Analyzing the Driving Forces behind CO2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea
Abstract
:1. Introduction
2. Literature Review
- A two-tier KLEM I-O SDA framework was employed to investigate the driving forces underlying CO2 emissions in a group of energy-resource-poor economies.
- Previous SDA studies typically analyzed source of CO2 emissions limited to changes in final demand and broad groupings of technological advances. In contrast, the proposed model identifies various types of demand shift, induced changes in household consumption, factor substitution, technological advances, and import substitution. The proposed scheme provides a more comprehensive understanding of the relative importance of factors underlying changes in CO2 emissions.
3. Method and Data
3.1. Two-Tier KLEM I-O SDA
3.2. Data Sources
4. Results
4.1. Changes in Energy Consumption in Energy-Resource-Poor and Fossil-Fuel-Centered Economies
4.1.1. Changes in Energy Consumption in Taiwan: Major Industries and Overall
4.1.2. Changes in Energy Consumption in Japan: Major Industries and Overall
4.1.3. Changes in Energy Consumption in South Korea: Major Industries and Overall
4.2. Decomposition Results
4.2.1. Decomposition Results: Taiwan
4.2.2. Decomposition Results: Japan
4.2.3. Decomposition Results: South Korea
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.-M.; Kim, H.; Yamaguchi, H. Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 2014, 74, 319–329. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Key World Energy Statistics. 2020. Available online: https://www.petrolfed.be/sites/default/files/editor/Key_World_Energy_Statistics_2020_0.pdf (accessed on 14 July 2021).
- Huang, Y.-H.; Wu, J.-H. Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006. Energy 2013, 57, 402–411. [Google Scholar] [CrossRef]
- Yabe, N. An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995. Energy Policy 2004, 32, 595–610. [Google Scholar] [CrossRef]
- Lim, H.-J.; Yoo, S.-H.; Kwak, S.-J. Industrial CO2 emissions from energy use in Korea: A structural decomposition analysis. Energy Policy 2009, 37, 686–698. [Google Scholar] [CrossRef]
- Rose, A.; Chen, C.Y. Sources of change in energy use in the US economy 1972–1982. Resour. Energy 1991, 13, 1–21. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Hang, Y.; Zhou, P. An improved production-theoretical approach to decomposing carbon dioxide emissions. J. Environ. Manag. 2019, 252, 109577. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, P. Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach. Energy Econ. 2018, 74, 310–320. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.; Zhou, P. Decomposing aggregate CO2 emission changes with heterogeneity: An extended production-theoretical approach. Energy J. 2018, 39, 59–79. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B. Decomposition of aggregate CO2 emissions: A production-theoretical approach. Energy Econ. 2008, 30, 1054–1067. [Google Scholar] [CrossRef]
- Sheinbaum, C.; Ozawa, L.; Castillo, D. Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico’s iron and steel industry. Energy Econ. 2010, 32, 1337–1344. [Google Scholar] [CrossRef]
- Sheinbaum-Pardo, C.; Mora-Pérez, S.; Robles-Morales, G. Decomposition of energy consumption and CO2 emissions in Mexican manufacturing industries: Trends between 1990 and 2008. Energy Sustain. Dev. 2012, 16, 57–67. [Google Scholar] [CrossRef]
- Moutinho, V.; Moreira, A.; Silva, P. The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis. Renew. Sustain. Energy Rev. 2015, 50, 1485–1499. [Google Scholar] [CrossRef]
- Carmona, M.J.C.; Collado, R.R. LMDI decomposition analysis of energy consumption in Andalusia (Spain) during 2003–2012: The energy efficiency policy implications. Energy Effic. 2016, 9, 807–823. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, J.; Devlin, A.T.; Zhou, Y.; Xie, D.; Ju, M. Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China. Energies 2020, 13, 4461. [Google Scholar] [CrossRef]
- Hasan, M.M.; Chongbo, W. Estimating energy-related CO2 emission growth in Bangladesh: The LMDI decomposition method approach. Energy Strat. Rev. 2020, 32, 100565. [Google Scholar] [CrossRef]
- Lin, Y.; Chong, C.; Ma, L.; Li, Z.; Ni, W. Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015. Energies 2021, 14, 2304. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.; Huang, H.; Mu, A. Properties and linkages of some index decomposition analysis methods. Energy Policy 2009, 37, 4624–4632. [Google Scholar] [CrossRef]
- Ang, B. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.; Ma, C. Residential energy consumption in urban China: A decomposition analysis. Energy Policy 2012, 41, 644–653. [Google Scholar] [CrossRef]
- Su, B.; Ang, B. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Huang, Y.-H. Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data. Energy 2020, 213, 119067. [Google Scholar] [CrossRef]
- Jacobsen, H.K. Energy Demand, Structural Change and Trade: A Decomposition Analysis of the Danish Manufacturing Industry. Econ. Syst. Res. 2000, 12, 319–343. [Google Scholar] [CrossRef]
- Hoen, A.; Mulder, M. Explaining Dutch Emissions of CO2: A Decomposition Analysis; Discussion Paper No 24; CPB Netherlands Bureau for Economic Policy Analysis: The Hague, The Netherlands, 2003. [Google Scholar]
- Guan, D.; Hubacek, K.; Weber, C.L.; Peters, G.P.; Reiner, D.M. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008, 18, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.-C. The driving forces of China’s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis. Energy Policy 2014, 73, 401–415. [Google Scholar] [CrossRef]
- Yuan, R.; Zhao, T. Changes in CO2 emissions from China’s energy-intensive industries: A subsystem input–output decomposition analysis. J. Clean. Prod. 2016, 117, 98–109. [Google Scholar] [CrossRef]
- Fang, D.; Yang, J. Drivers and critical supply chain paths of black carbon emission: A structural path decomposition. J. Environ. Manag. 2021, 278, 111514. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Lv, G.; Li, X. Taiwan has shifted to being a net CO2 exporter since the mid-1990s. J. Environ. Manag. 2020, 264, 110484. [Google Scholar] [CrossRef]
- Wachsmann, U.; Wood, R.; Lenzen, M.; Schaeffer, R. Structural decomposition of energy use in Brazil from 1970 to 1996. Appl. Energy 2009, 86, 578–587. [Google Scholar] [CrossRef]
- Weber, C.L. Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002. Energy Policy 2009, 37, 1561–1570. [Google Scholar] [CrossRef]
- Baiocchi, G.; Minx, J.C. Understanding Changes in the UK’s CO2 Emissions: A Global Perspective. Environ. Sci. Technol. 2010, 44, 1177–1184. [Google Scholar] [CrossRef]
- Guevara, Z.; Rodrigues, J.F.D. Structural transitions and energy use: A decomposition analysis of Portugal 1995–2010. Econ. Syst. Res. 2016, 28, 202–223. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M. Primary energy and greenhouse gases embodied in Australian final consumption: An input–output analysis. Energy Policy 1998, 26, 495–506. [Google Scholar] [CrossRef]
- Supasa, T.; Hsiau, S.-S.; Lin, S.-M.; Wongsapai, W.; Wu, J.-C. Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010. Energy Policy 2016, 98, 210–220. [Google Scholar] [CrossRef]
- Grossman, G.; Rossi-Hansberg, E. Trading Tasks: A Simple Theory of Offshoring. Am. Econ. Rev. 2008, 98, 1978–1997. [Google Scholar] [CrossRef] [Green Version]
- Timmer, M.P.; Erumban, A.A.; Los, B.; Stehrer, R.; De Vries, G.J. Slicing Up Global Value Chains. J. Econ. Perspect. 2014, 28, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S. Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD. Energy Policy 2018, 122, 655–667. [Google Scholar] [CrossRef]
- Xu, Y.; Dietzenbacher, E. A structural decomposition analysis of the emissions embodied in trade. Ecol. Econ. 2014, 101, 10–20. [Google Scholar] [CrossRef]
- Gasim, A. The embodied energy in trade: What role does specialization play? Energy Policy 2015, 86, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, R.; Michel, B.; Suh, S. The emission cost of international sourcing: Using structural decomposition analysis to calculate the contribution of international sourcing to CO2-emission growth. Econ. Syst. Res. 2016, 28, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Lan, J.; Malik, A.; Lenzen, M.; McBain, D.; Kanemoto, K. A structural decomposition analysis of global energy footprints. Appl. Energy 2016, 163, 436–451. [Google Scholar] [CrossRef]
- Andreon, V.; Galmarini, S. Drivers in CO2 emissions variation: A decomposition analysis for 33 world countries. Energy 2016, 103, 27–37. [Google Scholar] [CrossRef]
- Voigt, S.; De Cian, E.; Schymura, M.; Verdolini, E. Energy intensity developments in 40 major economies: Structural change or technology improvement? Energy Econ. 2014, 41, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Guan, D. Determinants of global CO2 emissions growth. Appl. Energy 2016, 184, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Keynes, J.M. The General Theory of Employment, Interest and Money; Macmillan Cambridge University Press, for Royal Economic Society: Stuttgart, Germany, 1936. [Google Scholar]
- Wu, J.-H.; Chen, Y.-Y.; Huang, Y.-H. Trade pattern change impact on industrial CO2 emissions in Taiwan. Energy Policy 2007, 35, 5436–5446. [Google Scholar] [CrossRef]
- Albrecht, J.; François, D.; Schoors, K. A Shapley decomposition of carbon emissions without residuals. Energy Policy 2002, 30, 727–736. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B.; Stehrer, R.; Timmer, M.; De Vries, G. The construction of world input–output tables in the wiod project. Econ. Syst. Res. 2013, 25, 71–98. [Google Scholar] [CrossRef]
- Corsatea, T.D.; Lindner, S.; Arto, I.; Román, M.V.; Rueda-Cantuche, J.M.; Velázquez Afonso, A.; Amores, A.F.; Neuwahl, F. World Input-Output Database Environmental Accounts; Update 2000–2016; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Volume 5. [Google Scholar]
- Stone, A.R. Input-Output and National Accounts; Office of European Economic Cooperation: Paris, France, 1961. [Google Scholar]
- Jaspers, B.C.; Kuo, P.-C.; Amladi, A.; van Neerbos, W.; Aravind, P.V. Negative CO2 Emissions for Transportation. Front. Energy Res. 2021, 9, 626538. [Google Scholar] [CrossRef]
- Ingaldi, M.; Klimecka-Tatar, D. People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility. Energies 2020, 13, 6495. [Google Scholar] [CrossRef]
- Shahnazi, R.; Shabani, Z.D. The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU. Renew. Energy 2021, 169, 293–307. [Google Scholar] [CrossRef]
- Knez, M.; Jereb, B.; Gago, E.J.; Rosak-Szyrocka, J.; Obrecht, M. Features influencing policy recommendations for the promotion of zero-emission vehicles in Slovenia, Spain, and Poland. Clean Technol. Environ. Policy 2021, 23, 749–764. [Google Scholar] [CrossRef] [PubMed]
Determinants (%) 1 | Coal | Oil | Gas | Electricity | CO2 |
---|---|---|---|---|---|
Changes in exports | 62 | 90 | 70 | 71 | 72 |
Changes in autonomous domestic final demand | 5 | 4 | 7 | 5 | 5 |
Changes in household-induced consumption | 2 | 2 | 3 | 0 2 | 2 |
Import substitution | −17 | −5 | −1 | 1 | −9 |
Factor substitution | −8 | −38 | 47 | −5 | −11 |
Technological advances | −40 | −72 | −52 | −49 | −51 |
Total Changes | 4 | −19 | 74 | 23 | 7 |
Determinants (%) | Coal | Oil | Gas | Electricity | CO2 |
---|---|---|---|---|---|
Changes in exports | 12 | 1 | 9 | 8 | 7 |
Changes in autonomous domestic final demand | 1 | 1 | 4 | 1 | 2 |
Changes in household-induced consumption 1 | 0 | 0 | 0 | 0 | 0 |
Import substitution | −14 | −3 | −8 | −7 | −9 |
Factor substitution | 15 | 2 | 48 | 10 | 15 |
Technological advances | −8 | −25 | −7 | −16 | −15 |
Total Changes | 6 | −24 | 46 | −4 | 1 |
Determinants (%) | Coal | Oil | Gas | Electricity | CO2 |
---|---|---|---|---|---|
Changes in exports | 30 | 26 | 35 | 34 | 30 |
Changes in autonomous domestic final demand | 28 | 16 | 32 | 24 | 24 |
Changes in household-induced consumption 1 | 1 | 0 1 | 1 | 0 2 | 0 3 |
Import substitution | −4 | −3 | 1 | 0 | −2 |
Factor substitution | 16 | −35 | 52 | 13 | 4 |
Technological advances | −27 | −23 | −37 | −31 | −28 |
Total Changes | 45 | −19 | 84 | 40 | 30 |
Determinants (%) | Taiwan | Japan | South Korea |
---|---|---|---|
Technological advances | −51 | −15 | −28 |
energy (direct) | −77 | 9 | −34 |
energy (linkage) | 1 | −1 | 0.5 |
labour | 5 | −1 | 0.2 |
materials | 20 | −22 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; Wu, J.-H.; Huang, H.-S. Analyzing the Driving Forces behind CO2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea. Energies 2021, 14, 5351. https://doi.org/10.3390/en14175351
Huang Y-H, Wu J-H, Huang H-S. Analyzing the Driving Forces behind CO2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea. Energies. 2021; 14(17):5351. https://doi.org/10.3390/en14175351
Chicago/Turabian StyleHuang, Yun-Hsun, Jung-Hua Wu, and Hao-Syuan Huang. 2021. "Analyzing the Driving Forces behind CO2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea" Energies 14, no. 17: 5351. https://doi.org/10.3390/en14175351
APA StyleHuang, Y.-H., Wu, J.-H., & Huang, H.-S. (2021). Analyzing the Driving Forces behind CO2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea. Energies, 14(17), 5351. https://doi.org/10.3390/en14175351