The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach
Abstract
:1. Introduction
2. Methodology
2.1. STAGE 1—Creating the Input Database for a Specific Project
2.2. STAGE 2—Identification of Permissible and Acceptable Solutions for a Residential Building with a Positive Energy Balance
2.3. STAGE 3—Selection of a Set of Decision Criteria and Identification of the Relations between the Criteria
2.4. STAGE 4—Determination of the Profile of the Decisionmaker’s Preferences
2.5. STAGE 5—Choosing a Compromise Solution
- −
- Wi is the target normalized weight of each evaluation sub-criterion, where ∑Wi = 1;
- −
- vi is the normalized weight of a relation, previously determined using the DEMATEL method, where ∑vi = 1;
- −
- wi is the normalized weight of a preference, previously determined using the AHP/ANP method, where ∑wi = 1.
- −
- Qi,j is the calculated value of the indicator for the i-th variant and the j-th criterion;
- −
- QMAX,j is the maximum permissible value of the indicator for the j-th criterion;
- −
- QMIN,j is the minimum permissible value of the indicator for the j-th criterion.
3. Conducted Research
3.1. The Delphi Method, the Expert Team Study, Determining the Relations between Criteria
- Source_a; experts from the Poznań University of Technology, 16 respondents;
- Wersja_1; experts from other scientific and research units, 57 respondents;
- Ver_1; specialists from the industry, 15 respondents.
- −
- xi, value of a variable in a series;
- −
- n, number of variables in a series;
- −
- k, number of variables with the same value in a series.
3.2. Social Research Method Survey Defining the Decisionmaker’s Preferences
- Paper-based questionnaires, distributed during BUDMA 2019 trade fair during the author’s presentation on the installation of technical equipment for buildings in passive houses, 60 copies;
- Source_a, distribution by the Greater Poland District Chamber of Civil Engineers (WOIIB), no limit;
- Wersja_1, distribution by Rynek Instalacyjny (RI) periodical, no limit;
- Ver_1, distribution by a database of certified designers of the Polish Passive House Institute (PIBP) and people from the passive construction community, 15 copies.
- Designer/Architect;
- Contractor;
- Current user;
- Future user;
- Investor (developer).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabak, M.; Köse, E.; Kırılmaz, O.; Burmaoglu, S. A fuzzy multi-criteria decision-making approach to assess building energy performance. Energy Build. 2014, 72, 382–389. [Google Scholar] [CrossRef]
- Hepbasli, A. Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renew. Sustain. Energy Rev. 2012, 16, 73–104. [Google Scholar] [CrossRef]
- Slonski, M.; Schrag, T. Linear Optimisation of a Settlement Towards the Energy-Plus House Standard. Energies 2019, 12, 210. [Google Scholar] [CrossRef] [Green Version]
- Ciancio, V.; Falasca, S.; Golasi, I.; de Wilde, P.; Coppi, M.; de Santoli, L.; Salata, F. Resilience of a Building to Future Climate Conditions in Three European Cities. Energies 2019, 12, 4506. [Google Scholar] [CrossRef] [Green Version]
- Rucińska, J.; Trząski, A. Measurements and Simulation Study of Daylight Availability and Its Impact on the Heating, Cooling and Lighting Energy Demand in an Educational Building. Energies 2020, 13, 2555. [Google Scholar] [CrossRef]
- Berouine, A.; Ouladsine, R.; Bakhouya, M.; Essaaidi, M. Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings. Energies 2020, 13, 3246. [Google Scholar] [CrossRef]
- Grygierek, K.; Ferdyn-Grygierek, J.; Gumińska, A.; Baran, Ł.; Barwa, M.; Czerw, K.; Gowik, P.; Makselan, K.; Potyka, K.; Psikuta, A. Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies 2020, 13, 2740. [Google Scholar] [CrossRef]
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. Available online: http://www.passiv.de/ (accessed on 7 March 2021).
- Passive House Institute (PHI). Passive House Planning Package, Energy Balance and Passive House Design Tool for Quality Approved Passive Houses and EnerPHit Retrofits, Version 9; Passive House Institute (PHI): Darmstadt, Germany, 2015. [Google Scholar]
- Passive House Institute (PHI). Criteria for the Passive House, EnerPHit and PHI Low Energy Building Standard, Version 9f; Passive House Institute (PHI): Darmstadt, Germany, 2016. [Google Scholar]
- Radomski, B. Projektowanie instalacji sanitarnych w budynkach pasywnych—Studium przypadku. Inżynier Budownictwa 2016, 9, 84–89. [Google Scholar]
- Radomski, B. Projektowanie w budynkach pasywnych instalacji ziębniczej, przygotowania ciepłej wody użytkowej i wentylacji mechanicznej nawiewno-wywiewnej. Inżynier Budownictwa 2016, 11, 113–117. [Google Scholar]
- Radomski, B.; Bandurski, K.; Mróz, T.M. Rola parametrów komfortu klimatycznego w budynkach pasywnych. Instal 2017, 10, 27–33. [Google Scholar]
- Firląg, S. Cost-Optimal Plus Energy Building in a Cold Climate. Energies 2019, 12, 3841. [Google Scholar] [CrossRef] [Green Version]
- Erhorn, H. The Age of Positive Energy Buildings Has Come; Fraunhofer Institute for Building Physics: Stuttgart, Germany, 2012; pp. 1433–1443. [Google Scholar]
- Kampelis, N.; Sifakis, N.; Kolokotsa, D.; Gobakis, K.; Kalaitzakis, K.; Isidori, D.; Cristalli, C. HVAC Optimization Genetic Algorithm for Industrial Near-Zero-Energy Building Demand Response. Energies 2019, 12, 2177. [Google Scholar] [CrossRef] [Green Version]
- Mróz, T.M.; Radomski, B. Aspekty energetyczne współczesnego środowiska zabudowanego. Przegląd Bud. 2018, 7, 102–104. [Google Scholar]
- Shi, X.; Tian, Z.; Chen, W.; Si, B.; Jin, X. A review on building energy efficient design optimization from the perspective of architects. Renew. Sustain. Energy Rev. 2016, 65, 872–884. [Google Scholar] [CrossRef]
- Schmidt, D. Low exergy systems for high-performance buildings and communities. Energy Build. 2009, 3, 331–336. [Google Scholar] [CrossRef]
- Sakulpipatsin, P. Exergy Efficient Building Design. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Sakulpipatsin, P.; Boelman, E.; Schmidt, D. Exergy Analysis Tool for Building Service Design. In Proceedings of the Sustainable Building Conference, Tokyo, Japan, 27–29 September 2005. [Google Scholar]
- Wright, J.; Loosemore, H. The multi-criterion optimization of building thermal design and control. Building Simulation. In Proceedings of the Seventh International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 873–880. [Google Scholar]
- Caldas, L.; Norford, L.K. Genetic Algorithms for Optimization of Building Envelopes and the Design and Control of HVAC Systems. J. Sol. Energy Eng. 2003, 125, 343–351. [Google Scholar] [CrossRef]
- Dytczak, M. Wybrane Metody Rozwiązywania Wielokryterialnego Problemów Decyzyjnych w Budownictwie; Politechnika Opolska: Opole, Poland, 2010. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Pacheco, R.; Ordóňez, J.; Martínez, G. Energy efficient design of building: A review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Kurnitski, J.; Saari, A.; Kalamees, T.; Vuolle, M.; Niemelä, J.; Tark, T. Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy Build. 2013, 64, 258–263. [Google Scholar] [CrossRef]
- Rodriguez-Ubinas, E.; Rodriguez, S.; Voss, K.; Todorovic, M.S. Energy efficiency evaluation of zero energy houses. Energy Build. 2014, 83, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Ballarini, I.; Corrado, V. Application of energy rating methods to the existing building stock: Analysis of some residential buildings in Turin. Energy Build. 2009, 41, 790–800. [Google Scholar] [CrossRef]
- Holopainen, R.; Salmi, K.; Kähkönen, E.; Pasanen, P.; Reijula, K. Primary energy performance and perceived indoor environment quality in Finnish low-energy and conventional houses. Build. Environ. 2015, 87, 87–92. [Google Scholar] [CrossRef]
- Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H.; Wargocki, P. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air 2012, 22, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Network Process, Fundamentals of Decision Making and Priority Theory; RWS Publications: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Saaty, T.L. Decision making the Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting; RWS Publications: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Saaty, T.L. Fundamentals of the Analytic Network Process. In Proceedings of the ISAHP 1999, Kobe, Japan, 12–14 August 1999. [Google Scholar]
- Ou Yang, Y.-P.; Shieh, H.-M.; Leu, J.-D.; Tzeng, G.-H. A Novel Hybrid MCDM Model Combined with DEMATEL and ANP with Applications. Int. J. Oper. Res. 2008, 5, 160–168. [Google Scholar]
- Gölcük, I.; Baykasoğu, A. An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Syst. Appl. 2016, 46, 346–366. [Google Scholar] [CrossRef]
- Chen, F.-H.; Hsu, T.-S.; Tzeng, G.-H. A balanced scorecard approach to establish a performance evaluation and relationship model for hot spring hotels based on a hybrid MCDM model combining DEMATEL and ANP. Int. J. Hosp. Manag. 2011, 30, 908–932. [Google Scholar] [CrossRef]
- Radomski, B.; Mróz, T.M.; Grządzielski, W. Wybór sposobu zasilania w energię pierwotną wyspowych układów energetycznych z wykorzystaniem LNG—Studium przypadku. Ciepłownictwo Ogrzew. Went. 2016, 47, 47–54. [Google Scholar] [CrossRef]
- Tsai, W.-H.; Leu, J.-D.; Liu, J.-Y.; Lin, S.-J.; Shaw, M.J. A MCDM approach for sourcing strategy mix decision in IT projects. Expert Syst. Appl. 2010, 37, 3870–3886. [Google Scholar] [CrossRef]
D + R | D − R | D + R | D − R | ||
---|---|---|---|---|---|
s+ | s− | s+ | s− | ||
cT | 3.28 | −1.01 | cT A/V,i | 0.99 | 0.99 |
cEN | 3.1 | 0.73 | cT T,BLD,i | 0.28 | 0.13 |
cEX | 2.69 | 1.42 | cT D,IMP,i | 0.3 | 0.06 |
cEC | 3.08 | 0.4 | cT T,LIFE,i | 0.21 | 0.07 |
cS | 2.95 | −0.59 | cT T,RES,i | 0.21 | −0.08 |
cENV | 3.12 | −0.95 | cEN PE,TOTAL,i | 1.07 | −0.95 |
cEN UE,TOTAL,i | 0.69 | 0.36 | |||
cEN FE,TOTAL,i | 0.75 | −0.003 | |||
cEN UE,RES,i | 0.49 | 0.27 | |||
cEN FE,RES,i | 0.47 | 0.06 | |||
cEX B, L,i | 0.44 | 0.23 | cS TC,i | 0.2 | 0.01 |
cEX B,GEN,RES, i | 0.6 | 0.39 | cS AQ,i | 0.13 | 0.08 |
cEX B,P, i* | 0.4 | −0.16 | cS AC,i | 0.15 | −0.04 |
cEX UTIL,RES, i | 0.61 | 0.38 | cS VC,i | 0.18 | −0.06 |
cEX N,ST,i | 1.24 | 1.16 | cS I,ENV,i | 0.49 | −0.27 |
cEC IRR,RES,i | 0.36 | −0.04 | cENV LCA, i | 0.7 | −0.47 |
cEC TOC,i | 0.58 | −0.43 | cENV E,CO2, i | 0.54 | −0.32 |
cEC LCC,i | 0.71 | −0.71 | cENV C,RES, i | 0.37 | 0.23 |
cEC TC,INV,i | 0.86 | −0.38 | cENV EPBT, i | 0.36 | −0.12 |
cEC DGC, RES, i | 0.39 | −0,12 | cENV GPBT, i | 0.33 | −0.17 |
vSavgi | vSavgi | ||
---|---|---|---|
cT | 0.17 | cT A/V,i | 0.072 |
cEN | 0.23 | cT T,BLD,i | 0.027 |
cEX | 0.17 | cT D,IMP,i | 0.027 |
cEC | 0.21 | cT T,LIFE,i | 0.024 |
cS | 0.1 | cT T,RES,i | 0.02 |
cENV | 0.13 | cEN PE,TOTAL,i | 0.036 |
cEN UE,TOTAL,i | 0.047 | ||
cEN FE,TOTAL,i | 0.043 | ||
cEN UE,RES,i | 0.038 | ||
cEN FE,RES,i | 0.033 | ||
cEX B, L,i | 0.035 | cS TC,i | 0.022 |
cEX B,GEN,RES, i | 0.045 | cS AQ,i | 0.021 |
cEX B,P, i* | 0.026 | cS AC,i | 0.019 |
cEX UTIL,RES, i | 0.045 | cS VC,i | 0.02 |
cEX N,ST,i | 0.085 | cS I,ENV,i | 0.027 |
cEC IRR,RES,i | 0.027 | cENV LCA, i | 0.031 |
cEC TOC,i | 0.028 | cENV E,CO2, i | 0.028 |
cEC LCC,i | 0.027 | cENV C,RES, i | 0.033 |
cEC TC,INV,i | 0.039 | cENV EPBT, i | 0.025 |
cEC DGC, RES, i | 0.027 | cENV GPBT, i | 0.023 |
Criterion Group | Name of Evaluation Criterion | Normalized Value | Raw |
---|---|---|---|
Within a Group | Value | ||
(-) | (-) | (-) | (-) |
Criterion | Technical criterion | 0.14159 | 0.070797 |
Energy criterion | 0.23588 | 0.117942 | |
Exergy criterion | 0.18417 | 0.092085 | |
Economic criterion | 0.25527 | 0.127637 | |
Social criterion | 0.07976 | 0.03988 | |
Environmental criterion | 0.10332 | 0.051659 |
Criterion Group | Name of Evaluation Sub-Criteria | Normalized Within a Group | Raw Value | Normalized As Part of a Whole |
---|---|---|---|---|
[-] | [-] | [-] | [-] | [-] |
Technical criterion | Shape factor (A/V) | 0.1835 | 0.012991 | 0.025982 |
Total building completion time (TBLD) | 0.12383 | 0.008767 | 0.017534 | |
Difficulties in implementation (DIMP) | 0.12981 | 0.00919 | 0.01838 | |
Total service life of the building and its technical installations (TLIFE) | 0.29753 | 0.021064 | 0.042128 | |
Total service life of renewable energy installation (TRES) | 0.26534 | 0.018785 | 0.03757 | |
Energy criterion | Total primary energy consumption (PETOTAL) | 0.12019 | 0.014176 | 0.028352 |
Total usable energy consumption (UETOTAL) | 0.29045 | 0.034256 | 0.068512 | |
Total final energy consumption (FETOTAL) | 0.14817 | 0.017475 | 0.03495 | |
Total generated usable renewable energy (UERES) | 0.24136 | 0.028467 | 0.056934 | |
Total transmitted final renewable energy (FERES) | 0.19983 | 0.023568 | 0.047136 | |
Exergy criterion | Sum of exergy losses of the building and its installations (BL) | 0.2147 | 0.019771 | 0.039542 |
Sum of exergy generated by renewable energy sources (BGEN,RES) | 0.15147 | 0.013948 | 0.027896 | |
Cumulated primary exergy consumption (BP*) | 0.09422 | 0.008676 | 0.017352 | |
Utilization of the generated renewable energy (UTILRES) | 0.23019 | 0.021197 | 0.042394 | |
Use of natural heating, cooling and lighting strategies (NST) | 0.30942 | 0.028493 | 0.056986 | |
Economic criterion | Internal return rate on renewable energy sources (IRRRES) | 0.13842 | 0.017667 | 0.035334 |
Total operational cost (TOC) | 0.16395 | 0.020926 | 0.041852 | |
Analysis of the building’s life-cycle cost (LCC) | 0.2721 | 0.03473 | 0.06946 | |
Total prime cost of the investment (TCINV) | 0.30949 | 0.039502 | 0.079004 | |
Dynamic generation cost of renewable energy installation (DGCRES) | 0.11604 | 0.014811 | 0.029622 | |
Social criterion | Compliance with the thermal comfort parameters (TC) | 0.28195 | 0.011244 | 0.022488 |
Compliance with the air quality parameters (AQ) | 0.33185 | 0.013234 | 0.026468 | |
Compliance with the acoustic comfort parameters (AC) | 0.15547 | 0.0062 | 0.0124 | |
Compliance with the visual comfort parameters (VC) | 0.11349 | 0.004526 | 0.009052 | |
Impact of the building and its installations on the surrounding environment (IENV) | 0.11723 | 0.004675 | 0.00935 | |
Environmental criterion | Lice-cycle analysis of the building (LCA) | 0.2497 | 0.012899 | 0.025798 |
Carbon dioxide emission (ECO2) | 0.21675 | 0.011197 | 0.022394 | |
Coherence of renewable energy sources (CRES) | 0.17314 | 0.008944 | 0.017888 | |
Energy payback time of renewable energy sources (EPBT) | 0.20004 | 0.010334 | 0.020668 | |
Greenhouse gas emission payback time (GPBT) | 0.16038 | 0.008285 | 0.01657 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radomski, B.; Mróz, T. The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach. Energies 2021, 14, 4715. https://doi.org/10.3390/en14154715
Radomski B, Mróz T. The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach. Energies. 2021; 14(15):4715. https://doi.org/10.3390/en14154715
Chicago/Turabian StyleRadomski, Bartosz, and Tomasz Mróz. 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach" Energies 14, no. 15: 4715. https://doi.org/10.3390/en14154715
APA StyleRadomski, B., & Mróz, T. (2021). The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach. Energies, 14(15), 4715. https://doi.org/10.3390/en14154715