Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF
Abstract
:1. Introduction
2. Materials and Methods
2.1. Random Forest Algorithm
2.2. Whale Optimization Algorithm (WOA)
2.2.1. Search Prey Model
2.2.2. Mathematical Model
2.2.3. Hunting Mathematical Model
2.3. Optimization Algorithm Flow
2.3.1. WOA Pseudo-Code
Algorithm1: The steps of WOA optimization parameters. |
Input: Number of iterations: t, The maximum number of iterations: max_iter, Population size: SN_num, dimension: dim, parameter vector with dimension dim: X*; |
1: Initialize the whale population SN_num(i = 1,2,…n), t = 1; |
2: Initialize the position of the whale population; |
3: Calculate the fitness value corresponding to each whale and rank fitness values to select SN_num whales as the initial population; |
4: Calculate the fitness value of the SN_num individual and find the position of the individual with the smallest fitness value as the optimal position; |
5: Update the location of the next generation; |
6: While , output the optimal individual, namely the optimal solution found by the algorithm. Otherwise ,t = t + 1, return to step (4); |
Output: Get the best parameter vector X* as the optimal position of dimension dim. |
2.3.2. IWOA-RF Pseudo-Code
Algorithm 2: Implementation of IWOA-RF fault detection method. | |
Input: WOA parameters(,, dimension, and maximum number of iterations), SN_num, ,,, t, and RF parameters (); | |
1: | x_train,y_train,x_test,y_test→RF(); |
2: | ; |
3: | Initialize the whale population SN_num(i = 1,2,…n); |
4: | Calculate the fitness of each search agent; |
5: | (,) = the best search agent; |
6: | while (t < maximum number of iterations); |
7: | for each search agent; |
8: | if_1(p < ); |
9: | if_2(|A| < ); |
10: | update the parameter vector by the Equation (11); |
11: | else if_2(|A| ≥ ); |
12: | select a random search agent(X_rand); |
13: | update the parameter vector by the Equation (4); |
14: | end if_2; |
15: | else if_1(p ≥ ); |
16: | update the parameter vector by the Equation (12); |
17: | end if_1; |
18: | end for; |
19: | check if any search agent goes beyond the search space and amend it; |
20: | calculate the fitness of each search agent; |
21: | find out the three positions corresponding to the minimum three fitness values and calculate the average position; |
22: | update X* if there is a better solution; |
23: | t = t + 1; |
24: | end while; |
25: | return (,); |
26: | ; |
27: | x_test,y_test→RF(); |
Output:FNR and FPR. |
3. Results
3.1. Data Description
3.2. Data Cleaning and Preprocessing
3.3. Feature Selection
3.4. Performance Evaluation Index of Fault Diagnosis
3.5. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xi, L.; Wu, J.; Xu, Y.; Sun, H. Automatic Generation Control Based on Multiple Neural Networks With Actor-Critic Strategy. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2483–2493. [Google Scholar] [CrossRef]
- Li, Z.; Li, R.Y.M.; Malik, M.Y.; Murshed, M.; Khan, Z.; Umar, M. Determinants of Carbon Emission in China: How Good is Green Investment? Sustain. Prod. Consum. 2021, 27, 392–401. [Google Scholar] [CrossRef]
- Song, D.; Chang, Q.; Zheng, S.; Yang, S.; Yang, J.; Joo, Y.H. Adaptive Model Predictive Control for Yaw System of Variable-speed Wind Turbines. J. Mod. Power Syst. Clean Energy 2021, 9, 219–224. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, K.S. Wind turbine fault detection based on SCADA data analysis using ANN. Adv. Manuf. 2014, 2, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Fang, L.; Song, D.; Su, M.; Yang, X.; Huang, L.; Joo, Y.H. Review of control strategy of large horizontal-axis wind turbines yaw system. Wind Energy 2021, 24, 97–115. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, B.; Deng, L.; Liu, X. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox. Measurement 2021, 179, 109491. [Google Scholar] [CrossRef]
- Encalada-Dávila, Á.; Puruncajas, B.; Tutivén, C.; Vidal, Y. Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data. Sensors 2021, 21, 2228. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, Y.; Wang, K.; Zuo, M.J.; Heyns, P.S.; Baggeröhr, S. A threshold self-setting condition monitoring scheme for wind turbine generator bearings based on deep convolutional generative adversarial networks. Measurement 2021, 167, 108234. [Google Scholar] [CrossRef]
- Saari, J.; Strombergsson, D.; Lundberg, J.; Thomson, A. Detection and identification of windmill bearing faults using a one-class support vector machine (SVM). Measurement 2019, 137, 287–301. [Google Scholar] [CrossRef]
- Yuan, T.K.; Sun, Z.F.; Ma, S.H. Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection. Energies 2019, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Aziz, U.; Charbonnier, S.; Bérenguer, C.; Lebranchu, A.; Prevost, F. Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation. Renew. Sustain. Energy Rev. 2021, 144, 110961. [Google Scholar] [CrossRef]
- Natili, F.; Daga, A.; Castellani, F.; Garibaldi, L. Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial SCADA and Vibration Data. Appl. Sci. 2021, 11, 6785. [Google Scholar] [CrossRef]
- Azzam, B.; Harzendorf, F.; Schelenz, R.; Holweger, W.; Jacobs, G. Pattern Discovery in White Etching Crack Experimental Data Using Machine Learning Techniques. Appl. Sci. 2019, 9, 5502. [Google Scholar] [CrossRef] [Green Version]
- Castellani, F.; Garibaldi, L.; Daga, A.P.; Astolfi, D.; Natili, F. Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements. Energies 2020, 13, 1474. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Wang, P.; Yang, X.; Hu, A.; Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism. Measurement 2021, 175, 109094. [Google Scholar] [CrossRef]
- Kordestani, M.; Rezamand, M.; Orchard, M.; Carriveau, R.; Ting, D.S.K.; Saif, M. Planetary Gear Faults Detection in Wind Turbine Gearbox Based on a Ten Years Historical Data From Three Wind Farms. IFAC-Pap. 2020, 53, 10318–10323. [Google Scholar]
- Trizoglou, P.; Liu, X.; Lin, Z. Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines. Renew. Energy 2021, 179, 945–962. [Google Scholar] [CrossRef]
- Liu, H.; Yu, C.; Yu, C. A new hybrid model based on secondary decomposition, reinforcement learning and SRU network for wind turbine gearbox oil temperature forecasting. Measurement 2021, 178, 109347. [Google Scholar] [CrossRef]
- Pan, Y.; Hong, R.; Chen, J.; Wu, W. A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox. Renew. Energy 2020, 152, 138–154. [Google Scholar] [CrossRef]
- Ziegler, A.; Koenig, I.R. Mining data with random forests: Current options for real-world applications. Wiley Interdiscip. Rev. -Data Min. Knowl. Discov. 2014, 4, 55–63. [Google Scholar] [CrossRef]
- Asadi, S.; Roshan, S.; Kattan, M.W. Random forest swarm optimization-based for heart diseases diagnosis. J Biomed. Inf. 2021, 115, 103690. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nair, G.G. An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization. Biomed. Signal Process. Control 2021, 68, 102682. [Google Scholar]
- Guo, Z.; Yu, B.; Hao, M.; Wang, W.; Jiang, Y.; Zong, F. A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient. Aerosp. Sci. Technol. 2021, 116, 106822. [Google Scholar] [CrossRef]
- Makungwe, M.; Chabala, L.M.; Chishala, B.H.; Lark, R.M. Performance of linear mixed models and random forests for spatial prediction of soil pH. Geoderma 2021, 397, 115079. [Google Scholar] [CrossRef]
- Jain, D.; Singh, V. Feature selection and classification systems for chronic disease prediction: A review. Egypt. Inform. J. 2018, 19, 179–189. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Zhao, C.; Peng, Y.; Wang, H. An ensemble feature selection method for high-dimensional data based on sort aggregation. Syst. Sci. Control Eng. 2019, 7, 32–39. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Liang, X.; Tang, M. Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl. Math. Model. 2018, 60, 112–126. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Liang, X.; Tang, M. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng. Appl. Artif. Intell. 2018, 68, 63–80. [Google Scholar] [CrossRef]
- Long, W.; Wu, T.; Xu, M.; Tang, M.; Cai, S. Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm. Energy 2021, 229, 120750. [Google Scholar] [CrossRef]
- Tang, M.; Ding, S.X.; Yang, C.; Cheng, F.; Shardt, Y.A.; Long, W.; Liu, D. Cost-sensitive large margin distribution machine for fault detection of wind turbines. Clust. Comput. 2019, 22, 7525–7537. [Google Scholar] [CrossRef]
- Tang, M.; Chen, Y.; Wu, H.; Zhao, Q.; Long, W.; Sheng, V.S.; Yi, J. Cost-Sensitive Extremely Randomized Trees Algorithm for Online Fault Detection of Wind Turbine Generators. Front. Energy Res. 2021, 9, 234. [Google Scholar]
- McKinnon, C.; Carroll, J.; McDonald, A.; Koukoura, S.; Infield, D.; Soraghan, C. Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data. Energies 2020, 13, 5152. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Z. Wind Turbine Gearbox Failure Detection Based on SCADA Data: A Deep Learning-Based Approach. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar]
- Corley, B.; Koukoura, S.; Carroll, J.; McDonald, A. Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes. Energies 2021, 14, 1375. [Google Scholar] [CrossRef]
- Tang, M.; Zhao, Q.; Ding, S.X.; Wu, H.; Li, L.; Long, W.; Huang, B. An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes. Energies 2020, 13, 807. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, H.M.; Umar, S.U.; Rashid, T.A. A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm. Comput. Intell. Neurosci. 2019, 2019, 8718571. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.S.; Dey, S.; Chatterjee, S. Autocorrelation Aided Random Forest Classifier-Based Bearing Fault Detection Framework. IEEE Sens. J. 2020, 20, 10792–10800. [Google Scholar] [CrossRef]
- Sheikhi, S. An effective fake news detection method using WOA-xgbTree algorithm and content-based features. Appl. Soft Comput. 2021, 109, 107559. [Google Scholar] [CrossRef]
- Long, W.; Jiao, J.; Liang, X.; Wu, T.; Xu, M.; Cai, S. Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection. Appl. Soft Comput. 2021, 103, 107146. [Google Scholar] [CrossRef]
- Cho, M.-Y.; Hoang, T.T. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems. Comput. Intell. Neurosci. 2017, 2017, 4135465. [Google Scholar] [CrossRef]
Parameter | Function | Value Range |
---|---|---|
Number of decision trees in random forest | [10, 200] | |
Minimum number of samples on the leaf node of random forest | [1, 300] |
Feature Parameters | Time | ||||||||
---|---|---|---|---|---|---|---|---|---|
01:45 | 01:46 | 01:47 | 01:48 | 01:49 | 01:50 | … | 22:58 | 22:59 | |
rotor_speed | 17.4 | 17.39 | 17.41 | 17.37 | 17.41 | 17.47 | … | 17.45 | 17.41 |
converter_motor_speed | 1749.2 | 1747.4 | 1746.1 | 1745.4 | 1749.4 | 1747.7 | … | 1748.1 | 1749 |
… | … | … | … | … | … | … | … | … | … |
converter_power | 875 | 845.9 | 758.3 | 797.1 | 745 | 789.5 | … | 789.5 | 734.5 |
Feature | Importance | Feature | Importance |
---|---|---|---|
converter_power | 0.141234 | generator_winding_temperature_u1 | 0.055195 |
converter_generator_torque | 0.092532 | pitch_ssb_motor_temperature_1 | 0.053571 |
… | … | … | … |
gearbox_oil_temperature_oil_inlet | 0.066558 | pitch_position_2 | 0.048701 |
pitch_ssb_motor_temperature_3 | 0.056818 | main_bearing_rotor_side_temperature | 0.045454 |
pitch_position_3 | 0.056818 | generator_winding_temperature_v1 | 0.042207 |
The Actual Situation | Forecast Classification | |
---|---|---|
Predicted Failure | Predicted Normal | |
The actual fault | TP | FN |
The actual normal | FP | TN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Liang, Z.; Wu, H.; Wang, Z. Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF. Energies 2021, 14, 6283. https://doi.org/10.3390/en14196283
Tang M, Liang Z, Wu H, Wang Z. Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF. Energies. 2021; 14(19):6283. https://doi.org/10.3390/en14196283
Chicago/Turabian StyleTang, Mingzhu, Zixin Liang, Huawei Wu, and Zimin Wang. 2021. "Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF" Energies 14, no. 19: 6283. https://doi.org/10.3390/en14196283
APA StyleTang, M., Liang, Z., Wu, H., & Wang, Z. (2021). Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF. Energies, 14(19), 6283. https://doi.org/10.3390/en14196283