Aggregated World Energy Demand Projections: Statistical Assessment
Abstract
1. Introduction
2. Literature Background
3. Methodology
4. Results
5. Discussion
5.1. Assessment of Roadmaps Projections
5.2. Future Demand Uncertainties
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EJ | Exajoules (1 EJ = 277.778 TWh). |
EJ/yr | Exajoules per year. |
GDP | Gross Domestic Product. |
gr. | Growth rate. |
Mtoe | Millions of tonnes of oil equivalent. |
TFEC | Total Final Energy Consumption. |
TPES | Total Primary Energy Supply. |
Pop. | Population. |
s.d. | standard deviation. |
Appendix A. Theory and Methods
Appendix B. Empirical Results
I | II | III | |
---|---|---|---|
0.105 (3.23) | 0.033 (2.17) | 0.023 (2.16) | |
2.185 (3.38) | 1.487 (41.65) | 1.495 (48.85) | |
−0.085 (2.36) | −0.045 (3.18) | −0.049 (2.94) | |
0.058 (2.24) | 0.030 (3.19) | 0.033 (2.96) | |
0.68 | 0.67 | 0.67 | |
0.49 | 0.68 | 0.82 | |
0.496 | 0.999 | 0.999 | |
0.467 | 0.999 | 0.999 | |
S.E. | 0.010 | 0.141 | 0.996 |
S.D. | 0.014 | 34.53 | 340.1 |
DW | 1.91 | 1.93 | 1.78 |
References
- Teske, S. Achieving the Paris Climate Agreements Goals; Springer Open: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- IEA. Sustainable Recovery. World Energy Outlook Special Report (in Collaboration with the IMF). Available online: https://www.iea.org/reports/sustainable-recovery (accessed on 25 May 2021).
- Irena. Global Renewables Outlook: Energy Transformation 2050. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf (accessed on 25 May 2021).
- Hong, T.; Pinson, P.; Wang, Y.; Weron, R.; Yang, D.; Zareipour, H. Energy forecasting: A review and outlook. IEEE Open Access J. Power Energy 2020, 7, 376–388. [Google Scholar] [CrossRef]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Simon, S.; Naegler, T.; Gils, H.C. Transformation towards a renewable energy system in Brazil and Mexico—Technological and structural options for Latin America. Energies 2018, 11, 907. [Google Scholar] [CrossRef]
- McKibbin, W.J.; Pearce, D.; Stegman, A. Long term projections of carbon emissions. Int. J. Forecast. 2007, 23, 637–653. [Google Scholar] [CrossRef]
- de la Croix, D.; Docquier, F.; Liégeois, P. Income growth in the 21st century: Forecasts with an overlapping generations model. Int. J. Forecast. 2007, 23, 621–635. [Google Scholar] [CrossRef]
- Boßmann, T.; Staffell, I. The shape of future electricity demand: Exploring load curves in 2050s Germany and Britain. Energy 2015, 90, 1317–1333. [Google Scholar] [CrossRef]
- Suganthi, L.; Samuel, A.A. Energy models for demand forecasting—A review. Renew. Sustain. Energy Rev. 2012, 16, 1223–1240. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Swarts, R. Special Report on Emissions Scenarios. International Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Granger, C.; Jeon, Y. Long-term forecasting and evaluation. Int. J. Forecast. 2007, 23, 539–551. [Google Scholar] [CrossRef]
- Granger, C.W.J. Forecasting in Business and Economics, 2nd ed.; Academic Press Inc.: Cambridge, MA, USA, 1989. [Google Scholar]
- Ahlburg, D.; Lindh, T. Long-run income forecasting. Int. J. Forecast. 2007, 23, 533–538. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A.J. The Year 2000—A Framework for Speculation on the Next Thirty-Three Years; MacMillan: New York, NY, USA, 1967. [Google Scholar]
- Kraay, A.; Monokroussos, G. Growth Forecasts Using Time Series and Growth Models. World Bank Policy ResearchWorking Paper, WPS 2224. 1999. Available online: http://documents1.worldbank.org/curated/en/787111468782349329/pdf/multi-page.pdf (accessed on 25 May 2021).
- Gilbert, P.D. Combining VAR estimation and state-space model reduction for simple good predictions. J. Forecast. 1995, 14, 229–250. [Google Scholar] [CrossRef]
- Prskawetz, A.; Kögel, T.; Sanderson, W.C.; Scherbov, S. The effects of age structure on economic growth: An application of probabilistic forecasting to India. Int. J. Forecast. 2007, 23, 587–602. [Google Scholar] [CrossRef][Green Version]
- Lutz, W.; Scherbov, S. Probabilistic population projections for India with explicit consideration of the education-fertility link. Int. Stat. Rev. 2004, 74, 81−92. [Google Scholar] [CrossRef]
- Lindh, T.; Malmberg, B. Demographically based global income forecasts up to the year 2050. Int. J. Forecast. 2007, 23, 553–567. [Google Scholar] [CrossRef]
- Ghalehkhondabi, I.; Ardjmand, E.; Weckman, G.R.; Young, W.A. An overview of energy demand forecasting methods published in 2005–2015. Energy Syst. 2017, 8, 411–447. [Google Scholar] [CrossRef]
- Lindberg, K.B.; Seljom, P.; Madsen, H.; Fischer, D.; Korpas, M. Long-term electricity load forecasting: Current and future trends. Util. Policy 2019, 58, 102–119. [Google Scholar] [CrossRef]
- Smil, V. Energy Transitions: Global and National Perspectives, 2nd ed.; Praeger: Santa Barbara, CA, USA, 2017. [Google Scholar]
- World Bank. World Bank Open Data; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Maddison, A. World-Gdp-Over-The-last-Two-Millennia, (1000–2008). Available online: https://www.rug.nl/ggdc/historicaldevelopment/maddison/ (accessed on 25 May 2021).
- United Nations. Department of Economic and Social Affairs. World Population Prospects 2019. Highlights, Methodology, Key Findings; United Nations: New York, NY, USA, 2019. [Google Scholar]
- United Nations Development Programme (UNPD). World Population Prospects: The 2015 Revision; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Mauleón, I. Photovoltaic and wind cost decrease estimation: Implications for investment analysis. Energy 2017, 137, 1054–1065. [Google Scholar] [CrossRef]
- Mauleón, I. Assessing PV and wind roadmaps: Learning rates, risk, and social discounting. Renew. Sustain. Energy Rev. 2019, 100, 71–89. [Google Scholar] [CrossRef]
- Mauleón, I. Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets. Appl. Energy 2019, 253, 113556. [Google Scholar] [CrossRef]
- IEA. World Energy Balances 2019. Available online: https://webstore.iea.org/world-energy-balances-2019 (accessed on 25 May 2021).
- OECD/IEA. Perspectives for the Energy Transition-Investment Needs for a Low Carbon System, Chapter. 2. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Mar/Perspectives_for_the_Energy_Transition_2017.pdf (accessed on 25 May 2021).
- Irena. Perspectives for the Energy Transition-Investment Needs for a Low Carbon System, Chapter. 4. Available online: http://www.irena.org/DocumentDownloads/Publications/Perspectives_for_the_Energy_Transition_2017.pdf (accessed on 25 May 2021).
- Teske, S.; Zervos, A.; Lins, C.; Muth, J.; Krewitt, W.; Pregger, T.; Simon, S.; Naegler, T.; Schmid, S.; Graus, W.; et al. Energy [R]evolution—A Sustainable World Energy Outlook; Greenpeace International, European Renewable Energy Council (EREC), Deutsches Zentrumfür Luft- und Raumfahrt (DLR); Ecofys: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Krewitt, W.; Simon, S.; Graus, W.; Teske, S.; Zervos, A.; Schäfer, O. The 2 °C scenario—A sustainable world energy perspective. Energy Policy 2007, 35, 4969–4980. [Google Scholar] [CrossRef]
- Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Energy consumption of cryptocurrencies beyond bitcoin. Joule 2020, 4, 1839–1851. [Google Scholar] [CrossRef]
- de Vries, A. Renewable energy will not solve bitcoin’s sustainability problem. Joule 2019, 3, 891–898. [Google Scholar] [CrossRef]
- Koutitas, G.; Demestichas, P. A review of energy efficiency in telecommunication networks. Telfor J. 2010, 2, 2–7. [Google Scholar]
- Przystupa, K.; Beshley, M.; Kaidan, M.; Andrushchak, V.; Demydov, I.; Kochan, O.; Pieniak, D. Methodology and software tool for energy consumption evaluation and optimization in multilayer transport optical networks. Energies 2020, 13, 6370. [Google Scholar] [CrossRef]
- Hook, A.; Court, V.; Sovacool, B.; Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 2020, 15, 093003. [Google Scholar] [CrossRef]
- Brockway, P.E.; Sorrell, S.; Semieniuk, G.; Heun, M.K.; Court, V. Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications. Renew. Sustain. Energy Rev. 2021, 141, 110781. [Google Scholar] [CrossRef]
- Vivanco, D.F.; Sala, S.; McDowall, W. Roadmap to rebound: How to address rebound effects from resource efficiency policy. Sustainability 2018, 10, 2009. [Google Scholar] [CrossRef]
- Burger, J.R.; Brown, J.H.; Day, J.W.; Flanagan, T.P.; Roy, E.D. The central role of energy in the urban transition: Global challenges for sustainability. Biophys. Econ. Resour. Qual. 2019, 4, 5–10. [Google Scholar] [CrossRef]
- Semieniuk, G.; Taylor, L.; Rezai, A.; Foley, D. Plausible energy demand patterns in a growing global economy with climate policy. Nat. Clim. Chang. 2021, 11, 313–318. [Google Scholar] [CrossRef]
- Creutzig, F.; Fernandez, B.; Haberl, H.; Khosla, R.; Mulugetta, Y.; Seto, K.C. Beyond technology: Demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 2016, 41, 173–198. [Google Scholar] [CrossRef]
- Bowles, S. Endogenous preferences: The cultural consequences of markets and other economic institutions. J. Econ. Lit. 1998, 36, 75–111. [Google Scholar]
- Cullen, J.M.; Allwood, J.M.; Borgstein, E.H. Reducing energy demand: What are the practical limits? Environ. Sci. Technol. 2011, 45, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T. Prosperity without Growth: Economics for a Finite Planet; Earthscan: London, UK, 2011. [Google Scholar]
- Stanton, E.A. The Human Development Index: A History; Political Economy Research Institute WP 127; University of Massachusetts: Amherst, MA, USA, 2007. [Google Scholar]
- Fleurbaey, M. Beyond GDP: The quest for a measure of social welfare. J. Econ. Lit. 2009, 47, 1029–1075. [Google Scholar] [CrossRef]
- Mauleón, I. Economic issues in deep low-carbon energy systems. Energies 2020, 13, 4151. [Google Scholar] [CrossRef]
- Montano, B.; García-López, M. Malthusianism of the 21st century. Environ. Sustain. Indic. 2020, 6, 100032. [Google Scholar] [CrossRef]
- Brueckner, M.; Schwandt, H. Income and population growth. Econ. J. 2015, 125, 1653–1676. [Google Scholar] [CrossRef]
- Greene, W. Econometric Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Cottrell, A.; Luchetti, R. A Hansl Primer. 2015. Available online: http://gretl.sourceforge.net/ (accessed on 25 April 2020).
- Janet, P.K. Gnuplot in Action: Understanding Data with Graphs, 2nd ed.; Manning Publications: Shelt Alan, NY, USA, 2016. [Google Scholar]
Pop. Gr., 0.5% | Pop. Gr., 1.0% | |||
---|---|---|---|---|
GDP Gr., 2% I | GDP Gr., 3% II | GDP Gr., 2% III | GDP Gr., 3% IV | |
TFEC | 530.0 | 576.6 | 616.6 | 670.7 |
TFEC (90%) | 916.6 | 997.0 | 1066.2 | 1159.7 |
TFEC (80%) | 783.9 | 852.7 | 911.9 | 991.9 |
GDP | 154.2 | 212.7 | 154.2 | 212.7 |
contr. GDP | 590.6 | 731.4 | 590.6 | 731.4 |
contr. dyn. | −60.6 | −154.8 | 26.0 | −60.7 |
TFEC (2050/2017) | 1.372 | 1.49 | 1.59 | 1.73 |
GDP (2050/2017) | 1.922 | 2.65 | 1.922 | 2.65 |
TFEC/GDP (2050) | 3.44 | 2.7 | 4.0 | 3.15 |
2015–2050 | 2050 | 2050 | 2050 | |
---|---|---|---|---|
GDP (%) | Pop. (b.) | TPES | TFEC | |
IEA (2017) | 3.1 | 9.8 | 14,204 Mtoe | 9741 Mtoe |
Irena (2017) | 2.8 | 9.7 | 635 EJ/yr | 370 EJ/yr |
Teske (2019) | 3.2 | 9.8 | 439 EJ/yr | 310 EJ/yr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauleón, I. Aggregated World Energy Demand Projections: Statistical Assessment. Energies 2021, 14, 4657. https://doi.org/10.3390/en14154657
Mauleón I. Aggregated World Energy Demand Projections: Statistical Assessment. Energies. 2021; 14(15):4657. https://doi.org/10.3390/en14154657
Chicago/Turabian StyleMauleón, Ignacio. 2021. "Aggregated World Energy Demand Projections: Statistical Assessment" Energies 14, no. 15: 4657. https://doi.org/10.3390/en14154657
APA StyleMauleón, I. (2021). Aggregated World Energy Demand Projections: Statistical Assessment. Energies, 14(15), 4657. https://doi.org/10.3390/en14154657