Impact of PV System Tracking on Energy Production and Climate Change
Abstract
:1. Introduction
2. Geographical Location Selection
3. PV System
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- What Are the Trends in Greenhouse Gas Emissions and Concentrations and Their Impacts on Human Health and the Environment? Available online: https://www.epa.gov/report-environment/greenhouse-gases (accessed on 1 March 2021).
- Mahmud, M.A.; Huda, N.; Farjana, S.H.; Lang, C. Environmental impacts of solar-photovoltaic and solar-thermal systems with life-cycle assessment. Energies 2018, 11, 2346. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Sheikh, J.A.; Ahmad, S.; Farjana, S.H.; Mahmud, M.P. Impact of PV system orientation angle accuracy on greenhouse gases mitigation. Case Stud. Therm. Eng. 2021, 23, 100815. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Manohar, S.R.M.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- UN SDG Goal 13: Climate Action. Available online: https://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-13-climate-action.html (accessed on 1 March 2021).
- Nadia, A.R.; Isa, N.A.M.; Desa, M.K.M. Advances in solar photovoltaic tracking systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 2548–2569. [Google Scholar]
- Edward, A.; Dewi, T. The effectiveness of Solar Tracker Use on Solar Panels to The Output of The Generated Electricity Power. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 347, p. 012130. [Google Scholar]
- Asiabanpour, B.; Almusaied, Z.; Aslan, S.; Mitchell, M.; Leake, E.; Lee, H.; Fuentes, J.; Rainosek, K.; Hawkes, N.; Bland, A. Fixed versus sun tracking solar panels: An economic analysis. Clean Technol. Environ. Policy 2017, 19, 1195–1203. [Google Scholar] [CrossRef]
- Mehdi, G.; Ali, N.; Hussain, S.; Zaidi, A.A.; Shah, A.H.; Azeem, M.M. Design and fabrication of automatic single axis solar tracker for solar panel. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–4. [Google Scholar]
- Vasel, A.; Iakovidis, F. The effect of wind direction on the performance of solar PV plants. Energy Convers. Manag. 2017, 153, 455–461. [Google Scholar] [CrossRef]
- Kawajiri, K.; Oozeki, T.; Genchi, Y. Effect of temperature on PV potential in the world. Environ. Sci. Technol. 2011, 45, 9030–9035. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Sheikh, J.A.; Farjana, S.H.; Mahmud, M.A.P. Defects Impact on PV System GHG Mitigation Potential and Climate Change. Sustainability 2021, 13, 7793. [Google Scholar] [CrossRef]
- Ullah, A.; Imran, H.; Maqsood, Z.; Butt, N.Z. Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan. Renew. Energy 2019, 139, 830–843. [Google Scholar] [CrossRef]
- Lu, J.; Hajimirza, S. Optimizing sun-tracking angle for higher irradiance collection of PV panels using a particle-based dust accumulation model with gravity effect. Sol. Energy 2017, 158, 71–82. [Google Scholar] [CrossRef]
- Seme, S.; Srpčič, G.; Kavšek, D.; Božičnik, S.; Letnik, T.; Praunseis, Z.; Štumberger, B.; Hadžiselimović, M. Dual-axis photovoltaic tracking system–Design and experimental investigation. Energy 2017, 139, 1267–1274. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Z.; Si, J.; Zhang, S.; Dong, L.; Li, S.; Gao, Y. Adaptive Power Point Tracking Control of PV System for Primary Frequency Regulation of AC Microgrid with High PV Integration. In IEEE Transactions on Power Systems; IEEE: Toulouse, France, 2021. [Google Scholar]
- Eltamaly, A.M. A novel musical chairs algorithm applied for MPPT of PV systems. Renew. Sustain. Energy Rev. 2021, 146, 111135. [Google Scholar] [CrossRef]
- Abdollahpour, M.; Golzarian, M.R.; Rohani, A.; Zarchi, H.A. Development of a machine vision dual-axis solar tracking system. Sol. Energy 2018, 169, 136–143. [Google Scholar] [CrossRef]
- Racharla, S.; Rajan, K. Solar tracking system–a review. Int. J. Sustain. Eng. 2017, 10, 72–81. [Google Scholar]
- Amelia, A.R.; Irwan, Y.M.; Safwati, I.; Leow, W.Z.; Mat, M.H.; Rahim, M.S.A. Technologies of solar tracking systems: A review. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 767, p. 012052. [Google Scholar]
- Alkaff, S.A.; Shamdasania, N.H.; Ii, G.Y.; Venkiteswaran, V.K. A Study on implementation of PV Tracking for Sites proximate and Away from The Equator. Process. Integr. Optim. Sustain. 2019, 3, 375–382. [Google Scholar] [CrossRef]
- Akhlaghi, S.; Sarailoo, M.; Rezaeiahari, M.; Sangrody, H. Study of sufficient number of optimal tilt angle adjustment to maximize residential solar panels yield. In Proceedings of the 2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 23–24 February 2017; pp. 1–5. [Google Scholar]
- Batayneh, W.; Bataineh, A.; Soliman, I.; Hafees, S.A. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection. Autom. Constr. 2019, 98, 102–109. [Google Scholar] [CrossRef]
- Sharma, M.K.; Kumar, D.; Dhundhara, S.; Gaur, D.; Verma, Y.P. Optimal Tilt Angle Determination for PV Panels Using Real Time Data Acquisition. Glob. Chall. 2020, 4, 1900109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabani, M.; Mahmoudimehr, J. Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system. Appl. Energy 2018, 212, 84–108. [Google Scholar] [CrossRef]
- Al Garni, H.; Awasthi, A. Techno-economic feasibility analysis of a solar PV grid-connected system with different tracking using HOMER software. In Proceedings of the 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 14–17 August 2017; pp. 217–222. [Google Scholar]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2020, 759, 143528. [Google Scholar] [CrossRef] [PubMed]
- Source: Population of Cities in Australia. 2021. Available online: https://worldpopulationreview.com/countries/cities/australia (accessed on 1 June 2021).
- RETScreen International. RETScreen Software Online User Manual; CANMET Energy Technology Centre: Varennes, QC, Canada, 2005; Available online: http://www.nrcan.gc.ca/energy/software-tools/7465 (accessed on 1 February 2021).
- mono-Si-CS3U-380MS-FG—KuDymond. Available online: https://www.energysage.com/solar-panels/canadian-solar-inc/1611/cs3u-380ms-fg/ (accessed on 1 July 2021).
- Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Changes in Atmospheric Constituents and in Radiative Forcing. 2013. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf (accessed on 1 March 2021).
- Australia—Electric Power Transmission and Distribution Losses (% of Output). Available online: https://tradingeconomics.com/australia/electric-power-transmission-and-distribution-losses-percent-of-output-wb-data.html (accessed on 1 June 2021).
City | Population | Coordinates | Air Temperature (°C) | Relative Humidity (%) | Precipitation (mm) | Daily Solar Radiation- Horizontal (kWh/m2/d) | Atmospheric Pressure (kPa) | Earth Temperature (°C) |
---|---|---|---|---|---|---|---|---|
Sydney | 4,778,044 | −33.8 N 151.2 E | 18 | 68.2 | 1005.57 | 4.54 | 101.6 | 18.7 |
Melbourne | 4,749,274 | −37.8 N 145.0 E | 15.5 | 64.4 | 705.95 | 4.10 | 99.9 | 13.9 |
Brisbane | 2,252,122 | −27.6 N 153.0 E | 19.9 | 71.5 | 1268.44 | 4.81 | 100.7 | 21.8 |
Perth | 2,159,065 | −31.9 N 116.0 E | 18.1 | 63.4 | 676.59 | 5.22 | 101.4 | 19.9 |
Adelaide | 1,230,728 | −35.0 N 138.5 E | 16.3 | 63.3 | 480.93 | 4.95 | 101.6 | 16.5 |
Gold Coast | 611,169 | −27.9 N 153.4 E | 20.6 | 72.7 | 1268.44 | 4.81 | 100.7 | 21.8 |
Canberra | 343,835 | −35.3 N 149.2 E | 13 | 68.1 | 777.22 | 4.81 | 95 | 12.5 |
Newcastle | 336,881 | −32.9 N 151.8 E | 18.2 | 74.6 | 1058.3 | 4.64 | 100.5 | 18.5 |
Central Coast | 318,109 | −33.3 N 151.6 E | 18.1 | 72.3 | 1053.01 | 4.44 | 101.3 | 19.6 |
Sunshine Coast | 2,83,052 | −26.6 N 153.1 E | 20.2 | 78.5 | 1408.97 | 5.15 | 101 | 22.3 |
Wollongong | 278,885 | −34.0 N 150.7 E | 16.3 | 72 | 1077.94 | 4.47 | 98.6 | 16.3 |
Hobart | 185,332 | −42.9 N 147.3 E | 12.5 | 66.7 | 882.68 | 3.71 | 97.8 | 10.6 |
Townsville | 180,474 | −19.3 N 146.8 E | 24.4 | 69.9 | 960.39 | 5.73 | 101.2 | 25.3 |
Geelong | 172,249 | −38.2 N 144.3 E | 13.6 | 76.5 | 732.26 | 4.17 | 100.6 | 14.7 |
Cairns | 156,444 | −16.9 N 145.8 E | 24.4 | 75 | 2104.98 | 5.43 | 98.7 | 24.4 |
PV Panels Efficiency | 19.15% |
Inverter Efficiency | 99% |
Temperature Coefficient | Pmax: −0.37 |
PV Panel Life | 30 years |
Location | −19.25 N 146.77 E | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Climate Zone and Elevation | Very hot—Humid, 9 m | |||||||||
Air Temperature (Annual Average) | 24.4 °C | |||||||||
Daily Solar Radiations Average (kWh/m2/d) and Energy Production Potential (kWh)—For a Single Year (1 MW PV System) | ||||||||||
Month | Fixed- Horizontal. | Fixed—Tilted. (19 Tilt, 180 Azimuths) | Azimuth (19 Tilted) | One—Axis (19 Tilted, 180 Azimuths) | Dual Axis kWh/m2/d | |||||
kWh/m2/d | kWh | kWh/m2/d | kWh | kWh/m2/d | kWh | kWh/m2/d | kWh | kWh/m2/d | kWh | |
January | 6.33 | 152,986.7777 | 5.88 | 142,469.7998 | 7.19 | 174,414.8056 | 7.63 | 184,973.5817 | 8.04 | 194,333.2367 |
February | 6.19 | 135,131.1145 | 5.97 | 130,610.4337 | 6.96 | 152,145.015 | 7.40 | 161,801.6964 | 7.56 | 165,051.7266 |
March | 5.78 | 140,408.545 | 5.89 | 142,717.5014 | 6.68 | 161,759.0601 | 7.36 | 178,336.6038 | 7.37 | 178,563.6374 |
April | 5.47 | 129,607.4224 | 6.02 | 141,473.6112 | 6.72 | 157,833.5482 | 7.74 | 181,747.2144 | 7.80 | 183,090.5908 |
May | 4.53 | 113,120.5272 | 5.32 | 131,331.1692 | 5.83 | 143,721.5348 | 6.81 | 167,845.8155 | 7.07 | 173,662.673 |
June | 4.39 | 107,335.7647 | 5.32 | 128,264.4953 | 5.70 | 137,365.011 | 6.44 | 155,212.737 | 6.86 | 164,231.2059 |
July | 4.64 | 117,287.9601 | 5.55 | 138,440.2452 | 5.97 | 148,770.0938 | 6.74 | 167,989.1819 | 7.11 | 176,192.3926 |
August | 5.14 | 128,877.9678 | 5.83 | 144,672.0797 | 6.46 | 160,334.68 | 7.52 | 186,579.1273 | 7.66 | 189,790.2471 |
September | 6.22 | 147,975.2703 | 6.56 | 155,108.6944 | 7.47 | 176,626.0742 | 8.51 | 201,414.7341 | 8.52 | 201,443.2157 |
October | 6.56 | 159,568.0659 | 6.44 | 156,630.6743 | 7.52 | 182,819.0703 | 8.19 | 199,265.943 | 8.29 | 201,547.7459 |
November | 6.92 | 161,728.2126 | 6.46 | 151,578.9202 | 7.81 | 183,278.879 | 8.18 | 191,848.213 | 8.54 | 199,647.6098 |
December | 6.64 | 160,274.2398 | 6.08 | 147,042.2861 | 7.60 | 183,842.7551 | 8.01 | 193,797.2796 | 8.54 | 206,037.265 |
Annual | 5.73 | 1,654,301.8679 | 5.94 | 1,710,339.9106 | 6.82 | 1,962,910.527 | 7.54 | 2,170,812.1277 | 7.78 | 2,233,591.5465 |
Energy Reduced (kWh) | 579,289.6786 | 523,251.6359 | 270,681.0195 | 62,779.4188 | 0 | |||||
GHG Emissions—All types of fuel are used to generate equivalent energy-tons of CO2 equivalent | 1372.2159 | 1418.6986 | 1628.2017 | 1800.6526 | 1852.7271 | |||||
GHG Reduced Potential (tCO2 eq) | 480.5112 | 434.0285 | 224.5254 | 52.0745 | 0 | |||||
Reduced Potential Energy and GHG (%) | 74.06 | 76.57 | 87.88 | 97.19 | 100 | |||||
Common Losses | Aging and Minute Pollution | |||||||||
GHG Emission factor of Australia (excluding Transmission and Distribution) [29] | 0.823 kgCO2/kWh | |||||||||
Australia Transmission and Distribution Losses [32] | 4.7796% | |||||||||
PV System Transmission and Distribution Losses [Assumed] | 4% |
Equivalent Cases | Fixed—Horizontal | Fixed—Tilted | Azimuth | One Axis | Dual Axis |
---|---|---|---|---|---|
Cars and light trucks not used | 251.3216 | 259.8349 | 298.2054 | 329.7899 | 339.3273 |
Litres of gasoline not consumed | 589,602.992 | 609,575.2826 | 699,592.9474 | 773,690.3103 | 796,065.2673 |
Barrels of crude oil not consumed | 3191.1998 | 3299.299 | 3786.5156 | 4187.5642 | 4308.6677 |
People reducing energy use by 20% | 1372.2159 | 1418.6986 | 1628.2017 | 1800.6526 | 1852.7271 |
Acres of forest absorbing carbon | 311.8673 | 322.4315 | 370.0458 | 409.2392 | 421.0743 |
Hectares of forest absorbing carbon | 126.2082 | 130.4834 | 149.7522 | 165.6132 | 170.4027 |
Tons of waste recycled | 473.1779 | 489.2064 | 561.4489 | 620.9147 | 638.8714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, W.; Sheikh, J.A.; Mahmud, M.A.P. Impact of PV System Tracking on Energy Production and Climate Change. Energies 2021, 14, 5348. https://doi.org/10.3390/en14175348
Ahmed W, Sheikh JA, Mahmud MAP. Impact of PV System Tracking on Energy Production and Climate Change. Energies. 2021; 14(17):5348. https://doi.org/10.3390/en14175348
Chicago/Turabian StyleAhmed, Waqas, Jamil Ahmed Sheikh, and M. A. Parvez Mahmud. 2021. "Impact of PV System Tracking on Energy Production and Climate Change" Energies 14, no. 17: 5348. https://doi.org/10.3390/en14175348
APA StyleAhmed, W., Sheikh, J. A., & Mahmud, M. A. P. (2021). Impact of PV System Tracking on Energy Production and Climate Change. Energies, 14(17), 5348. https://doi.org/10.3390/en14175348