A New Concept of Air Cooling and Heat Pipe for Electric Vehicles in Fast Discharging
Abstract
:1. Introduction
2. Experimental Material, Apparatus, and Process
2.1. Explanation of the Materials
2.2. Explanation of the Test Sequence
2.3. Test Results and Discussion
2.3.1. Effect of the Natural Convection on LTO Cell
2.3.2. Effect of the Natural Convection and Heat Pipes on the LTO Cell
2.3.3. Effect of the ACAH on the LTO Cell
2.3.4. Comparison of the T1 Thermocouple in Various Cooling Strategies
3. Simulation and Modeling
3.1. LTO Cell Numerical Thermal Modeling
3.2. Forced Air Cooling Model
3.3. Validation of Battery Cell for Natural Convection, Heat Pipe, ACAH, and Grid Number Sensitivity Analysis
3.4. Simulation Results and Discussion
3.4.1. The Effect of Natural Convection, Heat Pipe, and ACAH Cooling Methods on the Cell Level
3.4.2. Effect of Different Coolant Velocity on ACAH Cooling Method
3.4.3. Effect of Different Ambient Temperatures on ACAH Cooling Method
4. Summary and Outlook
4.1. Conclusions
- The cell surface temperature at four different points is measured in the presence of natural convection. The maximum temperature is reached 56 °C at an ambient temperature of 22 °C.
- Heat pipe and natural convection could reduce the maximum cell temperature by 17.3%.
- Using the ACAH, the maximum cell temperature reached 38.3 °C, experiencing a 31% decrease.
- The mathematical models were solved by COMSOL Multiphysics®. The simulation results for different scenarios were validated against experimental data with an acceptable error range.
- The influence of different inlet velocities and ambient temperatures on the cell maximum temperature was investigated for the ACAH cooling method.
4.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghezelbash, R.; Farzaneh-Gord, M.; Behi, H.; Sadi, M.; Khorramabady, H.S. Performance assessment of a natural gas expansion plant integrated with a vertical ground-coupled heat pump. Energy 2015, 93, 2503–2517. [Google Scholar] [CrossRef]
- Khaleghi, S.; Karimi, D.; Beheshti, S.H.; Hosen, S.; Behi, H.; Berecibar, M.; Van Mierlo, J. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Appl. Energy 2021, 282, 116159. [Google Scholar] [CrossRef]
- Karimi, D.; Khaleghi, S.; Behi, H.; Beheshti, H.; Hosen, S.; Akbarzadeh, M.; Van Mierlo, J.; Berecibar, M. Lithium-Ion Capacitor Lifetime Extension through an Optimal Thermal Management System for Smart Grid Applications. Energies 2021, 14, 2907. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Akbarzadeh, M.; Van Mierlo, J.; Berecibar, M. Holistic 1D Electro-Thermal Model Coupled to 3D Thermal Model for Hybrid Passive Cooling System Analysis in Electric Vehicles. Energies 2021, 14, 5924. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Jaguemont, J.; Gandoman, F.H.; Khaleghi, S.; Van Mierlo, J.; Berecibar, M. Aluminum Heat Sink Assisted Air-Cooling Thermal Management System for High Current Applications in Electric Vehicles. In 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE); IEEE: Turin, Italy, 2020. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. A refrigerant-based thermal management system for a fast charging process for lithium-ion batteries. In Proceedings of the International Conference on Renewable Energy Systems and Environmental Engineering (IRESE2020), Brussels, Belgium, 18–20 July 2020; pp. 1–6. [Google Scholar]
- Karimi, D.; Behi, H.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Investigation of extruded heat sink assisted air cooling system for lithium-ion capacitor batteries. In Proceedings of the International Conference on Renewable Energy Systems and Environmental Engineering, Brussels, Belgium, 18–20 July 2020; pp. 1–6. [Google Scholar]
- Yahyaie, A.; Mirmohammadi, S.A.A.; Behi, M.R.; Sadi, M.; Behi, H.R. Theoretical Investigation on Producing Work by Applying Different Refrigerants in Typical Power Cycle, Scientific Society of Measurement, Automation and Informatics, Branch of Thermal Engineering and Thermogrammetry, Hungary. 2009. Available online: http://inis.iaea.org/search/search.aspx?orig_q=RN:40102982 (accessed on 10 September 2021).
- Gandoman, F.H.; Behi, H.; Berecibar, M.; Jaguemont, J.; Aleem, S.H.A.; Behi, M.; Van Mierlo, J. Reliability evaluation of Li-ion batteries for electric vehicles applications from the thermal perspectives. In Uncertainties in Modern Power Systems; Elsevier; Academic Press: Cambridge, MA, USA, 2021; pp. 563–587. [Google Scholar]
- Karimi, D.; Jaguemont, J.; Behi, H.; Berecibar, M.; van den Bossche, P.; van Mierlo, J. Passive cooling based battery thermal management using phase change materials for electric vehicles. In Proceedings of the EVS33 International Electric Vehicle Symposium, Portland, OR, USA, 14–17 June 2020; The Electric Drive Transportation Association EDTA: Portland, OR, USA, 2020. [Google Scholar]
- Karimi, D.; Behi, H.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Optimized air-cooling thermal management system for high power lithium-ion capacitors. In Proceedings of the International Conference on Renewable Energy Systems and Environmental Engineering (IRESE2020), Brussels, Belgium, 18–20 July 2020. [Google Scholar]
- Behi, H.; Karimi, D.; Behi, M.; Ghanbarpour, M.; Jaguemont, J.; Sokkeh, M.A.; Gandoman, F.H.; Berecibar, M.; Van Mierlo, J. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Appl. Therm. Eng. 2020, 174, 115280. [Google Scholar] [CrossRef]
- Behi, H.; Behi, M.; Karimi, D.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Van Mierlo, J. Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Appl. Therm. Eng. 2021, 183, 116240. [Google Scholar] [CrossRef]
- Ye, Y.; Saw, B.; Shi, Y.; Tay, A.A. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 2015, 86, 281–291. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; El Baghdadi, M.; Van Mierlo, J.; Hegazy, O. Thermal Concept Design of MOSFET Power Modules in Inverter Subsystems for Electric Vehicles. In Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, WA, Australia, 10–12 December 2019; pp. 1–6. [Google Scholar]
- Behi, H.; Karimi, D.; Jaguemont, J.; Gandoman, F.H.; Kalogiannis, T.; Berecibar, M.; Van Mierlo, J. Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy 2021, 224, 120165. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Hosen, S.; Jaguemont, J.; Berecibar, M.; Van Mierlo, J. A compact and optimized liquid-cooled thermal management system for high power lithium-ion capacitors. Appl. Therm. Eng. 2021, 185, 116449. [Google Scholar] [CrossRef]
- Karimi, D.; Hosen, S.; Behi, H.; Khaleghi, S.; Akbarzadeh, M.; Van Mierlo, J.; Berecibar, M. A hybrid thermal management system for high power lithium-ion capacitors combining heat pipe with phase change materials. Heliyon 2021, 7, 07773. [Google Scholar] [CrossRef]
- Behi, H. Experimental and Numerical Study on Heat Pipe Assisted PCM Storage System. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2015. Available online: http://www.diva-portal.org/smash/get/diva2:850104/FULLTEXT01.pdf (accessed on 10 September 2021).
- Behi, H.; Behi, M.; Ghanbarpour, A.; Karimi, D.; Azad, A.; Ghanbarpour, M.; Behnia, M. Enhancement of the Thermal Energy Storage Using Heat-Pipe-Assisted Phase Change Material. Energies 2021, 14, 6176. [Google Scholar] [CrossRef]
- Behi, M.; Mirmohammadi, S.A.; Suma, A.B.; Palm, B.E. Optimized Energy Recovery in Line With Balancing of an ATES. In Proceedings of the ASME 2014 Power Conference, Baltimore, MD, USA, 28–31 July 2014. [Google Scholar] [CrossRef]
- Behi, M.; Mirmohammadi, S.A.; Ghanbarpour, M.; Behi, H.; Palm, B. Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment. Energy 2018, 164, 449–464. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Gandoman, F.H.; Akbarzadeh, M.; Khaleghi, S.; Kalogiannis, T.; Hosen, S.; Jaguemont, J.; Van Mierlo, J.; Berecibar, M. PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles. Case Stud. Therm. Eng. 2021, 25, 100920. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; Sokkeh, M.A.; Kalogiannis, T.; Hosen, S.; Berecibar, M.; Van Mierlo, J. Thermal performance enhancement of phase change material using aluminum-mesh grid foil for lithium-capacitor modules. J. Energy Storage 2020, 30, 101508. [Google Scholar] [CrossRef]
- Mirmohammadi, S.; Behi, M. Investigation on Thermal Conductivity, Viscosity and Stability of Nanofluids. 2012, p. 140. Available online: http://kth.diva-portal.org/smash/record.jsf?pid=diva2:537164 (accessed on 10 September 2021).
- Mirmohammadi, S.A.; Behi, M.; Gan, Y.; Shen, L. Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids. Phys. Rev. E 2019, 99, 043109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikkam, N.; Saleemi, M.; Behi, M.; Khodabandeh, R.; Toprak, M.S. Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids. Int. Commun. Heat Mass Transf. 2017, 87, 164–168. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Youssef, R.; Patil, M.S.; Van Mierlo, J.; Berecibar, M. Comprehensive Passive Thermal Management Systems for Electric Vehicles. Energies 2021, 14, 3881. [Google Scholar] [CrossRef]
- Behi, M.; Shakorian-Poor, M.; Mirmohammadi, S.; Behi, H.; Rubio, J.; Nikkam, N.; Farzaneh-Gord, M.; Gan, Y.; Behnia, M. Experimental and numerical investigation on hydrothermal performance of nanofluids in micro-tubes. Energy 2020, 193, 116658. [Google Scholar] [CrossRef]
- Behi, H.; Ghanbarpour, M.; Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Appl. Therm. Eng. 2017, 127, 1132–1142. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Experimental study on cooling performance of flat heat pipe for lithium-ion battery at various inclination angels. Energy Perspect. 2020, 1, 77–92. [Google Scholar]
- Behi, H.; Karimi, D.; Behi, M.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Van Mierlo, J. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J. Energy Storage 2020, 32, 101893. [Google Scholar] [CrossRef]
- Mbulu, H.; Laoonual, Y.; Wongwises, S. Experimental study on the thermal performance of a battery thermal management system using heat pipes. Case Stud. Therm. Eng. 2021, 26, 101029. [Google Scholar] [CrossRef]
- Ashwin, T.; Chung, Y.M.; Wang, J. Capacity fade modelling of lithium-ion battery under cyclic loading conditions. J. Power Sources 2016, 328, 586–598. [Google Scholar] [CrossRef] [Green Version]
- Kariya, H.A. Development of an Air-cooled, Loop-type Heat Pipe with Multiple Condensers. 2012, pp. 1–172. Available online: https://dspace.mit.edu/handle/1721.1/78237 (accessed on 10 September 2021).
- Soltani, M.; Ronsmans, J.; Jaguemont, J.; Van Mierlo, J.; Bossche, P.V.D.; Omar, N. A Three-dimensional thermal model for a commercial lithium-ion capacitor battery pack with non-uniform temperature distribution. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019; pp. 1126–1131. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery Pack at Low Temperatures. IEEE Trans. Veh. Technol. 2016, 65, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xiao, M.; Peng, X.; Garg, A.; Gao, L. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs. Appl. Therm. Eng. 2019, 147, 90–100. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, A.; Wang, P.; Liu, P. Optimization design of a parallel air-cooled battery thermal management system with spoilers. Appl. Therm. Eng. 2021, 182, 116062. [Google Scholar] [CrossRef]
- Ghanbarpour, M.; Khodabandeh, R. Entropy generation analysis of cylindrical heat pipe using nanofluid. Thermochim. Acta 2015, 610, 37–46. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Height (mm) | 250 |
Length × width (mm) | 11.2 × 3.5 |
Working fluid | Distilled water |
Wick material | Sintered |
Thermal conductivity (W/m.K) | 8212 |
Cooling Power (W) | 100 |
Operation temperature (°C) | 30–120 |
Heat pipe cross-section (mm2) | 38.32 |
(mm) | 125 |
Parameter | Value |
---|---|
Chemistry | LTO |
Shape | Prismatic |
Nominal Voltage (V) | 2.3 |
Maximum voltage (V) | 2.7 |
Minimum voltage (V) | 1.5 |
Capacity (Ah) | 23 |
Specific Energy (J/kg) | 96 |
Energy Density (J/m) | 202 |
Weight (kg) | 0.550 |
Volume (L) | 0.260 |
Dimensions L × W × H (mm) | 115 × 22 × 103 |
0 | 22.00 | 22.00 | 22.00 | 22.00 | 22.00 |
22.3 | 23.83 | 23.82 | 23.81 | 23.81 | 23.82 |
44.6 | 25.05 | 25.02 | 24.99 | 24.96 | 24.96 |
66.9 | 26.14 | 26.05 | 25.97 | 25.91 | 25.87 |
89.2 | 27.15 | 26.97 | 26.84 | 26.72 | 26.64 |
111.5 | 28.13 | 27.85 | 27.64 | 27.47 | 27.33 |
133.8 | 29.07 | 28.66 | 28.36 | 28.12 | 27.93 |
156.1 | 30.01 | 29.45 | 29.05 | 28.73 | 28.48 |
178.4 | 30.92 | 30.20 | 29.68 | 29.29 | 28.98 |
200.7 | 31.84 | 30.95 | 30.32 | 29.84 | 29.47 |
223 | 32.78 | 31.70 | 30.94 | 30.37 | 29.94 |
245.3 | 33.73 | 32.44 | 31.55 | 30.90 | 30.40 |
267.6 | 34.69 | 33.18 | 32.15 | 31.41 | 30.84 |
289.9 | 35.70 | 33.93 | 32.76 | 31.92 | 31.29 |
312.2 | 36.77 | 34.73 | 33.40 | 32.47 | 31.77 |
334.5 | 37.99 | 35.59 | 34.18 | 33.15 | 32.38 |
356.8 | 39.37 | 36.60 | 35.10 | 33.97 | 33.14 |
379.1 | 40.87 | 37.72 | 36.11 | 34.87 | 33.96 |
401.4 | 42.51 | 38.95 | 37.22 | 35.86 | 34.88 |
423.7 | 44.02 | 40.12 | 38.06 | 36.59 | 35.53 |
446 | 45.24 | 40.96 | 38.55 | 36.96 | 35.83 |
Time (s)/Velocity (m/s) | 1 | 2 | 3 | 4 | 5 |
0 | 10.00 | 22.00 | 35.00 | 45.00 |
22.3 | 11.81 | 23.81 | 36.81 | 46.81 |
44.6 | 12.99 | 24.99 | 37.99 | 47.99 |
66.9 | 13.97 | 25.97 | 38.97 | 48.97 |
89.2 | 14.84 | 26.84 | 39.83 | 49.83 |
111.5 | 15.64 | 27.64 | 40.64 | 50.63 |
133.8 | 16.36 | 28.36 | 41.36 | 51.36 |
156.1 | 17.05 | 29.05 | 42.04 | 52.04 |
178.4 | 17.69 | 29.68 | 42.68 | 52.68 |
200.7 | 18.32 | 30.32 | 43.31 | 53.31 |
223 | 18.94 | 30.94 | 43.93 | 53.92 |
245.3 | 19.55 | 31.55 | 44.54 | 54.53 |
267.6 | 20.16 | 32.15 | 45.14 | 55.13 |
289.9 | 20.77 | 32.76 | 45.75 | 55.74 |
312.2 | 21.41 | 33.40 | 46.39 | 56.38 |
334.5 | 22.19 | 34.18 | 47.17 | 57.16 |
356.8 | 23.11 | 35.10 | 48.09 | 58.08 |
379.1 | 24.12 | 36.11 | 49.09 | 59.08 |
401.4 | 25.23 | 37.22 | 50.20 | 60.19 |
423.7 | 26.07 | 38.06 | 51.04 | 61.03 |
446 | 26.56 | 38.55 | 51.53 | 61.51 |
Time (s)/Temperature (°C) | 10 | 22 | 35 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behi, H.; Kalogiannis, T.; Suresh Patil, M.; Mierlo, J.V.; Berecibar, M. A New Concept of Air Cooling and Heat Pipe for Electric Vehicles in Fast Discharging. Energies 2021, 14, 6477. https://doi.org/10.3390/en14206477
Behi H, Kalogiannis T, Suresh Patil M, Mierlo JV, Berecibar M. A New Concept of Air Cooling and Heat Pipe for Electric Vehicles in Fast Discharging. Energies. 2021; 14(20):6477. https://doi.org/10.3390/en14206477
Chicago/Turabian StyleBehi, Hamidreza, Theodoros Kalogiannis, Mahesh Suresh Patil, Joeri Van Mierlo, and Maitane Berecibar. 2021. "A New Concept of Air Cooling and Heat Pipe for Electric Vehicles in Fast Discharging" Energies 14, no. 20: 6477. https://doi.org/10.3390/en14206477
APA StyleBehi, H., Kalogiannis, T., Suresh Patil, M., Mierlo, J. V., & Berecibar, M. (2021). A New Concept of Air Cooling and Heat Pipe for Electric Vehicles in Fast Discharging. Energies, 14(20), 6477. https://doi.org/10.3390/en14206477