State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields
Abstract
:1. Introduction
2. State of the Art Measurement Equipment
2.1. Measurement Equipment Characteristics
2.1.1. Uncertainty Measures
2.1.2. Temperature Sensors
2.1.3. Mass and Volume Flow Meters
Measurand | Measuring Device and Typical Application | Uncertainty Value | Definition | Cost Range |
---|---|---|---|---|
Temperature | Pt-100 Type A (for built-in sensor) | ±0.67 K @ 293 °C , ±0.76 K @ 393 °C | a [12] | ~EUR 100 |
Pt-100 Type A (for clamp-on sensor) | ±0.7 K @ 390 °C | with , correction function and [7] | ~EUR 500 | |
Pt-100 1/10 Type B (for test facility) | ±0.13 K @ 293 °C , ±0.16 K @ 393 °C | a [12] | ~EUR 100 | |
Thermocouple Type K (Class 1) (general purpose from −40 °C to 1000 °C) | ±0.87 K @ 293 °C , ±0.91 K @ 393 °C | b [9] | ~EUR 100 | |
Thermocouple Type K (Class 2) (general purpose from −40 °C to 1200 °C) | ±1.4 K @ 293 °C , ±1.7 K @ 393 °C | b [9] | ~EUR 100 | |
Volumetric flow meters | Vortex (for built-in sensor) | ±0.038 kg/s @ 6.873 kg/s | c [12] | ~EUR 5000 |
Ultrasonic (for clamp-on) | ±0.055 kg/s @ 6.873 kg/s | c [12] | ~EUR 5000 | |
Pressure drop (for low viscos fluids) | Typically < ±2.0% | Assuming a value [15] | ~EUR 5000 | |
Mass flow meters | Coriolis (for test facility) | ±0.006 kg/s @ 6.873 kg/s | c [12] | ~EUR 10,000 |
Pressure | Piezoelectric, piezoresistive, capacitance | <0.1% of signal output | [13] | ~EUR 100 |
2.1.4. Pressure Transducers
- Absolute pressure sensors;
- Gauge pressure sensors;
- Differential pressure sensors.
2.1.5. Special Measurement Equipment for Solar Collector Assembly (SCA) Tracking
2.1.6. Special Measurement Equipment for Solar Field Maintenance
Measurand | Measuring Device | Typical Uncertainty/Accuracy/Precision | Definition | Cost Range |
---|---|---|---|---|
Receiver glass/piping temperature | Thermography | ±1 K or ±1% | Measurement accuracy from [39,40] | ~EUR 5000 |
SCA angle | Inclinometer | ±0.07° to ±0.5° | Upper cost range for highly accurate devices with measuring range >180° | ~EUR 100 to ~EUR 1000 |
Rotary encoder | ±0.01° to ±0.1° | Magnetic band encoder | ~EUR 100 | |
Sun sensor | - | Closed-loop tracking system | ~EUR 100 to EUR 300 | |
Cleanliness | Reflectometer | ±0.6% | a [12] | ~EUR 1000 |
Mirror shape | Deflectometry (e.g., TARMES) | ±0.6 to ±1.0 mrad | According to the GUM standard [31] | ~EUR 10,000 |
Photogrammetry | 1:50,000 or better | Precision of coordinate measurements [38] | ~EUR 10,000 |
2.1.7. Meteorological Instrumentation
Irradiance Data
Measurand | Measuring Device | Uncertainty Value | Definition | Cost Range |
---|---|---|---|---|
DNI | Pyrheliometer with tracking equipment | ±1.1% | a [12] | >EUR 25,000 |
Rotating Shadowband Irradiometer | ±2.9% | b [51] | ~EUR 9000 | |
GHI | Pyranometer | ±2% | [16] | ~EUR 5000 |
Rotating Shadowband Irradiometer | ±2.0% | b [16] | ~EUR 9000 | |
DHI | Rotating Shadowband Irradiometer | ±3.3% | b [51] | ~EUR 9000 |
Diffusometer (Pyranometer and shading structure) | >±2% | [16], shading structure increases uncertainty | ~EUR 5000 | |
Circumsolar radiation | Rotating Shadowband Irradiometer | - | In [45] compared to SAM combined with Cimel sun photometer and dedicated software. | ~EUR 9000 |
Two Pyrheliometers with different acceptance angles | - | System described in [52], in [48] compared to SAM | >EUR 25,000 |
Standard Meteorological Instrumentation
Measurand | Measuring Device | Uncertainty Value | Definition | Cost Range |
---|---|---|---|---|
Ambient air temperature | Pt-100 Type A with radiation shielding | ±0.1 K (2 σ) for >−40 °C and ≤+40 °C | Required measurement uncertainty [54] | ~EUR 100 |
Semiconductor thermometers with radiation shielding | ~EUR 100 | |||
Relative humidity | Capacitive hygrometer | ± 1% (2 σ) | Required measurement uncertainty [54] | ~EUR 100 |
Resistance hygrometer | ~EUR 100 | |||
Barometric pressure | Aneroid displacement transducers | 0.1 hPa (2 σ) | Required measurement uncertainty [54] | ~EUR 100 |
Digital piezo resistive barometers | ||||
Cylindrical resonator barometers | ||||
Wind speed | Cup anemometer | 0.5 m/s (2 σ) for ≤5 m/s, 10% for >5 m/s | Required measurement uncertainty (Average over 2 and/or 10 min.) [54] | ~EUR 1000 |
Ultrasonic anemometer | ~EUR 5000 | |||
Wind gust | Ultrasonic anemometer | 10% (2 σ) | Required measurement uncertainty [54] | ~EUR 5000 |
Wind direction | Wind vane | 5° (2 σ) | Required measurement uncertainty a [54] | ~EUR 1000 |
Daily precipitation | Precipitation gauge | 0.1 mm (2 σ) for ≤5 mm, 2% for >5 mm | Required measurement uncertainty [54] | ~EUR 1000 |
2.2. Location of Stationary Measurement Devices in the Solar Field
2.3. HTF Sample Laboratory Analysis
3. New Approaches in Collector Field Monitoring
- deliver more information about the field specific conditions,
- measure in shorter time periods,
- deliver spatially higher resolved information,
- deliver measurements that can be used for advanced field control strategies.
3.1. Vehicle-Mounted Instrumentation
3.2. Airborne Measurements
3.3. On-Site Measurements
Measurand | Measuring Device | Uncertainty Value | Definition |
---|---|---|---|
Mirror shape | Airborne deflectometry, values from [33] | Local values ±0.6 to ±1.1 mrad RMS values: ±0.1 mrad | RMS: Global uncertainty via Monte Carlo approach, QFly [33] |
Receiver position | Airborne photogrammetry, values from [66] | <1.5 mm for each direction | for X and Z directions, QFly [66] |
Receiver glass temperature/piping temperature | Airborne infrared camera, e.g., [67] | <3 K compared to resistance thermometers | Airborne approach only possible at wind speeds <6–8 m/s [67] |
Vehicle-mounted infrared camera, e.g., [63] | <3 K @ 1 to 6 m/s wind speed, compared to thermocouple | Temperature difference of ITR system [63] | |
Cleanliness | Continuous cleanliness measurement with tracked Pyrheliometer, e.g., TraCS | ±1.8% (1 σ) | Combined standard uncertainty for minute value of cleanliness [28] |
Continuous cleanliness measurement with mirror samples, e.g., AVUS | - | In Heimsath et al. [70] compared to D&S Reflectometer | |
DNI Maps (spatial DNI forecast) | All sky imager | In the range from approx. −50 W/m2 and +30 W/m2 (lead time 0 min) to −260 W/m2 and +120 W/m2 (lead time 15 min) | Site specific uncertainty according to occurrence of DNI class and lead time [82] |
Shadow camera | Between 4.2% and 16.7% (RMSE) | For DNI maps without forecast, uncertainty depends on cloud occurrence [73] | |
Specific heat capacity | Inline measurement system KONTAS-CP [81] | <1.2% | Deviation to Differential Scanning Calorimetry (DSC) for T < 270 °C [83] |
Calorimeter for solar thermal testing loops [80] | 3 to 4% | Upper limit for accuracy [79] |
4. Discussion and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations Including Units and Nomenclature
AI | Artificial intelligence |
ASI | All sky imager |
AVUS | Automated In situ Measurement of Contamination Quotas and Spectrums |
CSP | Concentrated solar power |
DHI | Diffuse horizontal irradiance (W/m2) |
DLR | German Aerospace Center |
DNI | Direct normal irradiance (W/m2) |
DOE | US Department of Energy |
DSC | Differential Scanning Calorimetry |
GHI | Global horizontal irradiance (W/m2) |
GUM | Guide to the expression of uncertainty in measurement |
HCE | Heat collecting element |
HTF | Heat transfer fluid |
IR | Infrared |
ITR | Inspection Receiver Tubes |
KONTAS CP | Concentrator test facility Almería Spain with calorimeter unit |
LBL | Lawrence Berkeley Laboratory |
LCOE | Levelized cost of electricity |
LED | Light emitting diode |
PV | Photovoltaic |
RMS | Root mean square |
RMSE | Root mean square error |
RSI | Rotating shadow band irradiometer |
SAM | Sun and Aureole Measurement system |
SCA | Solar collector assembly |
SPA | Solar Position Algorithm |
TARMES | Trough Absorber Reflection Measurement System |
TOP | Theoretical overlay photographic |
TraCS | Tracking Cleanliness Sensor |
UAV | Unmanned aerial vehicle |
VSHOT | Video Scanning Hartmann Optical Test System |
References
- NREL. Concentrating Solar Power Projects. National Renewable Energy Laboratory (NREL). Available online: https://solarpaces.nrel.gov/ (accessed on 18 January 2021).
- Murphy, C.; Sun, Y.; Cole, W.; Maclaurin, G.; Turchi, C.; Mehos, M. The Potential Role of Concentrating Solar Power within the Context of DOE’s 2030 Solar Cost Targets; NREL: Golden, CO, USA, 2019. [CrossRef]
- Morris, A.S.; Langari, R. Measurement and Instrumentation; Elsevier Science & Technology: Saint Louis, MO, USA, 2012; ISBN 9780123819604. [Google Scholar]
- Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. 2008. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 18 January 2021).
- Boyes, W. Instrumentation Reference Book; Elsevier Science & Technology: Amsterdam, The Netherlands, 2010; ISBN 9780750683081. [Google Scholar]
- Ding, W.; Bonk, A.; Bauer, T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Front. Chem. Sci. Eng. 2018, 12, 564–576. [Google Scholar] [CrossRef] [Green Version]
- Nouri, B.; Röger, M.; Janotte, N.; Hilgert, C. Characterization and Corrections for Clamp-On Fluid Temperature Measurements in Turbulent Flows. J. Thermal Sci. Eng. Appl. 2018, 10, 031011. [Google Scholar] [CrossRef] [Green Version]
- DIN German Institute for Standardization. Industrial Platinum Resistance Thermometers and Platinum Temperature Sensors (IEC 60751:2008), German version EN 60751:2008; Beuth Verlag GmbH: Berlin, Germany, 2009. [Google Scholar]
- DIN German Institute for Standardization. Thermocouples—Part. 1: EMF Specifications and Tolerances (IEC 60584-1:2013), German version EN 60584-1:2013; Beuth Verlag GmbH: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Bentley, J.P. Temperature sensor characteristics and measurement system design. J. Phys. E Sci. Instrum. 1984, 17, 430–439. [Google Scholar] [CrossRef]
- Deutsche Akkreditierungsstelle (DAkkS). Kalibrierung von Widerstandsthermometern; Deutsche Akkreditierungsstelle (DAkkS): Berlin, Germany, 2010. [Google Scholar]
- Janotte, N. Requirements for Representative Acceptance Tests for the Prediction of the Annual Yield of Parabolic Trough Solar Fields; Shaker Verlag GmbH: Düren, Germany, 2012; ISBN 978-3-8440-1565-2. [Google Scholar]
- Baker, R.C. Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications; Cambridge University Press: Cambridge, UK, 2000; ISBN 0-521-48010-8. [Google Scholar]
- Cairney, W.D. Typical flow measurement problems and their solution in the electricity supply industry. Flow Meas. Instrum. 1991, 2, 217–223. [Google Scholar] [CrossRef]
- CNRS. R12.10 Report on Mass Flow Measurement and Calibration Procedures. Available online: http://sfera.sollab.eu/downloads/JRA/WP12/Delivrable_R12.10_Report_on_mass_flow_measurement_and_calibration_procedures.pdf (accessed on 1 September 2021).
- Janotte, N.; Wilbert, S.; Sallaberry, F.; Schroedter-Homscheidt, M.; Ramirez, L. 2—Principles of CSP performance assessment. In The Performance of Concentrated Solar Power (CSP) Systems; Heller, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 31–64. [Google Scholar]
- Lee, C.-Y.; Chou, P.-C.; Chiang, C.-M.; Lin, C.-F. Sun Tracking Systems: A Review. Sensors 2009, 9, 3875–3890. [Google Scholar] [CrossRef] [PubMed]
- Michalsky, J.J. The Astronomical Almanac’s algorithm for approximate solar position (1950–2050). Sol. Energy 1988, 40, 227–235. [Google Scholar] [CrossRef]
- Reda, I.; Andreas, A. Solar Position Algorithm for Solar Radiation Applications (Revised); National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008. [CrossRef] [Green Version]
- Shuman, F.; Boys, C.V. Sun-Boiler. US1240890A, 25 September 1917. [Google Scholar]
- Solar Millennium AG. Die Parabolrinnen-Kraftwerke Andasol 1 bis 3. Die Größten Solarkraftwerke der Welt; Premiere der Technologie in Europa; Solar Millennium AG: Erlangen, Germany, 2008. [Google Scholar]
- Price, H.; Forristall, R.; Wendelin, T.; Lewandowski, A.; Moss, T.; Gummo, C. Field Survey of Parabolic Trough Receiver Thermal Performance. In Proceedings of the ASME International Solar Energy Conference, Denver, CO, USA, 8–13 July 2006. [Google Scholar]
- Caron, S.; Röger, M. In-situ heat loss measurements of parabolic trough receivers based on transient infrared thermography. Sol. Energy 2016, 135, 10. [Google Scholar] [CrossRef]
- Minkina, W.; Dudzik, S. Uncertainties of Measurements in Infrared Thermography. In Infrared Thermography; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kearney, D. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009–December 2010; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2011. [CrossRef] [Green Version]
- Cohen, G.E.; Kearney, D.W.; Kolb, G.J. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 1999. [CrossRef] [Green Version]
- Fernández-García, A.; Sutter, F.; Fernández-Reche, J.; Lüpfert, E. 3—Mirrors. In The Performance of Concentrated Solar Power (CSP) Systems; Heller, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 67–98. [Google Scholar]
- Wolfertstetter, F.; Pottler, K.; Alami Merrouni, A.; Mezrhab, A.; Pitz-Paal, R. A Novel method for Automatic Real-Time Monitoring of Mirror Soiling Rates. In Proceedings of the SolarPACES Conference, Marrakesch, Morocco, 11–14 September 2012; p. 9. [Google Scholar]
- Zhu, G.; Kearney, D.; Mehos, M. On characterization and measurement of average solar field mirror reflectance in utility-scale concentrating solar power plants. Sol. Energy 2014, 99, 185–202. [Google Scholar] [CrossRef]
- Wolfertstetter, F. Auswirkungen von Verschmutzung auf Konzentrierende Solarthermische Kraftwerke. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2016. [Google Scholar]
- Ulmer, S.; Pottler, K.; Lüpfert, E.; Röger, M. Measurement Techniques for the Optical Quality Assessment of Parabolic Trough Collector Fields in Commercial Solar Power Plants. In Proceedings of the Energy Sustainability, Long Beach, CA, USA, 27–30 July 2007; pp. 1085–1091. [Google Scholar]
- Ulmer, S.; Heinz, B.; Pottler, K.; Lüpfert, E. Slope Error Measurements of Parabolic Troughs Using the Reflected Image of the Absorber Tube. J. Sol. Energy Eng. 2009, 131, 011014. [Google Scholar] [CrossRef]
- Prahl, C.; Stanicki, B.; Hilgert, C.; Ulmer, S.; Röger, M. Airborne shape measurement of parabolic trough collector fields. Sol. Energy 2013, 91, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Wendelin, T.; May, K.; Gee, R. Video Scanning Hartmann Optical Testing of State-of-the-Art Parabolic Trough Concentrators: Preprint. In Proceedings of the Solar 2006 Conference (ISEC ’06), Denver, CO, USA, 8–13 July 2006. [Google Scholar]
- Diver, R.B.; Moss, T.A. Practical Field Alignment of Parabolic Trough Solar Concentrators. J. Sol. Energy Eng. 2006, 129, 153–159. [Google Scholar] [CrossRef]
- Wood, R.L. Distant-Observer Techniques for Verification of Solar-Concentrator Optical Geometry; Lawrence Livermore National Lab.: Livermore, CA, USA, 1981.
- Shortis, M.R.; Johnston, G.H.G. Photogrammetry: An Available Surface Characterization Tool for Solar Concentrators, Part I: Measurements of Surfaces. J. Sol. Energy Eng. 1996, 118, 146–150. [Google Scholar] [CrossRef]
- Pottler, K.; Lüpfert, E.; Johnston, G.H.G.; Shortis, M.R. Photogrammetry: A Powerful Tool for Geometric Analysis of Solar Concentrators and Their Components. J. Sol. Energy Eng. 2005, 127, 94–101. [Google Scholar] [CrossRef]
- Meola, C. Infrared Thermography Recent Advances and Future Trends; Bentham Science: Sharjah, United Arab Emirates, 2012; ISBN 9781608051434. [Google Scholar]
- Infratec. Technical Specifications ImageIR 8300. Available online: https://www.infratec-infrared.com/thermography/infrared-camera/imageir-8300/ (accessed on 18 November 2020).
- Lovegrove, K. Concentrating Solar Power Technology: Principles, Developments and Applications; Elsevier Science & Technology: Cambridge, UK, 2012; ISBN 9780857096173. [Google Scholar]
- Wolfertstetter, F.; Pottler, K.; Geuder, N.; Affolter, R.; Merrouni, A.A.; Mezrhab, A.; Pitz-Paal, R. Monitoring of Mirror and Sensor Soiling with TraCS for Improved Quality of Ground based Irradiance Measurements. Energy Proc. 2014, 49, 2422–2432. [Google Scholar] [CrossRef] [Green Version]
- Pape, B.; Batlles, J.; Geuder, N.; Pinero, R.Z.; Adan, F.; Pulvermüller, B. Soiling impact and correction formulas in solar measurements for CSP projects. In Proceedings of the SolarPACES Conference, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Schwandt, M.; Radtke, J.; Petersen, A.; Heimsath, A.; Meyer, R. Soiling impact on direct normal irradiation measurements. In Proceedings of the SolarPACES Conference, Daegu, Korea, 1–4 October 2019. [Google Scholar]
- Wilbert, S. Determination of Circumsolar Radiation and Its Effect on Concentrating Solar Power. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 2014. [Google Scholar]
- Grether, D.; Nelson, J.; Wahlig, M. Measurement of circumsolar radiation. In Proceedings of the 19th Annual Technical Symposium of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA, USA, August 1975. [Google Scholar]
- Neumann, A.; Von der Au, B.; Heller, P. Measurement of Circumsolar Radiation at the Plataforma Solar de Almería (Spain) and at DLR (Germany). In Proceedings of the ASME International Solar Energy Conference, Albuquerque, NM, USA, 14–17 June 1998. [Google Scholar]
- Wilbert, S.; Pitz-Paal, R.; Jaus, J. Comparison of measurement techniques for the determination of circumsolar irradiance. AIP Conf. Proc. 2013, 1556, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Schrott, S.; Schmidt, T.; Hornung, T.; Nitz, P. Scientific system for high-resolution measurement of the circumsolar radiation. In Proceedings of the 10th International Conference on Concentrator Photovoltaic Systems, Albuquerque, NM, USA, 7–9 April 2014. [Google Scholar]
- Wilbert, S.; Röger, M.; Csambor, J.; Breitbach, M.; Klinger, F.; Nouri, B.; Hanrieder, N.; Wolfertstetter, F.; Schüler, D.; Shaswattam, S.; et al. Sunshape measurements with conventional rotating shadowband irradiometers. AIP Conf. Proc. 2018, 2033, 190016. [Google Scholar] [CrossRef] [Green Version]
- Wilbert, S.; Kleindiek, S.; Nouri, B.; Geuder, N.; Habte, A.; Schwandt, M.; Vignola, F. Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error. In Proceedings of the SolarPACES Conference, Cape Town, South Africa, 13–16 October 2015; p. 150009. [Google Scholar]
- Wilbert, S.; Pitz-Paal, R.; Jaus, J. Circumsolar Radiation and Beam Irradiance Measurements for Focusing Collectors. In Proceedings of the ES1002: Cost Wire Workshop, Köln-Porz, Germany, May 2012. [Google Scholar]
- Burkholder, F.; Kutscher, C. Heat Loss Testing of Schott’s 2008 PTR70 Parabolic Trough Receiver; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009. [CrossRef]
- World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation; World Meteorological Organization: Genewa, Switzerland, 2014; ISBN 978-92-63-10008-5. [Google Scholar]
- Price, H. A parabolic trough solar power plant simulation model. In Proceedings of the ASME 2003 International Solar Energy Conference, Kohala Coast, HI, USA, 15–18 March 2003; pp. 665–673. [Google Scholar]
- Wolfertstetter, F.; Wilbert, S.; Terhag, F.; Hanrieder, N.; Fernandez-García, A.; Sansom, C.; King, P.; Zarzalejo, L.; Ghennioui, A. Modelling the soiling rate: Dependencies on meteorological parameters. AIP Conf. Proc. 2019, 2126, 190018. [Google Scholar] [CrossRef] [Green Version]
- Jung, C. Thermal Stability of Used Eutectic Mixture of Biphenyl and Diphenyl Ether. In Proceedings of the SolarPACES Conference, online. 27 September–1 October 2021. [Google Scholar]
- Jung, C.; Senholdt, M.; Spenke, C.; Schmidt, T.; Ulmer, S. Hydrogen monitoring in the heat transfer fluid of parabolic trough plants. In Proceedings of the SolarPACES Conference, Casablanca, Morocco, 2–5 October 2018; p. 080004. [Google Scholar]
- Jung, C.; Nietsch, A. Precise Heat Capacity Determination of Organic Heat Transfer Fluids. In Proceedings of the Summer School of Calorimetry, Lyon, France, 14–19 June 2014. [Google Scholar]
- Schaffer, E. Silicone-based Heat Transfer Fluids—Overcoming the Thermal Limits of Parabolic Trough Plants with Bankable Systems. In Proceedings of the SolarPACES Conference, online. 27 September–1 October 2021. [Google Scholar]
- Gomez, J.C.; Glatzmaier, G.C.; Mehos, M. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid. In Proceedings of the SolarPACES, Marrakech, Morocco, 11–14 September 2012. [Google Scholar]
- Röger, M.; Prahl, C.; Pernpeintner, J.; Sutter, F. 7—New methods and instruments for performance and durability assessment. In The Performance of Concentrated Solar Power (CSP) Systems; Heller, P., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 205–252. [Google Scholar]
- Jalón, A.G.D.; Pérez, D.; Benito, P.; Zaversky, F. Inspection Receiver Tubes Device for CSP Plants. Energy Proc. 2015, 69, 1868–1876. [Google Scholar] [CrossRef] [Green Version]
- Olano, X.; De Jalón, A.G.; Pérez, D.; Barberena, J.G.; López, J.; Gastón, M. Outcomes and features of the inspection of receiver tubes (ITR) system for improved O&M in parabolic trough plants. In Proceedings of the SolarPACES Conference, Santiago, Chile, 26–29 September 2018. [Google Scholar]
- Jorgensen, G.; Burkholder, F.; Gray, A.; Wendelin, T. Assess the Efficacy of an Aerial Distant Observer Tool Capable of Rapid Analysis of Large Sections of Collector Fields; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009.
- Prahl, C.; Röger, M.; Stanicki, B.; Hilgert, C. Absorber tube displacement in parabolic trough collectors—A review and presentation of an airborne measurement approach. Sol. Energy 2017, 157, 692–706. [Google Scholar] [CrossRef] [Green Version]
- Prahl, C.; Röger, M.; Hilgert, C. Air-borne shape measurement of parabolic trough collector fields. In Proceedings of the SolarPACES Conference, Abu Dhabi, United Arab Emirates, 11–14 October 2016. [Google Scholar]
- Wolfertstetter, F.; Fonk, R.; Prahl, C.; Röger, M.; Wilbert, S.; Fernández-Reche, J. Airborne soiling measurements of entire solar fields with Qfly. AIP Conf. Proc. 2020, 2303, 100008. [Google Scholar] [CrossRef]
- Röger, M.; Prahl, C.; Algner, N.; Reinalter, W. Regelmäßige Vermessung thermischer und optischer Komponenten in Parabolrinnenfeldern. In Proceedings of the 21. Kölner Sonnenkolloquium 2018, Köln-Porz, Germany, 4 July 2018. [Google Scholar]
- Heimsath, A.; Schmidt, T.; Steinmetz, J.; Reetz, C.; Schwandt, M.; Meyer, R.; Nitz, P. Automated monitoring of soiling with AVUS instrument for improved solar site assessment. In Proceedings of the SolarPACES Conference, Santiago, Chile, 26–29 September 2017. [Google Scholar]
- Heimsath, A.; Schmidt, T.; Rohani, S.; Haack, L.; Meyer, R.; Steinmetz, J.; Nitz, P. Monitoring of soiling with the AVUS instrument—Technical and economic assessment. In Proceedings of the SolarPACES, Casablanca, Morocco, 2–5 October 2018; p. 190007. [Google Scholar]
- Nouri, B.; Kuhn, P.M.; Wilbert, S.; Prahl, C.; Pitz-Paal, R.; Blanc, P.; Schmidt, T.; Yasser, Z.; Ramirez, L.; Heinemann, D. Nowcasting of DNI Maps for the Solar Field Based on Voxel Carving and Individual 3D Cloud Objects from All Sky Images. In Proceedings of the SolarPACES Conference, Santiago, Chile, 26–29 September 2017. [Google Scholar]
- Kuhn, P.M.; Wilbert, S.; Prahl, C.; Schüler, D.; Haase, T.; Hirsch, T.; Wittmann, M.; Ramirez, L.; Zarzalejo, L.F.; Meyer, A.; et al. Shadow camera system for the generation of solar irradiance maps. Sol. Energy 2017, 157, 157–170. [Google Scholar] [CrossRef]
- Nouri, B.; Noureldin, K.; Schlichting, T.; Wilbert, S.; Hirsch, T.; Schroedter-Homscheidt, M.; Kuhn, P.; Kazantzidis, A.; Zarzalejo, L.F.; Blanc, P.; et al. A Way to Increase Parabolic Trough Plant Yield by Roughly 2% Using All Sky Imager Derived DNI Maps. In Proceedings of the SolarPaces Conference, Daegu, Korea, 1–4 October 2019. [Google Scholar]
- Nouri, B.; Noureldin, K.; Schlichting, T.; Wilbert, S.; Hirsch, T.; Schroedter-Homscheidt, M.; Kuhn, P.; Kazantzidis, A.; Zarzalejo, L.F.; Blanc, P.; et al. Optimization of parabolic trough power plant operations in variable irradiance conditions using all sky imagers. Sol. Energy 2020, 198, 434–453. [Google Scholar] [CrossRef]
- Noureldin, K.; Hirsch, T.; Pitz-Paal, R. VSF—An Opportunity to Optimize Transient Processes in Line-Focus CSP Power Plants. In Proceedings of the SolarPACES Conference, Abu Dhabi, United Arab Emirates, 11–14 October 2016. [Google Scholar]
- Noureldin, K.; Hirsch, T.; Pitz-Paal, R. Virtual Solar Field—Validation of a detailed transient simulation tool for line focus STE fields with single phase heat transfer fluid. Sol. Energy 2017, 146, 131–140. [Google Scholar] [CrossRef]
- Janotte, N.; Lüpfert, E.; Pitz-Paal, R.; Pottler, K.; Eck, M.; Zarza, E.; Riffelmann, K.-J. Influence of Measurement Equipment on the Uncertainty of Performance Data from Test Loops for Concentrating Solar Collectors. J. Sol. Energy Eng. 2010, 132. [Google Scholar] [CrossRef]
- Marchã, J.; Osório, T.; Pereira, M.C.; Horta, P. Development and Test Results of a Calorimetric Technique for Solar Thermal Testing Loops, Enabling Mass Flow and Cp Measurements Independent from Fluid Properties of the HTF Used. Energy Proc. 2014, 49, 2125–2134. [Google Scholar] [CrossRef] [Green Version]
- Collares-Pereira, M.; Duque, J.; Saraiva, C.; Rego-Teixeira, A. A calorimeter for solar thermal collector testing. Sol. Energy 1981, 27, 581–582. [Google Scholar] [CrossRef]
- Hilgert, C.; Bern, G.; Röger, M. Kontas-CP—Flow Through Calorimeter for Online Heat Capactiy Measurement of Thermal Oils in CSP Application. In Proceedings of the SolarPACES Conference, Marrakesch, Morocco, 11–14 September 2012. [Google Scholar]
- Nouri, B.; Wilbert, S.; Kuhn, P.M.; Hanrieder, N.; Schroedter-Homscheidt, M.; Kazantzidis, A.; Zarzalejo, L.F.; Blanc, P.; Kumar, S.; Goswami, N.; et al. Real-Time Uncertainty Specification of All Sky Imager Derived Irradiance Nowcasts. Remote. Sens. 2019, 11, 1059. [Google Scholar] [CrossRef] [Green Version]
- Hilgert, C.; Howar, F.; Röger, M. Flow through calorimeter to measure fluid heat capacity in CSP applications. Sol. Energy 2019, 194, 804–814. [Google Scholar] [CrossRef]
Measurand | Measuring Device | Uncertainty Value | Definition | Cost Range |
---|---|---|---|---|
Specific heat capacity | Differential Scanning Calorimetry (DSC) | ±0.074 J/g K (3.09%) (2 σ) | Measured for Therminol VP-1 between 300 and 370 °C [61] | >EUR 10,000 |
Standard Measurement Technique | New Approaches | Improvement |
---|---|---|
Hand-held infrared camera | Vehicle-mounted instrumentation | Spatially higher resolved, measures in shorter time periods |
Airborne measurements | Spatially higher resolved | |
Distant observer methods, close-range photogrammetry | Airborne measurements | Spatially higher resolved |
Reflectometer measurements | Tracking cleanliness sensor | Delivers more information, measures in shorter time periods |
DNI measurements | All sky imagers, shadow cameras | Spatially higher resolved, information can be used for advanced field control |
Differential Scanning Calorimetry | In situ calorimeter | Delivers more information |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brenner, A.; Hirsch, T.; Röger, M.; Pitz-Paal, R. State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields. Energies 2021, 14, 7166. https://doi.org/10.3390/en14217166
Brenner A, Hirsch T, Röger M, Pitz-Paal R. State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields. Energies. 2021; 14(21):7166. https://doi.org/10.3390/en14217166
Chicago/Turabian StyleBrenner, Alex, Tobias Hirsch, Marc Röger, and Robert Pitz-Paal. 2021. "State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields" Energies 14, no. 21: 7166. https://doi.org/10.3390/en14217166
APA StyleBrenner, A., Hirsch, T., Röger, M., & Pitz-Paal, R. (2021). State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields. Energies, 14(21), 7166. https://doi.org/10.3390/en14217166