upmarket. Build. Connect.
**2008**, 24. [Google Scholar] - Pujadas Gispert, E. Prefabricated Foundations for Housing Applied to Room Modules. Ph.D. Thesis, Universitat Politecnica de Catalunya, Barselona, Spain, 2016. [Google Scholar]
- Teodosio, B.; Baduge, K.S.K.; Mendis, P.; Heath, D. Prefabrication of substructures for single-detached dwellings on reactive soils: A review of existing systems and design challenges. Aust. J. Civ. Eng.
**2019**, 7, 120–133. [Google Scholar] [CrossRef] - Li, J.; Cameron, D.A.; Ren, G. Case study and back analysis of a residential building damaged by expansive soils. Comput. Geotech.
**2014**, 56, 89–99. [Google Scholar] [CrossRef] [Green Version] - Li, J. Analysis and Modelling of Performance of Footings on Expansive Soils. Ph.D. Thesis, University Melbourne, Melbourne, Australia, 1996. [Google Scholar]
- Teodosio, B.; Baduge, S.K.; Mendis, P.; Heath, D. Soil-structure interaction design methods for residential structures on reactive soils. In Proceedings of the Australian Structural Engineering Conference: ASEC 2018, Adelaide, Australia, 25–28 September 2018; Engineers Australia: Barton, ACT, Australia, 2018; p. 49. [Google Scholar]
- Teodosio, B.; Baduge, K.S.K.; Mendis, P. A review and comparison of design methods for raft substructures on expansive soils. J. Build. Eng.
**2021**, 41, 102737. [Google Scholar] [CrossRef] - Teodosio, B.; Baduge, K.S.K.; Mendis, P. Simulating reactive soil and substructure interaction using a simplified hydro-mechanical finite element model dependent on soil saturation, suction and moisture-swelling relationship. Comput. Geotech.
**2020**, 119, 1–18. [Google Scholar] [CrossRef] - Li, J.; Cameron, D.A. Case study of courtyard house damaged by expansive soils. J. Perform. Constr. Facil.
**2002**, 16, 169–175. [Google Scholar] [CrossRef] - Jones, L.D.; Jefferson, I. Expansive soils. In ICE Manual of Geotechnical Engineering; ICE: London, UK, 2012; pp. 413–441. [Google Scholar]
- Miao, L.; Wang, F.; Cui, Y.; Shi, S. Hydraulic characteristics, strength of cyclic wetting-drying and constitutive model of expansive soils. In Proceedings of the 4th International Conference on Problematic Soils, Wuhan, China, 21–23 September 2012; pp. 303–322. [Google Scholar]
- Skinner, H.; Crilly, M.; Charles, J. Numerical Models for the Design of Shallow Foundations for Low-rise Buildings. In Application of Numerical Methods to Geotechnical Problems; Springer: Berlin, Germany, 1998; pp. 655–664. [Google Scholar]
- Krohn, J.P.; Slosson, J.E.Y. Assessment of Expansive Soils with the United States. Available online: https://www.semanticscholar.org/paper/Assessment-of-Expansive-Soils-in-the-United-States-Krohn-Slosson/4b8f90292a30aef227ec42526031ffaabde82690 (accessed on 10 October 2021).
- Standards Australia. AS 2870-2011: Residential Slabs and Footings; Standards Australia: Sydney, Australia, 2011. [Google Scholar]
- American Society for Testing and Materials. Standard Guide for Dimensional Coordination of Rectilinear Building Parts and Systems; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Bergvall, L. Dimensional Coordination as a Tool for Industrialisation. In Metric Dimensional Coordination—The Issue and Precedent; US Department of Commerce, National Bureau of Standards: Gaithersburg, MD, USA, 1977; pp. 203–204. [Google Scholar]
- Teodosio, B.; Baduge, K.S.K.; Mendis, P. Relationship between reactive soil movement and footing deflection: A coupled hydro-mechanical finite element modeling perspective. Comput. Geotech.
**2020**, 126, 103720. [Google Scholar] [CrossRef] - Kim, S.; Ahn, J.; Teodosio, B.; Shin, H. Numerical analysis of infiltration in permeable pavement system considering unsaturated characteristics. J. Korean Soc. Disaster Inf.
**2015**, 11, 318–328. [Google Scholar] [CrossRef] [Green Version] - Teodosio, B.; Ahn, J.; Shin, H.S. Numerical analysis of infiltration into pervious concrete-base systems. Int. J. GEOMATE Geotech. Constr. Mater. Environ.
**2015**, 8, 1117–1122. [Google Scholar] [CrossRef] - Weerasinghe, D. A Failure Analysis of Small-Diameter Cast Iron Pipes in Reactive Soil Zones of Melbourne. Ph.D. Thesis, Monash University, Clayton, Australia, 2018. [Google Scholar]
- Rutqvist, J.; Börgesson, L.; Chijimatsu, M.; Kobayashi, A.; Jing, L.; Nguyen, T.; Noorishad, J.; Tsang, C.F. Thermohydromechanics of partially saturated geological media: Governing equations and formulation of four finite element models. Int. J. Rock Mech. Min. Sci.
**2001**, 38, 105–127. [Google Scholar] [CrossRef] - Hillerborg, A.; Modéer, M.; Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res.
**1976**, 6, 773–781. [Google Scholar] [CrossRef] - Dassault Systèmes. Abaqus 6.14: Online Documentation Help, Theory Manual. 2016. Available online: http://130.149.89.49:2080/v6.14/ (accessed on 24 July 2018).
- Standards Australia. AS 1289.3. 6.1 2009: Standard Method of Analysis by Sieving in Methods of Testing Soils for Engineering Purposes; SAI Global: Brisbane, Australia, 2009. [Google Scholar]
- Schofield, A.; Wroth, P. Critical State Soil Mechanics; McGraw-Hill: London, UK, 1968; Volume 310. [Google Scholar]
- Altmann, J.B.; Müller, T.M.; Müller, B.I.; Tingay, M.R.; Heidbach, O. Poroelastic contribution to the reservoir stress path. Int. J. Rock Mech. Min. Sci.
**2010**, 47, 1104–1113. [Google Scholar] [CrossRef] - Altmann, J. Poroelastic Effects in Reservoir Modeling. Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany, 2010. [Google Scholar]
- Shams, M.A.; Shahin, M.A.; Ismail, M.A. Simulating the behaviour of reactive soils and slab foundations using hydro-mechanical finite element modelling incorporating soil suction and moisture changes. Comput. Geotech.
**2018**, 98, 17–34. [Google Scholar] [CrossRef] [Green Version] - Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol.
**2001**, 251, 163–176. [Google Scholar] [CrossRef] - Standards Australia. AS 1170.1-1989, Part 1: Dead and Live Loads and Load Combinations; SAI Global: Brisbane, Austrlia, 1989. [Google Scholar]
- Briaud, J.L.; Abdelmalak, R.; Zhang, X.; Magbo, C. Stiffened Slab-On-Grade on Shrink-Swell Soil: New Design Method. J. Geotech. Geoenviron. Eng.
**2016**, 142, 04016017. [Google Scholar] [CrossRef] - Potyondy, J.G. Skin friction between various soils and construction materials. Geotechnique
**1961**, 11, 339–353. [Google Scholar] [CrossRef] - Standards Australia. AS 3600–2009: Concrete Structures; SAI Global: Brisbane, Australia, 2009. [Google Scholar]
- ISO. Buildings and Constructed Assets-Service-Life Planning. 5. Life-Cycle Costing; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Asamoah, R.O.; Ankrah, J.S.; Offei-Nyako, K.; Tutu, E.O. Cost analysis of precast and cast-in-place concrete construction for selected public buildings in Ghana. J. Constr. Eng.
**2016**, 2016, 8785129. [Google Scholar] [CrossRef] [Green Version] - Chan, T.K. Comparison of precast construction costs—Case studies in Australia and Malaysia. In Proceedings of the 27th Annual ARCOM Conference, Bristol, UK, 5–7 September 2011; pp. 3–12. [Google Scholar]
- Rawlinsons. Rawlinsons Construction Cost Guide 2019; Rawlinsons: Rivervale, Australia, 2019. [Google Scholar]
- De Normalisation, C.E. EN 15978 Sustainability of Construction Works—Assessment of Environmental Performance of Buildings–Calculation Method; CEN: Brussels, Belgium, 2012. [Google Scholar]
- Crawford, R.H.; Stephan, A.; Prideaux, F. Environmental Performance in Construction (EPiC) Database; The University of Melbourne: Melbourne, Australia, 2019; Available online: https://melbourne.figshare.com/articles/book/EPiC_Database/10257728 (accessed on 10 October 2021).
- AusLCI. Australian Life Cycle Inventory Database, Australian Life Cycle Assessment Society (ALCAS). 2017. Available online: http://www.auslci.com.au/ (accessed on 10 October 2021).
- Hong, T.; Ji, C.; Jang, M.; Park, H. Assessment model for energy consumption and greenhouse gas emissions during building construction. J. Manag. Eng.
**2014**, 30, 226–235. [Google Scholar] [CrossRef] - Ahmed, I.M.; Tsavdaridis, K.D. Life cycle assessment (LCA) and cost (LCC) studies of lightweight composite flooring systems. J. Build. Eng.
**2018**, 20, 624–633. [Google Scholar] [CrossRef] - Fityus, S.; Smith, D.; Allman, M. Expansive soil test site near Newcastle. J. Geotech. Geoenviron. Eng.
**2004**, 130, 686–695. [Google Scholar] [CrossRef] - Mitchell, P. A simple method of design of shallow footings on expansive soil. In Proceedings of the Fifth International Conference on Expansive Soils 1984: Preprints of Papers, Institution of Engineers, Adelaide, Australia, 21–23 May 1984; p. 159. [Google Scholar]
- Zou, J. Assessment of the Reactivity of Expansive Soil in Melbourne Metropolitan Area; Royal Melbourne Institute of Technology: Melbourne, Australia, 2015. [Google Scholar]

**Figure 1.**Two cases of reactive soil heaving: (

**a**) edge heaving due to the swelling uncovered ground, and (

**b**) centre heaving due to the shrinking uncovered ground.

**Figure 2.**Methodology of the study: (

**a**) the concept of the multi-criteria analysis to achieve a sustainable design and (

**b**) the multi-criteria comparison between the developed prefabricated footing systems and the conventional in-situ monolithic waffle rafts.

**Figure 4.**Section view of the developed prefabricated footing systems for (

**a**) Class M/M-D, (

**b**) Class H${}_{1}$/H${}_{1}$-D, and (

**c**) Class H${}_{2}$/H${}_{2}$-D (length in mm).

**Figure 6.**Comparison of swelling soil movement and footing deformation between the developed prefabricated footing systems and waffle rafts for (

**a**,

**b**) Class M-D soil, (

**c**,

**d**) Class H${}_{1}$-D soil, and (

**e**,

**f**) Class H${}_{2}$-D soil. Values of displacements are in metre.

**Figure 7.**Comparison of shrinking soil movement and footing deformation between the developed prefabricated footing systems and waffle rafts for (

**a**,

**b**) Class M-D soil, (

**c**,

**d**) Class H${}_{1}$-D soil, and (

**e**,

**f**) Class H${}_{2}$-D soil. Values of displacements are in metre.

**Figure 8.**Comparison of the Life Cycle Cost analysis between the prefabricated system and waffle raftsfor each site classification, (

**a**) Class M/M-D, (

**b**) Class H${}_{1}$/H${}_{1}$-D, (

**c**) Class H${}_{2}$, and (

**d**) Class H${}_{2}$-D.

**Figure 9.**Comparison of the Life Cycle Energy and GHG emissions considering reactive site classification between the developed prefabricated footing systems and waffle rafts ((

**a**,

**b**) show the amount of GHG emissions and energy consumption according to the life cycle of each stage. ‘D(reused)’ in (

**a**,

**b**) represents the energy and GHG reduction effect of the reuse of other sites after disassembly of the prefabricated footing systems). (

**c**,

**d**) do consider only recycling but do not consider reuse (D(reused)).

**Table 1.**Classification of site based on reactivity of soil and soil movement, ${y}_{s}$, as described in the Australian Standard (AS) 2870-2011 [24].

Class | Soil Footing | ${\mathit{y}}_{\mathit{s}}$ (mm) |
---|---|---|

A | gravelly and sandy soil | 0 |

S | slightly reactive silt or clay soil | 0 to 20 |

M | moderately reactive silt or clay soil | 20 to 40 |

H${}_{1}$ | highly reactive clay soil | 40 to 60 |

H${}_{2}$ | very highly reactive clay soil | 60 to 75 |

E | extremely reactive clay soil | greater than 75 |

P | filled, soft silt or clay, loose sands, | varying |

sandslip, mine subsidence, collapsing | ||

D | areas having deep-seated soil moisture changes | - |

shall use a suffix “-D” |

Class | Type | ${\mathit{B}}_{\mathit{w}}$ (mm) | D (mm) | L (m) | No. of Beams | $\mathit{E}\mathit{I}/\mathit{L}$ |
---|---|---|---|---|---|---|

M/ | waffle raft | 110 | 310 | 15 | 13 | 8.5 |

M-D | prefabricated | 300 | 360 | 15 | 4 | 8.5 |

H${}_{1}$/ | waffle raft | 110 | 385 | 15 | 13 | 8.8 |

H${}_{1}$-D | prefabricated | 300 | 450 | 15 | 4 | 8.8 |

H${}_{2}$/ | waffle raft | 110 | 460 | 15 | 13 | 9.0 |

H${}_{2}$-D | prefabricated | 300 | 530 | 15 | 4 | 9.0 |

**Table 3.**Parameter inputs for the numerical simulations of prefabricated footings and waffle rafts related to soil state, environmental factors, footing dimensions and stress condition.

Notation Soil Parameters | Parameter | Value | References |
---|---|---|---|

${\rho}_{b}$ | soil density | 1550 to | [34] |

$\kappa $ | log bulk | 0.05 (swell) | [35], |

modulus | 0.03 (shrink) | [30] | |

[36] | |||

[37] | |||

${\nu}_{soil}$ | soil Poisson’s | 0.45 (swell) | [38] |

ratio | 0.1 (shrink) | ||

${\epsilon}_{ms}$ vs. S | moisture-swelling | 8% | [34], |

curve | [38] | ||

${k}_{sat}$ | saturated permeability | 1 × 10${}^{-7}$ to | [34], |

1 × 10${}^{-9}$ ms${}^{-1}$ | [39] | ||

${\psi}_{w}$ vs. S | sorption curve | −1 × 10${}^{1}$ to | [34], |

−1 × 10${}^{5}$ kPa | [18] | ||

Environmental Parameters | |||

$\Delta \overline{u}$ | average suction change | 1.2 pF | [24] |

${H}_{s}$ | active depth zone | 3.0 m | [24] |

Footing and Stress Parameters | |||

p | area load | 2.5 | [40], |

kN m${}^{-2}$ | [41] | ||

q | line load | 6.5 | [40], |

kN m${}^{-1}$ | [41] | ||

$\mu $ | coefficient of | 0.35 (soil-concrete) | [42], |

friction | 0.4 (concrete-concrete) | [38] | |

${E}_{c}$ | concrete elastic | 40 | [43], |

modulus | GPa | [24] | |

${\nu}_{c}$ | concrete Poisson’s | 0.2 | [43], |

ratio | [38] | ||

${E}_{s}$ | steel elastic | 450 | [43], |

modulus | GPa | [27] | |

${\nu}_{s}$ | steel Poisson’s | 0.3 | [43], |

ratio | [27] |

**Table 4.**LCC estimate for the developed prefabricated footing with a floor area, ${A}_{f}$, of 225 m${}^{2}$ on a Class H${}_{2}$/H${}_{2}$-D soil deployed for ${t}_{d}$ = 50 years.

Item | Description | Qty | Unit | Rate (AUD) | Amount (AUD) |
---|---|---|---|---|---|

A | Site preparation | ||||

A1 | Slab set-out | 1 | Item | 600.00 | 600.00 |

A2 | Mobilisation and float costs | 1 | Item | 900.00 | 900.00 |

A3 | Removal of vegetation | 225 | m${}^{2}$ | 2.14 | 481.50 |

and ground leveling | |||||

A4 | Site soil compaction | 225 | m${}^{2}$ | 1.85 | 416.25 |

A5 | Installation/removal of fencing | 60 | Lm | 42.00 | 2520.00 |

B | Formwork and reinforcement | ||||

B1 | Steel reinforcement (Beam) | 1.34 | t | 2260.00 | 3020.65 |

B2 | Mesh (Slab) | 0.81 | t | 2260.00 | 1836.00 |

B3 | M20 dowel | 192 | Item | 11.88 | 2280.96 |

B4 | Plant (form release/installation) | 11.63 | hr | 63.00 | 732.58 |

C | Concrete work | ||||

C1 | Concrete mix | 42.71 | m${}^{3}$ | 200.00 | 8541.00 |

C2 | Manufacturing plant processes | 26.69 | hr | 60.50 | 1614.78 |

D | Delivery and installation | ||||

D1 | Float of prefabricated | 10,462.73 | t km | 0.09 | 941.65 |

elements to site | |||||

D2 | Mobilisation of crane | 1 | Item | 500.00 | 500.00 |

D3 | Crane hire (+ operator/fuel) | 14.40 | hr | 220.00 | 3168.00 |

D4 | Tradesman (+ lifting/installation) | 28.8 | hr | 63.00 | 1814.40 |

E | Miscellaneous | ||||

E1 | Concrete batching plant overheads | 1 | Item | 3237.99 | 3237.99 |

(20 % of construction cost) | |||||

E2 | Drawings | 36 | Item | 63.89 | 2300.00 |

E3 | HSE Plan | 1 | Item | 1500.00 | 1500.00 |

F | End of life | ||||

F1 | Mobilisation of crane | 2 | Item | 500.00 | 1000.00 |

F2 | HSE Plan | 1 | Item | 1500.00 | 1500.00 |

F3 | Crane hire (+ operator/fuel) | 28.80 | hr | 220.00 | 6336.00 |

F4 | Tradesman | 57.6 | hr | 63.00 | 3628.80 |

TOTAL LCC | 53,157.06 |

**Table 5.**LCC estimate for the monolithic waffle raft with a floor area, ${A}_{f}$, of 225 m${}^{2}$ on a Class H${}_{2}$/H${}_{2}$-D soil deployed for ${t}_{d}$ = 50 years.

Item | Description | Qty | Unit | Rate (AUD) | Amount (AUD) |
---|---|---|---|---|---|

A | Site preparation | ||||

A1 | Slab set-out | 1 | Item | 600.00 | 600.00 |

A2 | Mobilisation and float costs | 1 | Item | 900.00 | 900.00 |

A3 | Removal of vegetation | 225 | m${}^{2}$ | 2.14 | 481.50 |

and ground leveling | |||||

A4 | Site soil compaction | 225 | m${}^{2}$ | 1.85 | 416.25 |

A5 | Installation (+ removal) of fencing | 60 | Lm | 42.00 | 2520.00 |

B | Formwork and reinforcement | ||||

B1 | Steel reinforcement (Beam) | 0.80 | t | 2260.00 | 3020.65 |

B2 | Mesh (Slab) | 0.81 | t | 2260.00 | 1836.00 |

B3 | Formwork | 60 | Lm | 30.00 | 1800.00 |

B4 | Waffle pods | 163 | No. | 10.00 | 1630.00 |

B5 | Tradesman (placing and tie) | 17.55 | hr | 63.00 | 1106.00 |

B6 | Tradesman (+ formwork) | 17.4 | hr | 63.00 | 1096.20 |

B7 | Labourer | 6 | hr | 60.50 | 350.30 |

C | Concrete pour | ||||

C1 | Concrete (+ delivery truck) | 43.18 | m${}^{3}$ | 200.00 | 8636.06 |

C2 | Concrete pumping | 43.18 | hr | 8.00 | 345.44 |

C3 | Labourer (pour/vibration/finish) | 47 | hr | 60.50 | 2839.57 |

E | End of life | ||||

E1 | Demobilisation (break-up/removal) | 225 | m${}^{2}$ | 90.00 | 20,250.00 |

TOTAL LCC | 48,244.27 |

Item by Life Cycle | Unit | Energy (MJ Unit${}^{-1}$) | GHG (kg CO${}_{2}$e Unit${}^{-1}$) | References |
---|---|---|---|---|

Construction (A) | ||||

Concrete (32 MPa) | m${}^{3}$ | 2776.00 | 412.00 | [50] |

Hot-rolled steel | kg | 30.60 | 2.40 | [50] |

Gantry crane | hr | 190.60 | 14.10 | [51] |

Transportation (A4, C2) | ||||

Truck (15–30 tonne) | tkm | 2.71 | 0.203 | [50] |

Excavator (0.2 m${}^{3}$ bucket) | tkm | 0.74 | 0.053 | [51] |

Mobile crane (50 ton) | hr | 190.60 | 14.10 | [51] |

Construction | ||||

Excavator | MJ/hr | 107.50 | 13.12 | [51] |

Concrete pump | hr | 1094.30 | 81.40 | [52] |

Mobile crane | hr | 190.60 | 14.20 | [51] |

End of life | ||||

Concrete demolition (C) | kg | 0.007 | 0.00054 | [50] |

Recycling aggregates | kg | 0.07 | 0.006 | [50] |

Recycling steel | kg | 11 | 0.74 | [50] |

Benefit by recycling (D) | ||||

Recycled aggregates | kg | −0.213 | −0.0169 | [50] |

Recycling steel | kg | −30.3 | −2.4 | [50] |

**Table 7.**Deformation, $\Delta $, of footing systems on shrinking and swelling soil considering site classification based on soil surface characteristic movement, ${y}_{s}$ in millimetres Standards Australia [24].

Class | Scenario | Prefabricated Footing | Waffle Raft | ||||||
---|---|---|---|---|---|---|---|---|---|

${\mathit{y}}_{\mathit{s}}$ = 30 (mm) | ${\mathit{y}}_{\mathit{s}}$= 45 (mm) | ${\mathit{y}}_{\mathit{s}}$ = 60 (mm) | ${\mathit{y}}_{\mathit{s}}$ = 75 (mm) | ${\mathit{y}}_{\mathit{s}}$ = 30 (mm) | ${\mathit{y}}_{\mathit{s}}$ = 45 (mm) | ${\mathit{y}}_{\mathit{s}}$ = 60 (mm) | ${\mathit{y}}_{\mathit{s}}$ = 75 (mm) | ||

M/ | swell | 23 | 25 | - | - | 25 | 33 | - | - |

M-D | shrink | 25 | 27 | - | - | 25 | 39 | - | - |

H${}_{1}$/ | swell | - | 22 | 25 | - | - | 33 | 43 | - |

H${}_{1}$-D | shrink | - | 27 | 38 | - | - | 39 | 51 | - |

H${}_{2}$/ | swell | - | - | 36 | 39 | - | - | 38 | 48 |

H${}_{2}$-D | shrink | - | - | 32 | 39 | - | - | 42 | 63 |

**Table 8.**Material quantity survey of the developed prefabricated footings systems and the monolithic waffle rafts.

M/M-D Concrete | Prefabricated Footings | Waffle Rafts | ||||
---|---|---|---|---|---|---|

Section Vol. (m${}^{3}$/unit) | Number (unit) | Vol. (m${}^{3}$/unit) | Section Vol. (m${}^{3}$/unit) | Number (unit) | Vol. (m${}^{3}$/unit) | |

Beams | 0.50 | 8 | 3.96 | 0.85 | 13 | 11.05 |

Slabs | 28.13 | 1 | 28.13 | 19.13 | 1 | 19.13 |

Total | 32.09 | 30.18 | ||||

Steel | Diameter | Length | Mass | Diameter | Length | Mass |

(m${}^{2}$) | (m) | (kg) | (m${}^{2}$) | (m) | (kg) | |

Flexural | 0.000491 | 1234.21 | 522 | 0.000113 | 390.00 | 449 |

Shear | 0.000201 | 159.36 | 243 | - | - | - |

Mesh | 0.000050 | 2250.00 | 625 | 0.000038 | 2250.00 | 625 |

Bolts | 0.000314 | 57.60 | 16 | - | - | - |

Plates | 0.001100 | 12.00 | 8 | - | - | - |

Total | 1424 | 1074 | ||||

H${}_{1}$/H${}_{1}$-D | Section vol. | Number | Vol. | Section vol. | Number | Vol. |

Concrete | (m${}^{3}$/unit) | (unit) | (m${}^{3}$) | (m${}^{3}$/unit) | (unit) | (m${}^{3}$) |

Beams | 0.90 | 8 | 7.20 | 1.13 | 13 | 14.70 |

Slabs | 28.13 | 1 | 28.13 | 19.13 | 1 | 19.13 |

Total | 35.33 | 33.83 | ||||

Steel | Diameter | Length | Mass | Diameter | Length | Mass |

(m${}^{2}$) | (m) | (kg) | (m${}^{2}$) | (m) | (kg) | |

Flexural | 0.000491 | 1706.89 | 722 | 0.000113 | 390.00 | 449 |

Shear | 0.000201 | 220.39 | 336 | - | - | - |

Mesh | 0.000050 | 2250.00 | 813 | 0.000050 | 2250.00 | 813 |

Bolts | 0.000314 | 57.60 | 16 | - | - | - |

Plates | 0.001100 | 12.00 | 8 | - | - | - |

Total | 1895 | 1262 | ||||

H${}_{2}$/H${}_{2}$-D | Section vol. | Number | Vol. | Section vol. | Number | Vol. |

Concrete | (m${}^{3}$/unit) | (unit) | (m${}^{3}$) | (m${}^{3}$/unit) | (unit) | (m${}^{3}$) |

Beams | 1.26 | 8 | 10.08 | 0.76/1.42 | 13 | 14.70/18.42 |

Slabs | 28.13 | 1 | 28.13 | 19.13 | 1 | 19.13 |

Total | 38.21 | 33.83/37.55 | ||||

Steel | Diameter | Length | Mass | Diameter | Length | Mass |

(m${}^{2}$) | (m) | (kg) | (m${}^{2}$) | (m) | (kg) | |

Flexural | 0.000491 | 2127.04 | 890 | 0.000201 | 390.00 | 798 |

Shear | 0.000201 | 274.64 | 419 | - | - | - |

Mesh | 0.000050 | 2250.00 | 625 | 0.000050 | 2250.00 | 625 |

Bolts | 0.000314 | 57.60 | 16 | - | - | - |

Plates | 0.001100 | 12.00 | 8 | - | - | - |

Total | 1959 | 1423 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Teodosio, B.; Bonacci, F.; Seo, S.; Baduge, K.S.K.; Mendis, P.
Multi-Criteria Analysis of a Developed Prefabricated Footing System on Reactive Soil Foundation. *Energies* **2021**, *14*, 7515.
https://doi.org/10.3390/en14227515

**AMA Style**

Teodosio B, Bonacci F, Seo S, Baduge KSK, Mendis P.
Multi-Criteria Analysis of a Developed Prefabricated Footing System on Reactive Soil Foundation. *Energies*. 2021; 14(22):7515.
https://doi.org/10.3390/en14227515

**Chicago/Turabian Style**

Teodosio, Bertrand, Francesco Bonacci, Seongwon Seo, Kasun Shanaka Kristombu Baduge, and Priyan Mendis.
2021. "Multi-Criteria Analysis of a Developed Prefabricated Footing System on Reactive Soil Foundation" *Energies* 14, no. 22: 7515.
https://doi.org/10.3390/en14227515